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Distributed Kalman Filtering

under Model Uncertainty
Mattia Zorzi

Abstract

We study the problem of distributed Kalman filtering for sensor networks in the presence of model uncertainty.

More precisely, we assume that the actual state-space model belongs to a ball, in the Kullback-Leibler topology, about

the nominal state-space model and whose radius reflects the mismatch modeling budget allowed for each time step.

We propose a distributed Kalman filter with diffusion step which is robust with respect to the aforementioned model

uncertainty. Moreover, we derive the corresponding least favorable performance. Finally, we check the effectiveness

of the proposed algorithm in the presence of uncertainty through a numerical example.

Index Terms

Distributed robust Kalman filtering, sensor networks (SNs), least favorable analysis.

I. INTRODUCTION

Significant advances in science and technology have led to a large number of problems that involve numerous

sensors, i.e. a sensor network (SN), taking measurements and a state process which needs to be estimated from such

measurements. Just to mention a few of these problems: area surveillance, region monitoring, target tracking and

electrical power grid analysis. These problems can be (in principle) solved by using Kalman filtering equipped with

all the observations coming from the SN. On the other hand, such centralized strategy is impractical or impossible

to implement. Indeed, it requires a large amount of energy for communications among the central node, i.e. the one

which computes an estimate of the state process, and the sensors. In order to overcome this difficulty, distributed

strategies have gained rapidly increasing interest in the last few years, see for instance [1], [2], [3], [4]. The latter

represent an attractive alternative because they require fewer communications and allow parallel processing. The

simpleminded distributed version of the Kalman filter assumes that each node can compute an estimate of the

state by using only the observations coming from its neighbors. On the other hand, such an approach provides

poor performances compared to the ones of the centralized approach. A remarkable improvement has been gained

by the so called consensus-based distributed Kalman filters [5], [6], [7], [8]. Such approaches require multiple

communication iterations during each sampling time interval: for instance, in the first iteration the nodes exchange

their observation and compute their local estimate; in the second iteration the nodes exchange their local estimates
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DRAFT 2

and construct the final estimate based on consensus schemes. A further improvement has been given by diffusion-

based strategies, [9], [10], wherein the consensus law is replaced by a convex combination of the local estimates.

It is worth noting that there also exist high performing distributed Kalman filters based on different principles. For

instance it is possible to compute the estimate through a fusion center which merges the local estimates of the

nodes, [11], [12], [13], [14].

Kalman filtering is based on nominal state-space models. On the other hand, the latter are just an approximation of

the underlying system, thus the resulting estimate could lead to poor performances in practice. To address this model

uncertainty issue many robust Kalman filtering strategies have been proposed. The most popular one is risk-sensitive

filtering, [15], [16], wherein large errors are severely penalized according to the so called risk sensitivity parameter:

the larger the latter is the more large errors are penalized. Here, we consider the robust Kalman filter introduced

by Levy and Nikoukhah [17], [18]. In such approach, the actual state space model belongs to a ball, according

to the Kullback-Leibler divergence, about the nominal model and with radius, say tolerance, which represents the

mismatch modeling budget allowed for each time step. Then, the optimal estimator is designed according to the

least favorable model in this ball. It is turns out that the latter obey to a Kalman-like recursion. Furthermore, it

can be understood as a generalization of risk-sensitive filtering: such a filter can be rewritten as a risk-sensitive

filter with a time varying risk-sensitivity parameter. Finally, it worth noting that the aforementioned approach can

be extended to a family of balls formed by using the τ -divergence, [19], [20].

It is then natural to wonder how to perform distributed Kalman filtering for SNs in the presence of model

uncertainty. Many papers consider model uncertainty in terms of missing observations. Such a situation well

describes communication problems among sensors: for instance, an H∞-consensus problem for SNs with multiple

missing measurements has been considered in [21]. On the other hand, only few papers addressed the problem

of model uncertainty in a broader sense to the best of the author’s knowledge. For instance, a distributed Kalman

filtering fusion strategy with random state transition and measurements matrices has been considered in [22].

The contribution of the present is about distributed Kalman filtering for SNs wherein the model uncertainty is

characterized by a ball, in the Kullback-Leibler divergence topology, about the nominal model. More precisely,

we propose a distributed version of the robust Kalman filter introduced by Levy and Nikoukhah. The proposed

algorithm is a robust version of the distributed Kalman filter with diffusion step in [9]. Then, we derive the least

favorable performance of these filters. Similarly to the centralized case, the latter can be characterized over a finite

simulation horizon as follows: first, a forward recursion is required to compute the optimal gains of centralized

Kalman filter; then, a backward recursion is required to compute the least favorable model; finally, a forward

recursion is required to compute the performance of the distributed robust Kalman algorithm. We show that the

average least favorable mean square deviation across the network converges to a finite constant value provided

that: the tolerance is sufficiently small; reachability and local observability hold. Moreover, we show that it is very

likely that the proposed robust distributed filters perform better than the standard ones provided that the tolerance is

sufficiently large. Finally, we compare the proposed algorithms with the standard ones through a numerical example.

The outline of the paper is as follows. In Section II we introduce the background about robust Kalman filtering.

In Section III we present the distributed robust Kalman filtering algorithm. In Section IV we analyze the least
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favorable performance of the proposed algorithms. In Section V we present a numerical example which compares

the proposed algorithm with the standard ones. Finally, in Section VI we draw the conclusions.

II. BACKGROUND

Consider the nominal state-space model

xt+1 = Axt + ΓBut

yt = Cxt + ΓDut (1)

where xt ∈ Rn is the state process, yt ∈ RpN is the observation process, ut is normalized white Gaussian noise

(WGN), i.e. E[utu
T
s ] = Iδt−s where δt denotes the Kronecker delta function. We assume that ut is independent

of the initial state x0. The latter is Gaussian distributed with mean x̂0 and covariance matrix V0. Model (1) is

characterized by the nominal transition probability density of zt := [xTt+1 yTt ]T given xt which is denoted by

φt(zt|xt). We assume that ΓBΓTD = 0, i.e. the noise entering in the state process is independent of the noise

entering in the observation process. We assume that ut affects all the components of the dynamics and observations

in (1). Such assumption is necessary whenever entropy-like indexes are used to measure the proximity of statistical

models, as in our case, otherwise these indexes take infinite value. Accordingly, the matrix [ ΓTB ΓTD ]T is full row

rank, and without loss of generality we can assume that [ ΓTB ΓTD ]T is a square (and thus invertible) matrix of

dimension pN + n. Indeed, we can always compress the column space of such a matrix and remove the noise

components which do not affect model in (1). Accordingly, the state-space model in (1) is reachable; moreover we

also assume it is observable.

Let φ̃t(zt|xt) be the (unknown) actual transition probability density of zt given xt. In order to account the fact

that the nominal model does not coincide with the actual model, we assume that φ̃t belongs to the closed ball about

φt:

Bt := { φ̃t s.t. Ẽ[log(φ̃t/φt)|Yt−1] ≤ c } (2)

where

Ẽ[log(φ̃t/φt)|Yt−1]

:=

∫ ∫
φ̃t(zt|xt)f̃t(xt|Yt−1) log

(
φ̃t(zt|xt)
φt(zt|xt)

)
dztdxt (3)

and Yt−1 := { ys, s = 1 . . . t− 1 }. The latter represents the relative entropy between the actual and the nominal

transition densities φ̃t(zt|xt) and φt(zt|xt) at time t, respectively, and f̃t(xt|Yt−1) ∼ N (x̂t, Vt) is the actual

conditional probability density of xt given the past observations Yt−1. Finally, parameter c > 0 is called tolerance

and represents the mismatch modeling budget allowed for each time step.

Given the nominal model in (1), a robust estimator of xt+1 given Yt is obtained by solving the following mini-max

problem

x̂t+1 = argmin
gt∈Gt

max
φ̃t∈Bt

Ẽ[‖xt+1 − gt‖2|Yt−1] (4)
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where

Ẽ[‖xt+1 − gt‖2|Yt−1]

:=

∫ ∫
‖xt+1 − gt‖2φ̃t(zt|xt)f̃t(xt|Yt−1)dxtdzt (5)

represents the mean square error of the estimator gt which is a function of yt and Yt−1. Gt denotes the set of all

estimators gt such that Ẽ[‖gt‖2] is finite for any φ̃t ∈ Bt. Roughly speaking, such estimator is designed according to

the least favorable model whose mismodeling budget allowed is expressed at each time step. This way to characterize

model uncertainty is better than expressing the uncertainty over the entire simulation interval. Indeed, in the latter

case the maximizer has the possibility to identify the moment where the dynamic of model (1) is most susceptible

to distortion and to allocate most of the distortion budget specified by the tolerance to this single element of the

model, that is a situation which is pretty unrealistic.

In [18] it has been proved that the estimator solving the mini-max problem (4) obeys the Kalman-like recursion:

Gt = AVtC
T (CVtC

T + ΓDΓTD)−1

x̂t+1 = Ax̂t +Gt(yt − Cx̂t)

Pt+1 = A(V −1
t + CT (ΓDΓTD)−1C)−1AT + ΓBΓTB

Find θt s.t. γ(Pt+1, θt) = c

Vt+1 = (P−1
t+1 − θtI)−1 (6)

where

γ(P, θ) := log det(I − θP ) + tr((I − θP )−1 − I). (7)

The so called risk sensitivity parameter, [23], θt > 0 does always exist and it is unique given Pt+1 and c, moreover

it can be computed efficiently by using a bisection algorithm. In the limit case c = 0, i.e. there is no uncertainty,

then θt = 0 and (6) becomes the usual Kalman filter.

Remark 1: The robust filtering paradigm in (4) can be extended to nominal state-space models with time-varying

parameters and tolerance. On the other hand, to ease the introduction of the corresponding distributed algorithms

we stick to the constant parameters and tolerance case.

III. DISTRIBUTED ROBUST KALMAN FILTER

Consider a network of N nodes and in each node there is one sensor. We say that two nodes are connected

if the corresponding sensors can communicate directly with each other. A node is always connected with itself.

The neighborhood of node k, i.e. the set of nodes connected with k, is denoted by Nk, in particular k ∈ Nk. The

corresponding N ×N adjacency matrix J = [jlk]lk is defined as

jlk :=

 1, if l ∈ Nk
0, otherwise.

(8)
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The number of neighbors of node k is denoted by nk. Every node at time t collects a measurement yk,t ∈ Rp

whose underlying model is unknown. The nominal model takes the form:

xt+1 = Axt +Bwt

yk,t = Ckxt +Dkvk,t k = 1 . . . N (9)

where wt and vk,t k = 1 . . . N are independent WGNs such that E[wtw
T
t ] = I , E[wtv

T
k,t] = 0 and E[vl,tv

T
k,s] =

Iδk−lδt−s. It is worth noting that (9) can be rewritten as (1) with yt = [ yT1,t . . . y
T
N,t ]T , ut = [wTt v

T
t ]T , vt =

[ vT1,t . . . v
T
N,t ]T , ΓB = [B 0 ], ΓD = [ 0 D ],

C =


C1

...

CN

 , D = diag(D1, . . . , DN ) (10)

where diag is the linear operator which constructs a block diagonal matrix whose blocks are the ones specified in

the argument. We also define R := DDT , Rl := DlD
T
l with l = 1 . . . N , and

Stot := CTR−1C =

N∑
l=1

CTl R
−1
l Cl. (11)

Accordingly, the filtering gain for model (9) can be written as

Gt = AVtC
T (CVtC

T +R)−1 = AVtC
T×

× (R−1 −R−1C(V −1
t + CTR−1C)−1CTR−1)

= A(V −1
t + CTR−1C)−1CTR−1

= A
(
V −1
t + Stot

)−1
CTR−1

and thus

Gtyt = A
(
V −1
t + Stot

)−1
N∑
l=1

CTl R
−1
l yl,t

GtC =
(
V −1
t + Stot

)−1
Stot.

In distributed Kalman filtering under model uncertainty, the aim is to compute for every node k a prediction of

the state xt while sharing the data only with its neighbors l ∈ Nk and taking into account that (9) does not coincide

with the actual model. In what follows, the one step-ahead prediction of xt at node k is denoted by x̂k,t. It is not

difficult to see that the robust Kalman filter for model (9), i.e. the node k has access to all measurements across
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all the nodes in the network, can be written as

x̂k,t+1 = Ax̂k,t +A(V −1
k,t + Stot)

−1×

×
N∑
l=1

CTl R
−1
l (yl,t − Clx̂k,t)

Pk,t+1 = A
(
V −1
k,t + Stot

)−1

AT +BBT

Find θk,t s.t. γ(Pk,t+1, θk,t) = c

Vk,t+1 = (P−1
k,t+1 − θk,tI)−1 (12)

where x̂k,t = x̂t and Vk,t = Vt with k = 1 . . . N .

Therefore in the case that the node k has not access to all measurements across all nodes in the network, we

would obtain a state prediction x̂k,t of xt which is as close as to the global state prediction.

A. Robust Kalman filter with diffusion step

We assume that a node k has access to the measurements of its neighbors Nk. The corresponding nominal

state-space model is

xt+1 = Axt +Bwt

yl,t = Clxt +Dlvl,t, l ∈ Nk. (13)

The latter can be rewritten as a state-space model (A,ΓB , C
loc
k ,ΓDloc

k
) with input noise ulock,t = [wTt (vlock,t)

T ]T

and output ylock,t where vlock,t and ylock,t are obtained by stacking vl,t and yl,t, respectively, with l ∈ Nk. Moreover,

ΓB = [B 0 ], Clock is obtained by stacking Cl with l ∈ Nk, ΓDloc
k

= [ 0 Dloc
k ] and Dloc

k is a block diagonal matrix

whose main blocks are Dl with l ∈ Nk. We also define Rlock := Dloc
k (Dloc

k )T , Sk := (Clock )T (Rlock )−1Clock and

thus

Sk =
∑
l∈Nk

CTl R
−1
l Cl. (14)

Accordingly, the one-step ahead predictor x̂k,t of xt at node k is given by (12) where the terms for which l /∈ Nk
are discarded. Then, the local prediction x̂k,t+1 can be understood as an intermediate local prediction of xt at node

k. In what follows we denote such intermediate prediction as ψk,t+1. Then, the idea is to update the prediction at

node k not only in terms of ψk,t+1, but also in terms of ψl,t+1 with l ∈ Nk. More precisely, we consider a matrix

W = [wlk]lk ∈ RN×N such that

wlk ≥ 0 and wlk = 0 if l /∈ Nk∑
l∈Nk

wlk = 1. (15)

Then, the final prediction at node k is obtained by the so called diffusion step, [9]:

x̂k,t+1 =
∑
l∈Nk

wlkψl,t+1. (16)
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Therefore, in the diffusion algorithm a node k exploits the information of the neighbors in terms of yl,t and ψl,t+1.

The resulting procedure is outlined in Algorithm 1. As explained in [9], the diffusion step (16) is motivated by

Algorithm 1: Distributed Robust Kalman filter with diffusion step at time t
Input : x̂k,t, Vk,t, yk,t with k = 1 . . . N

Output: x̂k,t+1, Vk,t+1 with k = 1 . . . N

Incremental step. Compute at every node k:

ψk,t+1 =

Ax̂k,t +A(V −1
k,t + Sk)−1∑

l∈Nk
CT

l R
−1
l (yl,t − Clx̂k,t)

Pk,t+1 = A(V −1
k,t + Sk)−1AT +BBT

Find θk,t s.t. γ(Pk,t+1, θk,t) = c

Vk,t+1 = (P−1
k,t+1 − θk,tI)−1

Diffusion step. Compute at every node k:

x̂k,t+1 =
∑

l∈Nk
wlkψl,t+1

the fact that the centralized prediction x̂t+1 can be approximated by a local convex combination of ψl,t+1. It is

worth noting that in the case that c = 0, i.e. there is no mismatch between the actual and the nominal model, then

θk,t = 0 for any t and k so that, we obtain the diffusion algorithm proposed in [9]. In the case that

wlk :=


ε, if l 6= k, l ∈ Nk
1− ε(nk − 1), if l = k, l ∈ Nk
0, otherwise

(17)

we obtain a consensus-based update where ε > 0 is the consensus parameter. Indeed, in the case that c = 0 and

W is designed as in (17) we obtain the distributed consensus-based algorithm proposed in [7]. Finally, in the case

that W = I we obtain the robust version of the local Kalman filter [24, p. 329].

It is worth noting that the mismatch modeling budget c in Algorithm 1 coincides with the one of the centralized

filter. Such a choice does not guarantee that the least favorable model computed at node k coincides with the one

of the centralized filter. On the other hand, we will see that, under large deviations of the least favorable model of

the centralized problem, it is very likely that the predictor at node k using Algorithm 1 performs better than the

one in [9], see Section IV-B for more details.

Remark 2: In some cases we may have a state-space model of the form

xt+1 = Axt + ΓBut + rt

yt = Cxt + ΓDut

where rt is a deterministic process. In [25] it was shown that the corresponding centralized robust Kalman filter

still obeys the Kalman-like recursion (6) where the prediction update is replaced by

x̂t+1 = Ax̂t +Gt(yt − Cx̂t) + rt. (18)
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Then, it is not difficult to see that the distributed algorithms presented in this section still hold in this case. The

unique difference is that we need to add in the prediction update of each node the term rt.

IV. LEAST FAVORABLE PERFORMANCE

In this section we analyze the performance of the distributed algorithm with diffusion step introduced in Section

III under the least favorable model which is solution of the mini-max problem (4), i.e. the centralized problem.

The performance assessment is given by the mean and variance of the least favorable state prediction error for each

node k (including the diffusion step), say x̃k,t with k = 1 . . . N . In [18], [20] it has been shown that the least

favorable model can be characterized over a finte interval [0, T ] and it takes the following form:

ξt+1 = Ǎtξt + B̌tεt

yt = Čtξt + Ďtεt (19)

where ξt = [xTt e
T
t ]T , xt is the least favorable state process, et is the least favorable prediction error of xt using

the robust filter (6) and εt is WGN with covariance matrix equal to the identity. Moreover,

Ǎt :=

 A ΓBΓHt

0 A−GtC + (ΓB −GtΓD)ΓHt


B̌t :=

 ΓBΓLt

(ΓB −GtΓD)ΓLt


Čt :=

[
C ΓDΓHt

]
, Ďt := ΓDΓLt , (20)

where ΓLt
is such that Kt = ΓLt

ΓTLt
,

Kt := (I − (ΓB −GtΓD)T (Ω−1
t+1 + θtI)(ΓB −GtΓD))−1

ΓHt := Kt(ΓB −GtΓD)T (Ω−1
t+1 + θtI)(A−GtC).

Matrix Ω−1
t+1 is computed from the backward recursion

Ω−1
t = (A−GtC)T (Ω−1

t+1 + θtI)(A−GtC)

+ ΓTHt
K−1
t ΓHt (21)

where the final point is initialized with Ω−1
T+1 = 0 and T is the simulation horizon. Therefore, to construct the least

favorable model we need to compute the gain Gt performing a forward sweep of the robust Kalman filter in (6) over

the interval [0, T ], then we generate the matrices Ωt through a backward sweep over the interval [0, T ]. We partition

ΓHt
∈ R(pN+n)×n and ΓLt

∈ R(pN+n)×(pN+n) as ΓHt
= [MT

t HT
t ]T and ΓLt

= [NT
t LTt ]T with Mt ∈ Rn×n,

Ht ∈ RpN×n, Nt ∈ Rn×(pN+n) and Lt ∈ RpN×(pN+n). Moreover, we partition Ht and Lt as follows:

Ht =


H1,t

...

HN,t

 , Lt =


L1,t

...

LN,t

 (22)
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where Hk,t ∈ Rp×n and Lk,t ∈ Rp×(pN+n).

Next we express the least favorable state prediction error x̃k,t at node k in terms of the WGN εt: in this way

we will be able to characterize the mean and the variance of x̃k,t. We define

x̃k,t = xt − x̂t,k

ψ̃k,t = xt − ψk,t (23)

which represent the prediction error and the intermediate prediction error, respectively, at node k at time t. Notice

that

yl,t = [Cl DlHl,t ]ξt +DlLl,tεt (24)

for l = 1 . . . N .
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Therefore, we have

ψ̃k,t+1 = xt+1 − ψk,t+1 = [ I 0 ]ξt+1 − ψk,t+1

= [ I 0 ](Ǎtξt + B̌tεt)−Ax̂k,t

−A(V −1
k,t + Sk)−1

∑
l∈Nk

CTl R
−1
l (yl,t − Clx̂k,t)

= Axt + ΓBΓHt
et + ΓBΓLt

εt −Ax̂k,t

−A(V −1
k,t + Sk)−1

∑
l∈Nk

CTl R
−1
l ([Cl DlHl,t ]ξt

+DlLl,tεt − Clx̂k,t)

= Ax̃k,t +BMtet +BNtεt

−A(V −1
k,t + Sk)−1

∑
l∈Nk

CTl R
−1
l (Clxt +DlHl,tet

+DlLl,tεt − Clx̂k,t)

= Ax̃k,t +BMtet +BNtεt

−A(V −1
k,t + Sk)−1

∑
l∈Nk

CTl R
−1
l (Clx̃k,t +DlHl,tet

+DlLl,tεt)

= A(I − (V −1
k,t + Sk)−1Sk)x̃k,t +B(Mtet +Ntεt)

−A(V −1
k,t + Sk)−1

∑
l∈Nk

CTl R
−1
l Dl(Hl,tet + Ll,tεt)

= A(V −1
k,t + Sk)−1V −1

k,t x̃k,t +B(Mtet +Ntεt)

−A(V −1
k,t + Sk)−1

∑
l∈Nk

CTl R
−1
l Dl(Hl,tet + Ll,tεt)

= A(V −1
k,t + Sk)−1V −1

k,t x̃k,t +B(Mtet +Ntεt)

−A(V −1
k,t + Sk)−1

N∑
l=1

jlkC
T
l R
−1
l Dl(Hl,tet + Ll,tεt) (25)

where we recall that jlk = 1 if l ∈ Nk, otherwise jlk = 0. Notice that,

x̃k,t+1 = xt −
∑
l∈Nk

wlkψl,t+1

=

N∑
l=1

wlkxt −
N∑
l=1

wlkψl,t+1

=

N∑
l=1

wlk(xt − ψl,t+1) =

N∑
l=1

wlkψ̃l,t+1 (26)
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where we have exploited (15). Taking into account (25), we have

x̃k,t+1 =

N∑
l=1

wlk[A(V −1
l,t + Sl)

−1V −1
l,t x̃l,t −A(V −1

l,t + Sl)
−1

×
N∑
m=1

jmlC
T
mR
−1
m Dm(Hm,tet + Lm,tεt)]

+B(Mtet +Ntεt). (27)

By defining

χ̃t := [ x̃T1,t . . . x̃
T
N,t ]T

C := diag(C1, . . . , CN )

Vt := diag(V1,t, . . . , VN,t)

S := diag(S1, . . . , SN ) (28)

we can rewrite (27) in the following compact way:

x̃k,t+1 = ([w1k . . . wNk ]⊗ I){(I ⊗A)(V−1
t + S)−1

× V−1
t χ̃t − (I ⊗A)(V−1

t + S)−1(JT ⊗ I)

× CTR−1D(Htet + Ltεt)}+B(Mtet +Ntεt)

and thus

χ̃t+1 = (WT ⊗ I){(I ⊗A)(V−1
t + S)−1V−1

t χ̃t

− (I ⊗A)(V−1
t + S)−1(JT ⊗ I)CTR−1D

× (Htet + Ltεt)}+ (1⊗B)(Mtet +Ntεt) (29)

where 1 denotes the vector of ones. We rewrite the latter as

χ̃t+1 = Atχ̃t + Btεt + Ctet (30)

where

At := (WT ⊗ I)(I ⊗A)(V−1
t + S)−1V−1

t

Bt := −(WT ⊗ I)(I ⊗A)(V−1
t + S)−1(JT ⊗ I)CR−1DLt

+ 1⊗BNt

Ct := −(WT ⊗ I)(I ⊗A)(V−1
t + S)−1(JT ⊗ I)CR−1DHt

+ 1⊗BMt. (31)

Combining (30) with the model for et in (19), we obtain:

ηt+1 = Ftηt + Gtεt (32)
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where ηt := [ χ̃Tt e
T
t ]T ,

Ft :=

 At Ct
0 (A−GtC) + (ΓB −GtΓD)ΓHt


Gt :=

 Bt
(ΓB −GtΓD)ΓLt

 . (33)

From (32), we can analyze the performance of the distributed Algorithm 1. Taking the expectation of (32), we

obtain

Ẽ[ηt+1] = FtẼ[ηt]. (34)

Since x̂0 is the mean of x0 and x̂k,0 = x̂0 for k = 1 . . . N , we have that Ẽ[η0] = 0. Accordingly, ηt is a random

vector with zero mean for any t. This means that the distributed Kalman predictions with diffusion step are unbiased.

We proceed to analyze the variance of the prediction errors. We define Qt = Ẽ[ηtη
T
t ]. Since εt is WGN with

covariance matrix equal to the identity, by (32) we have that Qt is given by solving the following Lyapunov equation

Qt+1 = FtQtFTt + GtGTt . (35)

We partition Qt as follows:

Qt =

 Pt Ht
HTt Rt

 (36)

where Pt ∈ RNp×Np, Ht ∈ RNp×n and Rt ∈ Rn×n. The n × n matrices in the main block diagonal of Pt
represent the covariance matrices of the estimation error at each node. Let MSDk,t := Ẽ[‖xt − x̂k,t‖2] denote

the least favorable mean square deviation at node k and at time t. Then, the average least favorable mean square

deviation across the network at time t is

MSDt :=
1

N

N∑
k=1

MSDk,t =
1

N
tr(Pt). (37)

The computation of the sequence Pt depends on the simulation horizon T . In particular, it is required to perform

three steps:

• compute the filtering gain Gt performing a forward sweep of the centralized robust Kalman filter in (6) over

the interval [0, T ]

• compute Ωt performing the backward recursion (21) over the interval [0, T ]

• compute Pt performing a forward sweep of the Lyapunov equation in (35) over the interval [0, T ].

A. Convergence analysis

In the previous section we showed how to compute Qt over the simulation horizon [0, T ]. Let 0 < α < β < 1.

We show that under reachability and local observability, and choosing the tolerance c > 0 sufficiently small, then Qt
converges over the interval [αT, βT ] as T approaches infinity, and thus the prediction errors at each node have zero

mean and finite constant variance in steady state. It is worth noting that local observability is a strong assumption

which may pose some limits on the practical applicability of the distributed robust Kalman filter.
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In [26] it has been shown that the least favorable prediction error using an estimator of type x̂t+1 = Ax̂t +

G̃t(yt−Cx̂t), where C coincides with the one in the least favorable model, has zero mean and convergent covariance

matrix provided that c is sufficiently small. However, these results cannot be directly applied to our case because

the predictor at node k is given by a convex combination of local estimators whose matrix C does not coincide

with the one of the least favorable model.

The update of the intermediate local prediction can be rewritten as

ψk,t+1 = Ax̂k,t +Gk,t(y
loc
k,t − Clock x̂k,t) (38)

where

Gk,t = A(V −1
k,t + S−1

k )−1(Clock )T (Rlock )−1 (39)

is the filtering gain at node k. The first step is to show that Gk,t converges as t approaches infinity.

Proposition 4.1: Assume that the pair (A,B) is reachable and that the pair (A,Clock ) is observable for every

k. Then, there exists c > 0 sufficiently small such that for any Vk,0 > 0 the sequence Pk,t t ≥ 0 generated by

Algorithm 1 at node k converges to a unique solution P̄k > 0. Furthermore, θk,t → θ̄k, Vk,t → V̄k > 0 and the

limit Ḡk of the filtering gain Gk,t is such that A− ḠkClock is Schur stable. Moreover, P̄k is the unique solution of

the algebraic Riccati-like equation

P̄k = A(P̄−1
k − θ̄kI + (Clock )T (Rlock )−1Clock )−1AT +BBT . (40)

Proof: The convergence of the local robust Kalman filter follows from the convergence result of the robust

Kalman filter in [27, Proposition 3.5], see also [28], under the assumption that the local state space model

(A,B,Clock , Dloc
k ) is reachable and observable. �

Regarding the least favorable model in (19), it is possible to prove that it does converge to a state space model

with constant parameters, as the simulation horizon T tends to infinity.

Proposition 4.2 (Zorzi, Levy [26]): Assume that the pair (A,B) is reachable and that the pair (A,C) is observable.

Then, there exists c > 0 sufficiently small such that:

• the forward sequences Gt and θt, t ≥ 0, of the centralized robust Kalman filter (6) converges to Ḡ and θ̄,

respectively, as t tends to infinity;

• when the simulation horizon T tends to infinity, the backward sequence Ωt generated by (21), with the steady

state parameters Ḡ and θ̄ of the centralized robust Kalman filter, converges to Ω̄. Furthermore,

Lt → L̄, Kt → K̄, ΓHt
→ ΓH̄ (41)

and (A− ḠC) + (B − ḠΓD)ΓH̄ is Schur stable.

Finally, we need of the following result.

Proposition 4.3 (Cattivelli, Sayed [9]): Consider the time-varying Lyapunov equation

Xt+1 = AtXtAt +Qt (42)
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where At and Qt converges to A and Q, respectively, as t→∞, with A Schur stable. Then, Xt converges to the

unique solution X of the Lyapunov equation:

X = AXAT +Q. (43)

We are ready to prove the main convergence result.

Proposition 4.4: Assume that the pair (A,B) is reachable and that the pair (A,Clock ) is observable for every k.

Then, there exists c > 0 sufficiently small such that for any V0 > 0 and Vk,0 > 0 the sequence Qt, t ≥ 0, generated

by (35) converges to Q̄ > 0, Ft → F̄ and Gt → Ḡ over [αT, βT ] as T →∞. Moreover, Q̄ is the unique solution

of

Q̄ = F̄Q̄F̄T + ḠḠT (44)

and F̄ is Schur stable. Therefore, the average least favorable mean square deviation across the network MSDt does

converge over [αT, βT ] as T →∞.

Proof: Notice that the assumptions of Proposition 4.1 hold. Therefore, we have that Vt → V̄ and At → Ā

where

V̄ := diag( V̄1, . . . , V̄N )

Ā := (WT ⊗ I)(I ⊗A)(V̄−1 + S)−1V̄−1. (45)

Moreover, Ḡk = A(V̄ −1
k + S−1

k )−1(Clock )T (Rlock )−1 and thus

A−ḠkClock

= A(I − (V̄ −1
k + Sk)−1(Clock )T (Rlock )−1Clock )

= A(I − (V̄ −1
k + Sk)−1Sk)

= A(V̄ −1
k + Sk)−1V̄ −1

k (46)

which is Schur stable. Accordingly, we have that the block-diagonal matrix

M := (I ⊗A)(V̄−1 + S)−1V̄−1 (47)

is Schur stable. Then, by using [9, Lemma 2] we have that Ā = (WT ⊗ I)M is Schur stable, because W satisfies

the conditions in (15).

Since the assumptions of Proposition 4.2 hold, then Ft → F̄ and Gt → Ḡ over the interval [αT, βT ] as T →∞.

Moreover,

F̄ =

 Ā ?

0 (A− ḠC) + (ΓB − ḠΓD)ΓH̄


Ḡ =

 B̄

(ΓB − ḠΓD)ΓL̄


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where B̄ := −(WT ⊗ I)(I ⊗A)(V̄−1 + S)−1(JT ⊗ I)CR−1DL̄+ 1⊗BN̄ with ΓLt → ΓL̄ = [ N̄T L̄T ]T . Since

F̄ is block upper-triangular, its eigenvalues coincides with the eigenvalues of Ā and (A− ḠC) + (ΓB − ḠΓD)ΓH̄ .

Since the latter are Schur stable, we conclude that F̄ is Schur stable.

The Lyapunov equation in (35) satisfies the assumptions of Proposition 4.3 for c sufficiently small. Accordingly,

Pt converges to P̄ over [αT, βT ] as T →∞ which is the unique solution to (44). �

B. Optimality property under large deviations

We shall show that, under the least favorable model solution to (4) with c sufficiently large, it is very likely that

the predictor at node k of Algorithm 1 performs better than the predictor at node k based on the scheme in [9].

The latter scheme, indeed, does not consider the possibility that the actual model and the nominal model do not

coincide exactly.

Without loss of generality we assume that yt is obtained by stacking first yl,t with l ∈ Nk and then yl,t with

l /∈ Nk. Then, it is not difficult to see that that the standard local Kalman predictor at node k coincides with the

Kalman predictor based on the model

xt+1 = Axt +Bwt

yt =

 Clock

0

xt +

 Dloc
k

F̆ lock,t

 vt (48)

where F̆ lock,t is an arbitrary invertible matrix because the observations yl,t with l /∈ Nk play no role at node k. Let

Qlock,t := F̆ lock,t (F̆ lock.t )T . Therefore the robust intermediate prediction at node k in Algorithm 1, hereafter denoted by

RKF diff, is the solution of the mini-max problem

ψ̂k,t+1 = argmin
gt∈Gk,t

max
φ̃k,t∈Bk,t

Ẽk[‖xt+1 − gt‖2|Yt−1] (49)

where

Bk,t := { φ̃k,t s.t. Ẽk[log(φ̃k,t/φk,t)|Yt−1] ≤ c }; (50)

φk,t is the transition probability density of zt given xt corresponding to (48) and φ̃k,t is the least favorable one

in Bk,t; Ẽk[log(φ̃k,t/φk,t)|Yt−1] and Ẽk[‖xt+1 − gt‖2|Yt−1] are defined as in (3) and (5), respectively, with φt, φ̃t

and f̃t replaced by φk,t, φ̃k,t and f̃k,t, respectively; f̃k,t(xt|Yt−1) ∼ N (x̂k,t, Vk,t) is the least favorable conditional

probability density of xt given Yt−1 at node k; Gk,t denotes the set of all estimators such that Ẽk[‖gt‖2] is finite

for any φ̃k,t ∈ Bk,t.

In [18] it has been shown that the mini-max problem (49) can be reformulated in terms of

p̄loct (zt|Yt−1) =

∫
φk,t(zt|xt)f̃k,t(xt|Yt−1)dxt (51)

p̃loct (zt|Yt−1) =

∫
φ̃k,t(zt|xt)f̃k,t(xt|Yt−1)dxt (52)
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representing the local pseudo-nominal and the local least favorable conditional probability density of zt given Yt−1.

Moreover, DKL(p̃loct , p̄loct ) = c and

DKL(p̃loct , p̄loct ) =

∫
p̃loct (zt|Yt−1) log

(
p̃loct (zt|Yt−1)

p̄loct (zt|Yt−1)

)
dzt (53)

is the Kullback-Leibler divergence between p̃loct and p̄loct .

Remark 3: It is worth noting that DKL(p1, p2) represent the negative log-likelihood (up to constant factors) of p2

under the the model described by p1, [29]. Assume that DKL(p1, p2)� DKL(p1, p3) where the symbol � means

“much less than”. This means that p2 explains the data generated by p1 better than p3.

Notice that the best intermediate prediction at node k is the one constructed using the least favorable model

p̃t(zt|Yt−1) =

∫
φ̃t(zt|xt)f̃k,t(xt|Yt−1)dxt (54)

since we are are evaluating the performance under the least favorable model solution to the “centralized” mini-max

problem in (4) which is not available because it requires to compute the centralized filtering gains of the centralized

robust Kalman filter. On the other hand, the intermediate prediction at node k of the algorithm proposed in [9],

hereafter denoted by KF diff, is constructed using the nominal model

ploct (zt|Yt−1) =

∫
φk,t(zt|xt)fk,t(xt|Yt−1)dxt (55)

where fk,t(xt|Yt−1) is the nominal conditional probability density of xt given Yt−1 at node k. In view of Remark

3, the next proposition shows that if c is sufficiently large, then p̃loct explains the measurements generated by the

actual model p̃t better than ploct . As a consequence, it is very likely that the performance of ψk,t+1 using RKF diff

(i.e. using p̃loct ) is better than the one using KF diff (i.e. using ploct ).

Proposition 4.5: Assume that for some t the distribution of xk,t given Yt−1 at node k is fixed and it is the same

for RKF diff, KF diff, that is fk,t(xt|Yt−1) and f̃k,t(xt|Yt−1) coincide. Then, for c sufficiently large we have that

DKL(p̃t, p̃
loc
t )� DKL(p̃t, p

loc
t ). (56)

Proof: Let f̃k,t ∼ N (x̂k,t, Vk,t) with Vk,t > 0 which is fixed and thus it does not depend on c. First, notice

that pt(zt|Yt−1) = p̄loct (zt|Yt−1) because the distribution of xk,t given Yt−1 is the same for RKF diff and KF diff.

Accordingly,

ploct (zt|Yt−1) ∼ N (µloct ,Kloc
t )

p̃loct (zt|Yt−1) ∼ N (µloct , K̃loc
t )

p̃t(zt|Yt−1) ∼ N (µt, K̃t) (57)

where

µloct =


A

Clock

0

 x̂k,t, µt =


A

Clock

C̆lock

 x̂k,t, (58)

April 20, 2020 DRAFT



DRAFT 17

Kloc
t =


A

Cloc
k

0

Vk,t

[
AT (Cloc

k )T 0
]

+


BBT 0 0

0 Rloc
k 0

0 0 Qloc
k,t

 ,

K̃loc
t = Kloc

t +


I

0

0

 (Vk,t+1 − Pk,t+1)
[
I 0 0

]
,

Kt =


A

Cloc
k

C̆loc
k

Vk,t

[
AT (Cloc

k )T (C̆loc
k )T

]
+


BBT 0 0

0 Rloc
k 0

0 0 R̆loc
k

 ,

K̃t = Kt +


I

0

0

 (Vt+1 − Pt+1)
[
I 0 0

]
;

C̆lock and R̆lock are the matrices obtained by using Cl and Rl, respectively, with l /∈ Nk. It is worth noting that
the relation between K̃loc

t and Kloc
t is given by [18, Theorem 1]. The same observation holds between K̃t and Kt

where the latter represents the covariance matrix of zt given Yt−1 in the nominal model. Moreover,

Pk,t+1 = AVk,tA
T −AVk,t(C

loc
k )T

(
Cloc

k Vk,t(C
loc
k )T +Rloc

k

)−1

Cloc
k Vk,tA

T +BBT

Vk,t+1 = (P−1
k,t+1 − θk,tI)−1

Pt+1 = AVk,tA
T −AVk,t

[
(Cloc

k )T (C̆loc
k )T

]Cloc
k

C̆loc
k

Vk,t

[
(Cloc

k )T (C̆loc
k )T

]
+

Rloc
k 0

0 R̆loc
k

−1 Cloc
k

C̆loc
k

Vk,tA
T +BBT

Vt+1 = (P−1
t+1 − θtI)−1

and θk,t, θt are the solution to γ(Pk,t+1, θk,t) = c, γ(Pt+1, θt) = c, respectively. Recall that

γ(P, θ) := log det(I − θP ) + tr((I − θP )−1 − I). (59)

In view of (57), it is not difficult to see that

DKL(p̃t, p̃
loc
t ) = DKL(p̃t, p

loc
t ) +

1

2
d∆ (60)

where

d∆ = δT ((K̃loc
t )−1 − (Kloc

t )−1)δ + log det(K̃loc
t )

− tr(K̃t(K
loc
t )−1) + tr(K̃t(K̃

loc
t )−1)− log det(Kloc

t )

≤ log det(K̃loc
t ) + tr

[
K̃t

(
(K̃loc

t )−1 − (Kloc
t )−1

)]
− log det(Kloc

t ) (61)

where δ = µt − µloct and we have exploited the fact that (K̃loc
t )−1 − (Kloc

t )−1 ≤ 0 because Pk,t+1 < Vk,t+1 and

thus K̃loc
t ≥ Kloc

t . Moreover, after some algebraic manipulations we obtain

d∆ ≤ n log ‖Vk,t+1‖ − βk,t‖Vt+1‖+ νk,t (62)

where

βk,t = λmin(P−1
k,t+1[P−1

k,t+1 + (Vk,t+1 − Pk,t+1)−1]−1P−1
k,t+1)−1 tr(V̄t+1 − ‖Vt+1‖−1Pt+1)

νk,t = − log detKloc
t + (Np+ n) log λmax(Kloc

t ) + log det(‖Vk,t+1‖−1In + λmax(Kloc
t )−1V̄k,t+1)
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λmax(Kloc
t ) denotes the maximum eigenvalue of Kloc

t , V̄k,t+1 := ‖Vk,t+1‖−1Vk,t+1 and V̄t+1 := ‖Vt+1‖−1Vt+1.

It [17] it has been shown that the mapping c 7→ ‖Vk+1,t‖ has singular value which is positive. Accordingly, if

we take a sequence c(m), m ∈ N, such that c(m) > 0 and c(m) → ∞ as m → ∞, then ‖V (m)
k,t+1‖ → ∞. The

same reasoning holds for the mapping c 7→ ‖Vt+1‖ and thus ‖V (m)
t+1 ‖ → ∞. Consider the sequences V̄ (m)

k,t+1 :=

‖V (m)
k,t+1‖−1V

(m)
k,t+1 and V̄

(m)
t+1 := ‖V (m)

t+1 ‖−1V
(m)
t+1 which belong to the compact set U := {V s.t. ‖V ‖ = 1 }.

Therefore, there exist the subsequences V̄ (ml)
k,t+1, l ∈ N and V̄ (ml)

t+1 , l ∈ N, converging to V̄ (∞)
k,t+1 and V̄ (∞)

t+1 , respectively.

It is worth noting that V̄ (∞)
k,t+1, V̄

(∞)
t+1 ≥ 0 and different from the null matrix because V̄ (∞)

k,t+1, V̄
(∞)
t+1 ∈ U . Accordingly,

if we consider the corresponding subsequences for βk,t and νk,t, we have: β(ml)
k,t → λmin(P−1

k,t+1)−1 tr(V̄t+1) > 0

and ν(ml)
k,t is bounded above.

Next we show that ‖V (ml)
t+1 ‖/‖V

(ml)
k,t+1‖ → ζ > 0. First, we recall that V (ml)

k,t+1 and V (ml)
t+1 are given by θ(ml)

k,t and

θ
(ml)
t , respectively. In particular, we have γ(P

(ml)
t+1 , θ

(ml)
t ) = c(ml). Notice that we can rewrite the latter as

n∑
i=1

log(1− diθ(ml)
t ) + (1− θd(ml)

i )−1 − 1 = c(ml) (63)

where di ≥ di+1 denotes the eigenvalues of Pt+1 and 0 < θ
(ml)
t < d−1

1 . In what follows we assume that the

eigenvalue d1 has multiplicity equal to one, and thus d1 > di with i ≥ 2. This assumption is not restrictive, indeed

it generically holds. Then we can rewrite (63) as

f(d1θ
(ml)
t ) + c̆(ml) = c(ml)

where

f(x) = log(1− x) + (1− x)−1 − 1

c̆(ml) =

n∑
i=2

log(1− diθ(ml)
t ) + (1− θd(ml)

i )−1 − 1,

c̆(ml) → c̆ and c̆ is a bounded value. Therefore

f(d1θ
(ml)
t ) = c(ml) − c̆(ml).

Since c(ml) →∞, we have c̆(ml) = o(c(ml)), i.e. c̆(ml)/c(ml) → 0 as l tends to infinity. Accordingly,

f(d1θ
(ml)
t ) = c(ml) − o(c(ml)). (64)

The same reasoning applies for θ(ml)
k,t :

f(dk,1θ
(ml)
k,t ) = c(ml) − o(c(ml)) (65)

where dk,i ≥ dk,i+1 are the eigenvalues of Pk,t+1 and dk,1 has multiplicity equal to one. Notice that d1θ
(ml)
t and

dk,1θ
(ml)
k,t belong to the interval [0, 1). It is not difficult to see that f : [0, 1)→ [0,∞) is monotone increasing in

the interval [0, 1). Accordingly, it admits the continuous inverse function g : [0,∞)→ [0, 1) and

θ
(ml)
t = d−1

1 g
(
c(ml) − o(c(ml))

)
θ

(ml)
k,t = d−1

k,1g
(
c(ml) − o(c(ml))

)
.
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Fig. 1. Network of 20 sensors for collecting noisy position measurements of the projectile.

Notice that

lim
l→∞

g
(
c(ml) − o(c(ml))

)
= g

(
lim
l→∞

c(ml) − o(c(ml))

)
= g

(
lim
l→∞

c(ml) lim
l→∞

(
1− o(c(ml))

c(ml)

))
= g

(
lim
l→∞

c(ml)

)
= lim
l→∞

g
(
c(ml)

)
(66)

Finally, we have

lim
l→∞

‖V (ml)
t+1 ‖

‖V (ml)
k,t+1‖

= lim
l→∞

√√√√√
∑n
i=1

1

d−1
i −θ

(ml)
t∑n

i=1
1

d−1
k,i−θ

(ml)

k,t

= lim
l→∞

√√√√√ 1

d−1
1 −θ

(ml)
t

+
∑n
i=2

1

d−1
i −θ

(ml)
t

1

d−1
k,1−θ

(ml)

k,t

+
∑n
i=2

1

d−1
k,i−θ

(ml)

k,t

= lim
l→∞

√√√√√ d1
1−g(c(ml)−o(c(ml)))

+
∑n
i=2

1

d−1
i −θ

(ml)
t

dk,1

1−g(c(ml)−o(c(ml)))
+
∑n
i=2

1

d−1
k,i−θ

(ml)

k,t

= lim
l→∞

√√√√√ d1
1−g(c(ml))

+
∑n
i=2

1

d−1
i −θ

(ml)
t

dk,1

1−g(c(ml))
+
∑n
i=2

1

d−1
k,i−θ

(ml)

k,t

= lim
l→∞

√√√√√ d1
1−g(c(ml))

dk,1

1−g(c(ml))

(67)

where we exploited the fact that limx→∞ g(x) = 1 in the last equality. Then, we have

lim
l→∞

‖V (ml)
t+1 ‖

‖V (ml)
k,t+1‖

= lim
l→∞

√√√√√ d1
1−g(c(ml))

dk,1

1−g(c(ml))

=

√
d1

dk,1
> 0. (68)

Accordingly the corresponding subsequence d(ml)
∆ approaches −∞ because the term −β(ml)

k,t ‖V
(ml)
t+1 ‖ dominates

the logarithmic term n log ‖V (ml)
k,t+1‖. We conclude that for c sufficiently large (56) holds. �

V. NUMERICAL EXAMPLE

In order to evaluate the performance of the distributed robust Kalman filters, we consider the problem in [9]

of tracking the position of a projectile by using noisy position measurements obtained by a network of N = 20

sensors depicted in Figure 1. The model for the projectile motion is

ẋct = Φxct + uct (69)
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where

Φ =

 0 0

I3 0

 ,
uct = [ 0 0 − g 0 0 0 ]T , with g = −10, and xct = [ vx,t vy,t vz,t px,t py,t pz,t ]T with v denoting the velocity, p the

position and the subscripts x, y, z denoting the three spatial dimensions. We discretize (69) by using a sampling time

equal to 0.1. In this way we obtain the discrete time model xt+1 = Axt+ut where xt is the sampled version of xct ,

A = I6 + 0.1Φ and ut = (0.1I6 + 0.12Φ/2)uct . We assume that every sensor measures the position of the projectile

in either two horizontal dimensions, or a combination of one horizontal dimension and the vertical dimension (i.e.

one sensor does not have measurements in all the three dimensions). Therefore, we obtain the nominal discrete

state-space model (9) where Ck = [ 0 0 0 diag(1, 1, 0) ], in the case that the sensor measures only the horizontal

positions, or Ck = [ 0 0 0 diag(1, 0, 1) ], Ck = [ 0 0 0 diag(0, 1, 1) ], in the case that the sensor measures one

horizontal position and the vertical position. Moreover, we choose B =
√

0.001I , Rk = DkD
T
k =

√
kPR0P

T

where R0 = 0.5 · diag(1, 4, 7) and P is a permutation matrix randomly chosen for every node. Finally, the initial

state x0 is a Gaussian random vector with covariance matrix P0 = I .

In what follows, we consider the following predictors:

• RKF diff – the distributed robust Kalman filter with diffusion step in Algorithm 1; the diffusion matrix W is

chosen as

wlk =

 αknl, if l ∈ Nk
0, otherwise,

(70)

where nl denotes the number of neighbors of node l and αk > 0 is a normalization parameter chosen in such

a way that (15) holds.

• KF diff – the distributed Kalman filter with diffusion step proposed in [9]; the diffusion matrix W is chosen

as in (70).

• RKF cons – the distributed robust Kalman filter in Algorithm 1 with the consensus-based update in (17); the

consensus parameter is set equal to ε = 0.1.

• KF cons – the distributed Kalman filter with consensus-based update proposed in [7]; the consensus parameter

is set equal to ε = 0.1.

• RKF local – the local robust Kalman filter in Algorithm 1 with W = I .

• KF local – the local Kalman filter proposed in [24, p. 329].

• RKF central – the centralized robust Kalman filter proposed [18].

• KF central – the centralized Kalman filter.

In the first experiment we assume that the actual state-space model belongs to the ball defined in (2) about the

aforementioned nominal model and with tolerance c = 0.02. The average least favorable mean square deviation

across the network is depicted in Figure 2. As we can see, MSDt converges in steady state for any algorithm.

The local algorithms RKF local and KF local provide the worst performance and the robust version behaves

slightly better than the standard version in steady state. The consensus-based algorithms RKF cons and KF cons
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Fig. 2. Least favorable mean square deviation across the network with tolerance c = 0.02.
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Fig. 3. Least favorable mean square deviation for each node in steady state with tolerance c = 0.02.

perform better than the latter and the robust version behaves slightly better than the standard one in steady state.

The diffusion-based algorithms RKF diff and KF diff provides the best distributed performance, in particular RKF

diff performs better than KF diff. Finally, the centralized algorithm provides the best performance and RKF is the

best predictor. The least favorable mean square deviation for each node in steady state for the diffusion-based and

centralized algorithms is depicted in Figure 3. As we can see, RKF diff provides a better performance than KF diff

in the majority of the nodes. Finally, Figure 4 shows the risk sensitivity parameters θk,t of RKF diff and the risk

sensitivity parameter θt of RKF. We notice that the former are less than the latter. Therefore, RKF diff reduces the

risk sensitivity parameters over the network in respect to RKF. Such a reduction can be justified as follows. First,

the larger the risk sensitivity parameter is, the more large errors are penalized, as noticed in [18]. Then, it is worth

observing that RKF cons and RKF local have the same risk sensitivity parameters of RKF diff, indeed the value
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Fig. 4. Risk sensitivity parameters θk,t, k = 1 . . . 20, of RKF diff and the risk sensitivity parameter of the centralized filter RKF (black line)

with c = 0.02.

of θk,t does not depend on the matrix W . So, without loss of generality, we can consider RKF local. RKF local at

node k and RKF are the same algorithm, but applied on a different state space model. The state space model used

for RKF local at node k is characterized by a subset of observations of the state space model used for RKF. Since

the mismatch modeling budget c is the same for both the models, then it means that the observations of the least

favorable model of RKF are affected by more uncertainty than the ones of RKF local. Accordingly, it is required

to penalize large errors in RKF more severely than in RKF local, hence θt must be greater than θk,t.

In the second experiment we have considered the case that in the actual model there are large deviations in

respect to the nominal one. More precisely, we have chosen c = 0.06. The least favorable mean square deviation

across the network is depicted in Figure 5. As we can see, all the robust distributed algorithms outperform the

corresponding standard distributed algorithms in steady state. Among the robust algorithms, RKF diff gives the best

performance, then we have RKF cons and finally RKF local. The least favorable mean square deviation for each

node in steady state for the diffusion-based and centralized algorithms is depicted in Figure 6. As we can see,

RKF diff provides a better performance than KF diff in almost all nodes: the unique exception regards two nodes

wherein RKF diff performs slightly worse than KF diff. The risk sensitivity parameters θk,t of RKF diff and the risk

sensitivity parameter θt of RKF are depicted in Figure 7. Also in this case, RKF diff reduces the risk sensitivity

parameters over the network in respect to RKF. On the hand, the values of all these risk sensitivity parameters has

been increased in respect to the case c = 0.02. Indeed, in the current case the mismatch modeling budget has been

increased and thus it is required to penalize large error more severely.

VI. CONCLUSIONS

In this paper, we have considered a filtering problem over a sensor network and under model uncertainty. We

have proposed a robust distributed algorithm with diffusion step. We have derived the least favorable performance

for this algorithm and showed that the least favorable mean square deviation across the network does converge to a

finite constant value provided that the mismatch modeling budget allowed for each time step is sufficiently small.
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Fig. 5. Least favorable mean square deviation across the network with tolerance c = 0.06.
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Fig. 6. Least favorable mean square deviation for each node in steady state with tolerance c = 0.06.
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Finally, a numerical example showed that this robust algorithm is preferable than the standard one in the presence

of model deviations.
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