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Comment on ‘Detecting Topology Variations in

Networks of Linear Dynamical Systems’

Sandip Roy and Mengran Xue

Abstract—Conditions for the detectability of topology
variations in dynamical networks are developed in [1]. Here,
an example is presented which illustrates an error in the
network-theoretic conditions for detectability developed in [1].

The article [1] presents conditions under which topology

variations in a network of homogeneous linear subsystems

can be detected, using measurements of the network’s natural

response. The conditions are developed by first characteriz-

ing discernibility of the natural responses of a nominal and

modified linear system for different initial states (Lemma 1,

Corollary 1, and Proposition 1), and then applying this result

to the dynamical-network model of interest (Proposition 2 and

following results). The study aims to distill detectability of

topology variations into a condition phrased entirely in terms

of the network’s topology, specifically the spectrum of the

Laplacian matrix associated with the network’s graph.

The following example demonstrates an error in the topo-

logical results developed in [1] (Proposition 2 and following

results), and illustrates that the detection of topology varia-

tions cannot always be distilled to a condition only on the

network’s topology. Per the notation in [1], we consider an

example with the following parameters: A =





7 0 0
0 0 1
1 0 1



,

B =





1 1 −1
0 −1 1
0 0 0



, L =









2 −1 −1 0
−1 2 −1 0
−1 −1 3 −1
0 0 −1 1









, and

L =









1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1









. We notice that the pair (A,B)

is controllable, and also that the Laplacian matrices L and

L correspond to networks which differ by a single link. The

eigenvalues of L are α = (0, 1, 3, 4), while the eigenvalues

of L are α = (0, .59, 2, 3.4). The two Laplacian matrices

thus have only one eigenvalue in common, at α = 0; the

right eigenvectors of the two matrices associated with this

eigenvalue are also identical, specifically the vector with

all unity entries (1). From Proposition 2 and the following

development, the non-null indiscernible states of the network

model should be a three-dimensional space, corresponding to

the synchronized states of the model. Indeed, the transition
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matrices Φ = I4⊗A−L⊗B and Φ = I4⊗A−L⊗B are seen

to have common eigenvalues at (0, 1, 7) whose corresponding

eigenvectors are identical, and specify the synchronous mani-

fold. However, the matrices Φ and Φ also share an eigenvalue

at 1 whose algebraic multiplicity is 4. Further, any vector of

the form









a

b

c

d









⊗





0
1
1



 is seen to be an eigenvector of both

Φ and Φ associated with the eigenvalue 1. Thus, the non-null

indiscernible states form a six-dimensional space, consisting of

the synchronous states as well as states of the form









a

b

c

d









⊗





0
1
1



.

This disagrees with Proposition 2, Theorem 1, and the ensuing

discussion in [1].

The error indicated in the example above arises from

Equation 21 in [1], which claims that the eigenvectors (and

generalized eigenvectors) of the transition matrix Φ are always

Kronecker products of the eigenvectors of L and of A− αB,

where α ∈ spec(L). However, this is only necessarily true

in the case where the eigenvalues of A− αiB corresponding

to different αi ∈ spec(L) are mutually distinct. Otherwise, if

different matrices A−αiB share eigenvalues, the eigenvectors

of Φ may be linear combinations of such Kronecker-product

vectors. In the example above, the matrix A − αB equals




7− α −α α

0 α 1− α

1 0 1



. Thus, the matrix A − αB is seen to

have an eigenvalue at 1 with corresponding right eigenvector




0
1
1



, for any complex α. Thus, we immediately recover that

Φ has an eigenvalue at 1 with multiplicity equal to the number

of nodes, and further any vector of the form









a

b

c

d









⊗





0
1
1



 is a

right eigenvector associated with the eigenvalue at 1. By the

same argument, Φ also has the same eigenvalue-eigenvector

pairs, and the additional indiscernible states are clarified.

The example suggests that the indiscernible states cannot be

determined only based on the topology of the network, since

in this case the repeated eigenvalue at 1 and corresponding

eigenspace are present, entirely independently of the network

topology. Thus, any type of topology variation – including

link and node disconnection – would be indiscernible for some
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initial states outside the synchronous manifold.

The error in the development may be corrected by adding

the technical requirement that the eigenvalues of A − αiB

corresponding to different αi be distinct. Alternately, a more

complete treatment can perhaps be obtained by either pursuing

a full eigenvector analysis of the dynamical-network model

(see [2], [3]), or by exploiting the concept of a network-

invariant mode [4]. We also note that the subtlety in the eigen-

vector analysis of the dynamical-network model discussed here

has led to errors in the controllability analysis of the model

(e.g. [5]).
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