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Abstract—Decentralized electricity markets and more integra-
tion of renewables demand expansion of the existing transmission
infrastructure to accommodate inflected variabilities in power
flows. However, such expansion is severely limited in many coun-
tries because of political and environmental issues. Furthermore,
high renewables integration requires additional reactive power
support, which forces the transmission system operators to utilize
the existing grid creatively, e.g., take advantage of new tech-
nologies, such as flexible alternating current transmission system
(FACTS) devices. We formulate, analyze and solve the challenging
investment planning problem of installation in an existing large-
scale transmission grid multiple FACTS devices of two types
(series capacitors and static VAR compensators.) We account for
details of AC character of the power flows, probabilistic modeling
of multiple-load scenarios, FACTS devices flexibility in terms of
their adjustments within the capacity constraints, and long term
practical tradeoffs between capital vs operational expenditures
(CAPEX vs OPEX). It is demonstrated that proper installation
of the devices allows to do both - extend or improve feasibility
domain for the system and also decrease long term power
generation cost (make cheaper generation available). Nonlinear,
nonconvex, and multiple-scenario-aware optimization is resolved
through an efficient heuristic algorithm consisting of a sequence
of quadratic programmings solved by CPLEX combined with
exact AC PF resolution for each scenario for maintaining feasible
operational states during iterations. Efficiency and scalability of
the approach is illustrated on the IEEE 30-bus model and the
2736-bus Polish model from Matpower.

Index Terms—Non-convex Optimization, Optimal Investment
Planning, Optimal Power Grid Reinforcement, Series Compen-
sation Devices, Static VAR Compensation Devices.

NOMENCLATURE

Optimization variables:

∆x ∈ RNl Vector of series FACTS capacities.
∆Q ∈ RNb Vector of shunt FACTS capacities.
x ∈ RNl Vector of line inductances.
∆x ∈ RNl Vector of series FACTS settings.
∆Q ∈ RNb Vector of shunt FACTS settings.
V , θ ∈ RNb Vectors of buses’ voltages and phases.
PG (QG) ∈ RNb Vector of the generators’ active (reac-

tive) power injections.
Parameters:

PG (PG) ∈ RNb Vector of maximum (minimum) active
power generator outputs.

QG (Q
G

) ∈ RNb Vector of maximum (minimum) reactive
power generator outputs.

S ∈ R2Nl Vector of the lines’ apparent power lim-
its.

V (V ) ∈ RNb Vector of the maximum (minimum) al-
lowed voltages.

PD (QD) ∈ RNb Vector of active (reactive) power de-
mands.

x0 ∈ RNl Vector of initial line inductances.
a, K Index of the sampled loading scenario

and total number of scenarios
T(a) Occurrence probability of scenario a.
Nl, Nb Number of operational power lines and

buses.
C1 ∈ R Cost per ohm of a series FACTS device.
C2 ∈ R Cost per MVAr of a static VAR com-

pensator (SVC) FACTS device.
Ny ∈ R Planning horizon for the system.
C(PG) Generation cost function
M Number of segments representing each

load duration curve.
Ni Number of scenarios representing each

segment
α (α) Minimum (maximum) loading level.
αi (αi) Minimum (maximum) loading level for

segment i.
pi = wi Occurrence probability of segment i.
β (%) Yearly uniform loading growth
l0 ∈ R2Nb Vector of active and reactive loads for

the base configuration.

I. INTRODUCTION

MASSIVE installation of new resources, such as wind
and solar, forces power systems to operate in the con-

strained regimes close to operational limits. When the system
becomes constrained, the transmission capacity needs to be
expanded in order to provide committed services [1]. However,
expansion of the transmission network is severely limited by
social and environmental constraints, e.g., in Europe. In this
manuscript the option of upgrading power transmission by
placing and sizing flexible alternating current transmission sys-
tem (FACTS) devices is discussed. We show that installation
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of FACTS devices improves and extends system’s feasibility
domain and reinforces ability of the system to withstand future
operational challenges.

FACTS devices are known to be very effective in in-
creasing transmission capacity and improving power system
stability. However, their types, locations, and capacities must
be allocated properly in order to exploit their benefits. A
number of alternative formulations for optimal placement and
sizing of FACTS devices have been proposed. In particular,
[2]–[4] were focused on minimizing the operational cost.
An investment cost is minimized in [5], [6]. Reduction of
the transmission losses and increase of the power system
loadability was analyzed in [3], [7] and [8]–[10]. Reduction of
the load curtailment, and improvement of voltage profile and
voltage stability index were discussed in [6], [10]–[12]. The
resulting mathematical formulations were, typically, made in
the existing literature in terms of a Mixed Integer Non-Linear
Programming (MINLP). Then MINLP were resolved via the
sensitivity analysis [11], [13]; relaxation and/or decomposition
to Mixed Integer linear Programming (MILP) [14]; and genetic
algorithms [15]–[18]. The sensitivity-based methods are very
efficient for resolving large-scale problems containing only a
few indicators aimed at identifying the lines and/or buses that
most significantly affect the placement of the FACTS devices.
However, such methods cannot optimize device locations,
required installed capacities of the devices, and the number
of devices required. Genetic algorithms are advantageous for
finding global optimal solutions but suffer from extremely
slow convergence. Relaxation techniques, utilized to convert
MINLP to MILP [19], suffer from the lack of approximation
control, whereas decomposition techniques, which consist of
substitution of the original MINLP with a sequence of MILPs,
lead to impractically large hierarchies. Main problem with the
aforementioned approaches lies in their poor performance in
terms of their computational scaling. Methods suggested in
the past are handicapped by their ability to resolve prob-
lems limited to only relatively small number of nodes (a
few hundreds). Resolution of thousands nodes large models
of practical significance with multiple scenarios were not
even considered. Thus a typical approach to resolving the
challenge of scaling consisted in relaying on approximation
techniques to simplify modeling of the the line flows [6] or
substituting AC power flow modeling by DC modeling [14].
Unfortunately, these methodologies suffer from the lack of
approximation quality assurance thus making them impractical
for planning and installation problems of realistic size. One
stand alone computational approach, showing a significant
practical promise for resolving realistic size optimization
models formulated as MINLP – Benders decomposition [8]
and related scenario based decomposition. In [8] scalability is
demonstrated for the single scenario cases, but for the multiple
scenarios it is limited to models with tens of buses. Allowed
number of the installed devices should be limited as well.
Finally, it also worth mentioning that placement of FACTS
devices requires a significant installation cost even for devices
with small installed capacities therefore motivating approaches
focused on a search for a sparse placement [19]–[21].

Inspired by the aforementioned prior studies, this

manuscript proposes an alternative scalable and AC-based ap-
proach to optimal placement and sizing of a sufficiently small
number of FACTS devices in a transmission grid. Highlights
of our approach extending and generalizing our prior work
based on the DC description [20], [21] are as follows:

1) Optimal placement is resolved by incorporating invest-
ment and operational variables into the optimization
framework simultaneously. Installation of FACTS in-
troduces additional degrees of freedom which are ad-
justed (along with other operational degrees of freedom)
independently for each scenario within the installed
capacities. In other words, placement is resolved by
taking into account operational awareness.

2) Capital and operational expenditures are optimized si-
multaneously. The main advantage of this approach,
which to the best of our knowledge has not been
discussed in the literature so far, is that the resulting
optimal investment leads to a greater reduction of the
operational costs, thus providing additional long-term
benefits.

3) Multiple loading scenarios are considered. Scenarios are
generated as samples of a probability distribution asso-
ciated with projected load curves representing seasonal
and daily variations. This is in contrast to the existing
literature approach, which accounts for a single (usually
worst-case) scenario, thus resulting in installation of an
expensive device with an unclear role in other cases. Our
approach instead finds a single installation (locations and
capacities) resolving multiple problems (e.g., overloads,
congestion, voltage problems) associated with a multi-
tude of possible scenarios. Also, the optimal settings
(within the installed capacities, distinct for different
scenarios) are discovered.

4) A novel optimization heuristic algorithm accounting for
the full AC model is developed. The algorithm consists
of sequential evaluation until convergence (within the
preset tolerance) and it includes two substeps at each
step. The first substep is an analytic linearization of
the basic AC formulas (nonlinear PF equations and
nonlinear line constraints) resulting in a quadratic pro-
gramming (QP) formulation finding investment variables
and operational settings for all scenarios. The second
substep consists of solving the AC PF for each scenario,
thus updating states found in the first substep.

5) The algorithm resolving multiple loading scenarios
scales well; it is capable of finding a solution for large
realistic transmission models with thousands of nodes
in a computationally acceptable time. The resulting
solution produces either an optimal solution or at least a
feasible upper bound solution separated from the optimal
one by a relatively small gap.

The rest of the manuscript is organized as follows. Opti-
mization framework for finding the optimal location of FACTS
devices is set up in Section II. The algorithm resolving
the optimization is explained in Section III. The numerical
experiments and results are described and discussed in Section
IV and Section V. Conclusions and the path forward are
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presented in Section VI. Three appendices provide details on
the transmission line π-modeling (Appendix A), the design
of the operational load scenarios (Appendix B), and the
procedure for choosing generation configuration to initialize
the algorithm (Appendix C).

II. OPTIMIZATION FRAMEWORK FOR FINDING OPTIMAL
LOCATION OF FACTS DEVICES

In this section we, first, formulate the problem of optimal
placement and sizing of FACTS devices, and then explain
and discuss challenges and features of the resulting nonlinear
optimization.

Our multi-scenario, operations aware nonlinear and noncon-
vex optimization problem, allowing installation of the static
capacitors at any lines and static var compensators at any
loading nodes, is stated, in terms of continuous variables
(no discrete degrees of freedom) for both installation and
operational degrees of freedom as follows:

min
4x,4Q,y(a)

C1

∥∥∆x
∥∥
1

+ C2

∥∥∆Q
∥∥
1

+Ny

K∑
a=1

TaC(P
(a)
G ) (1)

subject to

y(a) = (x, V, θ, PG, QG,4x,∆Q)(a) ∀a (2)

x(a) = x
(a)
0 +4x(a) ∀a (3)

P
(a)
G = P

(a)
D + P

(a)
ij ∀a (4)

Q
(a)
G = Q

(a)
D −∆Q(a) +Q

(a)
ij ∀a (5)

(P
(a)
ij )i =

∑
j∼i
<(S

(a)
ij ) ∀i, a (6)

(Q
(a)
ij )i =

∑
j∼i
=(S

(a)
ij ) ∀i, a (7)

P
(a)
G ≤ P (a)

G ≤ P (a)

G ∀a (8)

Q(a)

G
≤ Q(a)

G ≤ Q(a)

G ∀a (9)

−4x ≤ 4x(a) ≤ 4x ∀a (10)

−4Q ≤ 4Q(a) ≤ 4Q ∀a (11)

V (a) ≤ V (a) ≤ V (a) ∀a (12)

[<(S)(a)]T [<(S)(a)] + [=(S)(a)]T [=(S)(a)]

≤ (S
(a)

)2 ∀a (13)

Variables 4x,4Q represent capacities of the newly installed
series capacitors (SCs) and static VAR compensators (SVCs).
These are investment, i.e. 1st stage, decision variables. y(a) =
(x, V, θ, P,Q,4x,4Q)(a) represent the second-stage decision
variables associated with operations under particular scenario
(thus labeled by (a)). Notice that the second-stage decision
variables include scenario-specific settings of the installed
FACTS devices. Operational settings (2nd stage decision vari-
ables) are constrained by the available capacities (1st stage
decision variables).

The objective function in Eq. (1) consists of three terms.
The first two terms express the capital investment costs of
the installation of the two types of FACTS devices. Guided
by the key message from the field of compressed sensing

[22], the l1 norm representation is chosen for the investment
terms to promote sparsity of the FACTS device placement.
The third term in the objective stands for the operational
cost introducing explicit dependence on the settings of all the
considered scenarios. Here the summation is over K scenarios
accounting for occurrence probabilities of the scenarios (Ta)
multiplied by the number of service years considered for
planning horizon. By including multiple scenarios over the
multi-year time horizon, we thus consider operational-aware
planning.

It is important to emphasize the main point, and also
difficulty, in solving the multi-scenario problem – the problem
cannot be split into independent optimization problems, each
associated with an individual scenario. The scenarios are
coupled through the expected operational cost in the objective
function. Obviously there always exists at least one scenario
for which scenario-dependent decision variables coincide with
the respective capacity-related decision variables (otherwise
optimal capacities would allow reduction to decrease the
investment cost), however for the most part (majority of the
scenarios) operational settings are strictly smaller than the
capacity.

The constraints supplementing Eq. (1) are as follows. (2)
describes the state of the system for a given operational
scenario. (3) bounds actual line inductances, which are ad-
justed according to the operational value (per scenario) of the
installed SC devices. The operational limits are set according
to the respective installed capacities, represented by (10).
(4) and (5) state active and reactive power balance at every
bus of the network. Elements of vectors PG (QG) and PD
(QD) are zeros for buses that contain neither generators nor
loads. (6) and (7) represent the net active (Pij ∈ RNb ) and
reactive (Qij ∈ RNb ) power injections at the system buses.
The term ∆Q stands for the scenario-dependent SVC shunt
compensation constrained by the respective installed capacities
in accordance with (11). Limits on active and reactive power
generation are expressed by (8) and (9). (12) and (13) define
the voltage and thermal line flow constraints. Here S(a)

ij = S
(a)
f

if i is “from” end of a line and S
(a)
ij = S

(a)
t if i is “to” end

of a line. See Appendix A for details and nomenclature of the
π-line modeling used in this manuscript.

Notice that nonlinearity and nonconvexity of the constraints
(6), (7), and (13) constitute the main challenge for solving the
optimization efficiently. Available nonlinear solvers, such as
IPOPT [23], scale poorly (exponentially) with increase in the
problem size, making the tool useless for optimization over
realistic large transmission networks with thousands of nodes.

To complete the optimization problem formulation, one
needs to describe how the representative load scenarios are
defined. Each of K scenarios, indexed by a in Eqs. (1–
13), should characterize different loading configurations with
occurrence probability. The scenarios may include sampled
(typical) configurations and/or contingency (rare) configu-
rations representing different loading regimes. In principle,
choosing scenarios appropriate for the optimization (1) of a
grid model is a stand-alone task. In this manuscript we choose
to generate scenarios from the so-called load duration (LD)
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curve [24]. The scenario generation procedure is explained in
Appendix B.

III. THE ALGORITHM

This section describes the algorithm which we suggest
to resolve the optimization problem stated in the preceding
section. The algorithm consists of the following principal
steps:

1) Scenarios are generated. (In this manuscript the scenario
generation scheme based on the Load Duration curve
concept is used. See Appendix B for details.)

2) Generation configuration is initialized (for each sce-
nario) according to the scheme explained in Appendix
C.

3) If some of the constraints (3)–(13) are violated, the
operational point of the system is outside of the feasi-
ble domain defined by them. The nonlinear constraints
(6), (7), and (13) are linearized around the current
operational point for each scenario. This allows for
the construction of a current linearized version of the
nonlinear optimization problem (1)-(13). The problem
maintain all constraints for all considered scenarios.

4) The resulting linearized problem is solved by QP using
the interior point algorithm of the CPLEX solver [25].

5) Exact AC PF is solved to update the states obtained
in the previous step. This step is needed to prepare a
feasible solution for the next iteration.

6) Steps 2–5 are repeated until no constraints remain vio-
lated, the target precision is reached, or the maximum
allowed number of iterations is reached.

It is important to emphasize that, by design, the algorithm
maintains at each iteration a feasible physical state. Also,
the algorithm is a heuristic converging to a local minimum
which may or may not be the global minimum. An empir-
ical improvement, in terms of convergence to the optimal
(or at least reasonable/good) solution, is achieved through
experiments with the algorithm’s starting point. It was found
that initiating the algorithm with the solution corresponding
to optimal dispatch ignoring line constraints (see Appendix
C) returns satisfactory results. Note that getting not optimal
but reasonable solution resolving all the constraints would
normally be acceptable (in practice).

The details of the main steps of the algorithm are presented
below.

A. Linearization

Each scenario acts as an input to this part of the optimization
heuristics. The operational state for each scenario can be
represented as

y(a) = (x, V, θ, P,Q)(a) (14)

For each scenario, Eq. (13) is linearized using first order Taylor
expansion around the current operational point y0:

F (a)(y
(a)
0 ) +∇F (a)(y

(a)
0 )(y(a) − y(a)0 ) ≤ (S

(a)
)2 (15)

Where F (y) is a function defining squared absolute value of
the apparent power at an end of the line. Similarly, Eqs. (4)-(7)
for each scenario can be linearized as

∇(P − Pij(x, V, θ, P,Q))(a)(y
(a)
0 )(y(a) − y(a)0 ) = 0 (16)

∇(Q−Qij(x, V, θ, P,Q))(a)(y
(a)
0 )(y(a) − y(a)0 ) = 0 (17)

Operational variables are adjusted independently for each
scenario.1 However, the capacity limits of the devices stay the
same (common) for all of the scenarios.

The fact that all controllable parameters of the system
stay adjustable/flexible results in degeneracy of the linearized
problem. To resolve possible degeneracy, we take advantage
of the flexibility associated with redistributing controllable
voltages, active powers and reactive powers. Specifically, we
introduce the following soft controllable constraint for reactive
power dispatch at each QP step:

|Q(a)
G −Q

(a)
G0
| ≤ ε (18)

The constraint is accounted for additionally to Eqs. (1)–(13).

B. Solving the QP problem

The standard QP solver of CPLEX is utilized to solve the
linearized problem for all the considered scenarios together.
Outputs of this step include values of operational variables for
each scenario along with investment variables 4x and 4Q.

C. Resolving AC PF

Notice that solution of the step III-B may actually violate
the AC-PF balance. Hence the exact AC-PF step is added to
maintain a valid/feasible power AC-PF solution at each step
of the algorithm.

All together (i.e., in combination) the steps described above
provide a feasible solution and resolve a system’s contingen-
cies simultaneously and gracefully.

IV. NUMERICAL EXPERIMENTS: METHODOLOGY
JUSTIFICATION

The developed approach is illustrated on examples of the
IEEE 30-bus and the 2736-bus Polish models, both available
through the Matpower [26] software package. The simulations
are performed on a Core i7 2600K@4GHz PC with 24 GB
of system memory. Both Matlab and Julia implementations,
which are comparable in performance, are used. Operational
cost is determined using generation cost functions from the
given model. Investment cost is a value calculated according
to the installation model (capacity × installation cost). The
actual installation cost of a given FACTS device configuration
remains a subject for future research.

1Operational values of the installed devices are assumed to be flexible
(different for each considered scenario).
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A. IEEE 30-bus model

In this section the advantage of including operational vari-
ables and optimizing the expected value of operational cost
as an objective along with the investment cost is emphasized.
We also illustrate optimality and scalability of the developed
heuristics by comparing our algorithm performance with per-
formance of the IPOPT when it is used as a state-of-the-art
brute-force solver applied to the exact problem Eq.(1).

a) Necessity of including operational variables in deter-
mining FACTS device placement: Let us, first of all, clarify
the algorithm’s principal advantage of optimizing operational
variables simultaneously with the investment variables. The
following simulation is performed to demonstrate the actual
benefit of the combined use of the capacity variables and
the scenario variables. The base-case system load is increased
uniformly by 5%, which leads to optimal power flow (OPF) in-
feasibility. Operational cost is not optimized for now (Ny = 0
in Eq. (1)). The initial state of the generation (needed to initial-
ize the algorithm) is defined by the first method described in
Appendix C. Then the two solutions are compared. One is the
actual solution of the developed algorithm with all degrees of
freedom available for the optimization. The second solution is
constrained by the same (fixed) generation dispatch (the initial
value).

TABLE I: Monetary advantage of considering operational
variables, illustrated on the IEEE 30-bus model.

Oper.
variables

SVC cap.
(MVAr)

SC cap. (%
of init x)

Invest. cost
($)

Oper. cost
($/hour)

Fixed 6.936 (3
SVCs)

38 (1 SC) 415930.29 614.05

Free 1.112 (1
SVC)

0 (0 SCs) 55765.71 698.24

Table I details the comparison. The significance of account-
ing for additional available degrees of freedom is obvious.
We find out that although the algorithm is able to find a
feasible solution in both cases, the investment cost (objective
function value) is 7.5 times smaller in the adjustable generation
dispatch case. Emergence of an expensive solution with small
operational cost is reported in Table I. This is an indication
that further experiments with tradeoffs between investment and
long-term operational costs (fixed in the use cases studied) are
to be explored in future studies.

b) Importance of including operational cost in the ob-
jective function: Another important point to illustrate on the
example of the IEEE 30-bus model is that combining the
operational cost and the investment cost in the optimization
objective is a way to make the optimization relevant to
practical planning. Indeed, keeping only the investment cost
produces operationally expensive solutions, whereas keeping
only the operational cost results in an expensive (and not
sparse) installation. Combining the effects of operations and
installations in one objective allows for an efficient balance
between the two.

To the best of our knowledge, only the investment cost is
accounted for in the available literature devoted to placement
of FACTS devices. To mimic this standard approach (account-
ing for only a single worst-case operational scenario), the

optimization horizon is set to zero, Ny = 0, in Eq. (1). Then
Ny is increased to 10 years to take effect of operations into
account.

TABLE II: Monetary advantages of adding the operational cost
to the optimization objective for the IEEE 30-bus model.

Plan.
horizon
(Ny)

Invest. cost
($)

Oper. cost
($/hour)

Total cost
(10 years,

M$)

Difference
(%)

0 55618.76 698.24 61.722 14.6
1 121838.27 616.25 55.202 2.49
10 249245.37 611.98 53.858 0.0

Table II illustrates the results. Two solutions found for
Ny = 1 and Ny = 10 reflects sensitivity to the operational
cost. Single extreme load configuration is considered (cor-
respondent to a 5% increase of the load in the base case).
When planning horizon is extended it becomes profitable
to invest more into reduction of the operational cost. It is
observed that an additional small investment of 200k$ leads
to a savings of 14.6% of the total cost in 10 years. Based on
this example, we conclude that accounting for the operational
cost in the planning problem is significant. Properly installed
FACTS devices allow not only to resolve infeasibility of the
loading configuration but also to reduce the generation cost,
thus producing lasting long term benefits. It is important
to emphasize that by accounting for multiple representable
scenarios (as opposed to working with a single scenario)
we achieve a much more realistic description of the whole
operational space.

c) Optimality: To verify performance of the developed
heuristics, a single scenario (base case overloaded by 5%)
is considered and the results are compared with the “exact”
(Eq.(1)) ones produced by IPOPT (standard, brute-force, non-
linear solver that is still able to handle the 30-bus investment
model).

We choose to work with IPOPT because it shows compu-
tational advantage over other nonlinear/nonconvex computa-
tional platforms applied to problems with structure similar to
the one discussed in the paper. As it is shown in [27], IPOPT is
on pier or it outperforms Matpower in solving classic ACOPF.
An additional advantage of using IPOPT is in its availability
within the JUMP/Julia computational environment we rely on.
For the actual solver on step III-B of our algorithm the CPLEX
solver is called (the solver is known to be advantageous for
problems with linear constraints).

The optimization horizon is set at 1 year. Table III shows
comparison of heuristics with the benchmark IPOPT. It is
observed that (as expected) developed heuristics produce a
very tight upper bound for the exact solution, with values of
the objective function and structure of the solution that are
very close to the exact values.

d) Scalability: To study how the algorithm scales with
the number of scenarios, we pick the base case, increase all
loads by 5%, and generate K scenarios through the Gaussian
sampling procedure associated wtih Eqs. (23–24), where the
rescaled base-case load is set to l0. Scaling analysis of the
developed algorithm is illustrated in Fig. 1.
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TABLE III: Comparison of the proposed heuristics with the
brute-force IPOPT solution of the exact problem Eq.(1) for
the IEEE 30-bus model.

Solver Bus
number

Calculated
cap.

(MVAr)

Investment
cost (k$)

Total cost
(k$)

IPOPT 8 2.436 121.80 5520.094
proposed
algorithm

8 2.437 121.84 5520.159
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Fig. 1: Computational time comparison for 30-bus model.

It is observed that algorithm handles an increasing number
of scenarios very efficiently, solving formulations with a large
number of scenarios in time that increases linearly with the
number of scenarios (blue line). Performance of the brute-force
IPOPT solver applied to the exact problem in Eq. 1 (shown
as thick red line in Fig. 1) is limited.

B. 2736-bus Polish model

In this section we extend analysis of the developed algo-
rithm to the case of the Polish grid, which is a practical-
size transmission model available as a part of the Matpower
package [26]. Similar approach as the one tested above on the
30-bus model is followed here.

a) Necessity of including operational variables in de-
termining FACTS device placement: The experimental set-
ting stays the same as in the case of the 30-bus model.
A single scenario corresponding to the normal operational
state (correspondent to the base-case example from [26]) with
all the loads homogeneously increased by 5% is considered
for resolution. Generation dispatch is defined by the second
procedure from Appendix C. Table IV illustrates the results.
(See Section IV-A for detailed discussion of the experimental
setting, related terminology, and nomenclature.) The results
confirm the conclusions drawn above for the case of the 30-
bus model—operational variables should be taken into account
because ignoring them leads to a significant increase in the
investment cost, or even worse, infeasibility of a highly loaded
configuration.

b) Importance of including operational cost in the objec-
tive function: The normal operation base-case is taken with
all loads re-scaled up by 5%, and the resulting optimizations
are compared (including and not including the operational cost
in the objective). The comparison is made for the total cost
accumulated in 10 years. It is observed that the difference

TABLE IV: Monetary advantage of considering operational
variables for the 2736-bus Polish model.

Oper. variables Investment cost ($) Operational cost
($/hour)

Fixed 916616.1 1884214.9
Free 187869.6 1950027.2

between the 0-year case (where the operational cost is ignored)
and the 10-year case is 2.6%, which results in 4330 M$ of
total cost savings; the additional investment (installation) cost
is only 550k$. The numbers clearly support main hypothesis:
installation is advantageous and including the operation cost
in the objective is mandatory for practical grid extension
planning. This is possible because congestion in the system
shows a decrease, in addition to the restoration of the feasible
solution.

c) Scalability: Fig. 2 shows how the computational time
of the algorithm scales with the number of the scenarios.
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Fig. 2: Computational time vs the number of scenarios for the
Polish model.

A number of cases ranging from a single scenario to 16
scenarios are tested. The brute-force IPOPT fails to solve the
Polish model case even with a single scenario (exact problem
in Eq. 1). Proposed algorithm solves the most challenging
case of 16 scenarios in 17500 sec. It is deduced from Fig. 2
that the computational time grows polynomially as O(K3),
suggesting that proposed algorithm is practical/scalable for
planning problem when computational time is not a significant
constraint.

Note that the O(K3) scaling is still slower (with the K
increase) than the linear-scaling behavior observed in the 30-
bus model. Our suggestion is that the better performance
observed in the 30-bus model may be related to the fact that
the Polish model is denser, thus requiring linearization of more
PF equations. It may also be due to worse scaling of the QP
solver performance in the case of the Polish model. We plan
to perform more detailed analysis in the future.

V. NUMERICAL EXPERIMENTS:
MULTIPLE-SCENARIO-AWARE LONG-TERM PLANNING

In this section developed methodology and algorithm, dis-
cussed in the preceding sections, are applied to analysis of



2325-5870 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2019.2899104, IEEE
Transactions on Control of Network Systems

7

the comprehensive multiple-scenario-aware long-term plan-
ning setting. To generate the scenarios and initialize the
algorithm, methods discussed in Appendix B and Appendix C
are utilized. In all experiments discussed below the planning
horizon is chosen to be 10 years.

A. IEEE 30-bus model

Sixteen scenarios per yearly LD curve are generated (160
total). The annual increase factor, β, is set to 1.5% a year. The
resulting optimal solution is shown in Fig. 3. It is observed
that proposed algorithm installs FACTS devices efficiently and
sparsely, thus resolving successfully the otherwise imminent
(observed for a significant portion of the 160 scenarios)
AC-OPF infeasibility. The optimal solution consists of the
installation of an SVC device at bus 8 with the capacity of
5.78 MVAr and installation of an SC device at the line between
buses 6 and 8 with a capacity increase of 1%. The proposed
investment is 30k$, resulting in an average savings of 1.8$ per
hour.2

Fig. 3: Optimal solution for 10 years of planning in the case
of the 30-bus model. Loads = yellow circles; gens = squares;
blue dashed line = line with installed SC that was overloaded
initially for some scenarios; green dot = node where an SVC is
installed. Voltage levels are shown in PU; capacities of SVCs
and SCs are shown in MVar and in % of initial line inductance.

B. 2736-bus Polish model

This experiment is done with 16 sampled scenarios (2
of 16 are AC-OPF infeasible) for the 10-year horizon and
with assumed yearly loading growth (factor β) of 0.5%. The
resulting optimal investment is shown in Fig. 4 (coding of
loads and gens is the same). The algorithm outputs a solution
resulting in installation of two SC devices and one SVC device
to resolve the infeasibility of some of the samples. Average
congestion cost of the sampled scenarios is 5738$/hour, and

2All the actual values are model dependent. Costs are values of the objective
function - determined according to a pre-defined cost of investement for a unit
of capacity.

Fig. 4: Optimal solution for 10 years of planning in the case of
the Polish model. Red dashed lines = lines that were initially
overloaded for some scenarios. Two built SCs are shown by
green lines. The big green dot illustrates an SVC device. SVC:
3.3 MVar, SCs: 14.4%, 70.4% (left to right).

the average generation cost savings is 3369$/hour. The solution
is sparse and nonlocal (new FACTS devices are installed
sufficiently far away from nodes and lines where the initial
congestion was observed). SVC installation is relatively small
in that case because congestion was much more significant
for sampled scenarios than infeasibility, basically sampled two
AC-OPF infeasible conditions are still close to the feasibility
region.

VI. CONCLUSION

New optimization framework for placing and sizing FACTS
devices is proposed in this manuscript. The framework takes
into account AC-PF equations. The most important features
of the newly developed framework are the scalability of the
algorithm, allowing to resolve congestion over practical (thou-
sands of buses) size transmission systems, and the ability of
the algorithm to resolve multiple scenarios simultaneously.
Introduced optimization setting can also be considered as gen-
eralizing the standard AC-OPF: it seeks a balance between in-
stallation and operations. The optimization objective includes
the cost of operations over an extended time horizon as well
as the cost of installation of the FACTS devices, represented
in the form of an l1 norm to promote sparsity of the resulting
solutions. Optimization variables include capacities of the
FACTS devices and respective operational settings associated
with each scenario, where the latter are bounded by the former.

Proposed solution algorithm was tested in different regimes
on a midsize model (30-bus IEEE) and a realistic size (Polish
grid) model. It is observed that the output is spatially sparse,
i.e., a very small number of FACTS devices is sufficient, and
that the output is nonlocal, i.e., a typical new installation
resolves congestion at multiple locations that can be rather
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far from the newly installed devices. Also it is observed that
under highly loaded conditions FACTS devices are beneficial
in reducing the total cost of generation. Optimal installation
of the devices helps to resolve infeasibilities that are projected
to become even more severe in the future as well.

The main technical achievement reported in this manuscript
is the development of the algorithm that constitutes an efficient
heuristic for solving the nonlinear and nonconvex optimiza-
tion. The algorithm is sequential—it constructs a convergent
sequence of convex and analytic formulations (QP with linear
constraints) where each constraint is represented explicitly
through exact/analytic linearization of the original nonlinear
constraints (e.g., representing power balance at nodes and
apparent power line limits) over all the degrees of freedom
(including FACTS corrections) around the current operational
point.

To represent uncertainty in the expected growth of the sys-
tem (loads), a scenario sampling methodology is introduced.
It is evident from experimental results that developed frame-
work/approach is of a practical value for planning transmission
grid expansion—it simultaneously resolves the growing econ-
omy and emerging congestion. Development of a convenient
and flexible software for web visualization of transmission
system states and FACTS installations has become a side
benefit of this project.

Our current path forward is improvement of uncertainty
modelling (generation side uncertainty related to renewables).
For instance we are working on implementation of stochastic
optimization methods and their applications to investment
planning for the improvement of the value of the developed
methodology and tools.

APPENDIX A
TRANSMISSION LINE MODELING

For the sake of completeness and better understanding of the
proposed heuristics, a short description of the transmission line
modeling is presented here. The so-called π-model from [26] is
utilized. Parameters of the line model are the series impedance,
z = r+jx, the total charging susceptance, b, the transformation
ratio, τ , and the shift angle θshift. A transformer breaks the
symmetry between the “from” end, positioned next to the
transformer, and the “to” end of the line.

Explicit expressions for apparent powers injected at the
“from” end and the “to” end of the line in terms of voltages
and phases are

Sf (Vf , θf , Vt, θt, x) =
Vf (rVf − τVt (r cos ∆ + x sin ∆))

τ2l

−j
Vf

2τ2l

(
Vf (−2x+ bl) + 2τVt (x cos ∆ + r sin ∆))

)
(19)

St(Vf , θf , Vt, θt, x) =
Vt (rτVt − Vf (r cos ∆ + x sin ∆))

τ2l

−j
Vt
2τ l

(
τVt(−2x+ bl) + 2Vf (x cos ∆− r sin ∆)

)
(20)

where ∀i : vi = Vie
jθi , ∆ = θf−θt−θshift and l = r2+x2.

APPENDIX B
GENERATION OF SCENARIOS

Scenario generation/sampling is used to include the uncer-
tainty related to system load for the planning period. Power
system load growth over the time horizon is modeled via
modification of the Load Duration (LD) curve for current year.
The base LD curve is illustrated in Fig. 5.

The base LD curve is used first to generate LD curves for
consecutive years, rescaling the base LD curve by the load
growth factor of 0.5% − 1.5% a year. Second, each early
LD curve is split into M piecewise-constant parts. (M = 6
in simulations.) Finally, each piece of an LD curve is used
to generate scenarios according to a random (thus called
sampling) procedure described below. This scheme of scenario
generation/sampling models variations in the distribution of
loads, thus simulating power system behavior during an ex-
tended period of time in the future.

0%
0

25% 50% 75% 100%

α

α

i = 1...M ; pi = wi

M
W

Fig. 5: Piecewise-constant approximation of the LD curve.

It is assumed (and this assumption is confirmed in all our
experimental tests) that each of the generated (sampled) load
scenarios is ACOPF-feasible when the line constraints are
ignored. (In other words, the setting is considered when there
is enough generation capacity even for the stressed cases.)
Depending on the sampled scenario, three situations may arise.

1) ACOPF is feasible and congestion price is zero (low
loading level).

2) ACOPF is feasible and congestion price is positive
(higher loading level representing peak conditions).

3) ACOPF is infeasible because of congestion of lines
and/or voltage constraints but the system has enough
generation capacity. ACOPF without apparent power
limits on lines (and without voltage constraints if infea-
sible) is feasible (overloaded conditions that are possible
in the future).

The aim of planning installation of FACTS devices at the
right locations with their corresponding capacities is to reduce
generation cost for situation 2 and to improve or extend the
feasibility domain of the system for situation 3. Extra years
of service can hence be added to the existing grid by making
it more flexible, thereby delaying investments into new lines
and generators.

A. Scenario sampling for each segment

The loading level αi for a segment i is represented by

αi =
αi + αi

2
(21)
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Future loading configurations are obtained from the base case
by rescaling all active and reactive loads by αi uniformly. The
resulting vector of loads for a segment is thus given by

l0i = αi × l0 (22)

Loading configurations are generated for each segment i and
each j = 1..Ni through modification of initial l0i . This is done
by adding Gaussian correction to each load with zero expected
value and a respective standard deviation:

lji = l0i +N (0, σl0i ) (23)

pji = wi/Ni (probability of a given scenario) (24)

where σl0i is given by

σl0i =
αi − αi
αi

× l0i (25)

= σ × l0i (26)

The choice of parameters used in our experimental test to
sample the scenarios is described in Table V.

TABLE V: Implementation of the LD curve scheme

i wi αi σ

1 5.50 0.940 0.064
2 19.50 0.845 0.041
3 25.00 0.775 0.045
4 25.00 0.685 0.080
5 18.80 0.590 0.068
6 6.20 0.51 0.078

B. Congestion analysis correction

If the case is considered in which, for a given load
configuration, standard ACOPF outputs a solution that is
not congested, i.e., a solution for which each constraint (on
line flows or voltages) is satisfied with a margin, then this
scenario does not require any FACTS device installation. If the
whole segment (from the procedure described in the preceding
subsection) is of this “zero-congestion” type, then obviously
one does not need to generate many samples for the segment.
Instead, one rescaled base scenario to represent the whole
segment is picked.

APPENDIX C
DEFINING INITIAL GENERATION PROFILE

The initial profile of the generation for each load scenario
has to be determined to run the algorithm. Generation capacity
is assumed to be large enough for given loading levels. Two
procedures are used for that: (1) solve ACOPF with the thermal
limits ignored, and (2) find proportional generator response.
Second is done in the following four steps:
• Search for the smallest load rescaling factor α lowering

the load and thus making the resulting case feasible.
• Solve ACOPF with this new rescaled loading.
• Proportionally increase generation and load with the

value of α, which restores the initial loading of the
system. Use voltages from the ACOPF solution.

• Solve ACPF to obtain generation maintaining the loading.
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