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Distributed Design for Decentralized Control
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Abstract—We propose a distributed design method for
decentralized control by exploiting the underlying sparsity
properties of the problem. Our method is based on the
chordal decomposition of sparse block matrices and the
alternating direction method of multipliers (ADMM). We first
apply a classical parameterization technique to restrict the
optimal decentralized control into a convex problem that
inherits the sparsity pattern of the original problem. The
parameterization relies on a notion of strongly decentral-
ized stabilization, and sufficient conditions are discussed to
guarantee this notion. Then, chordal decomposition allows
us to decompose the convex restriction into a problem with
partially coupled constraints, and the framework of ADMM
enables us to solve the decomposed problem in a dis-
tributed fashion. Consequently, the subsystems only need
to share their model data with their direct neighbors, with-
out needing central computation. Numerical experiments
demonstrate the effectiveness of the proposed method.

Index Terms—Chordal decomposition, distributed de-
sign, optimal decentralized control.

I. INTRODUCTION

MANY REAL-WORLD complex systems, such as air-
craft formation, automated highways, and power sys-

tems, consist of a large number of interconnected subsystems.
Often in these interconnected systems, the controllers have only
access to each subsystem’s state information. The problem of
design of stabilizing and optimal controllers based on only each
subsystem’s state information is referred to as decentralized con-
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trol. Due to its importance, this problem has attracted research
attention since the late 1970s [1], [2].

Early efforts have centered on decentralized stabilization and
its algebraic characterization through the concept of decentral-
ized fixed modes [3]. These are the set of eigenvalues that remain
unchanged under any decentralized feedback. One seminal re-
sult is that a system is stabilizable by a decentralized controller
if and only if its decentralized fixed modes have negative real
parts [3]. Since then, a wide range of extensions of decentral-
ized control has been investigated, either by considering various
types of performance guarantees in addition to stability [4], or
by taking into account neighboring information for feedback,
known as distributed control [5]. Several classes of systems have
been identified, which allow convex formulations for the design
of distributed H∞ and H2 controllers, for example, quadrati-
cally invariant systems [6]. Also, some numerical approaches
have been proposed to find an approximate solution to the opti-
mal distributed control problem [7], [8]. The case of decentral-
ized control in the presentence of input and state constraints is
addressed in [9].

A common assumption made in these papers is that a cen-
tral model of the global plant is available, indicating that the
design is performed in a centralized fashion even though the
implementation of controllers is decentralized. However, this
may be impractical for certain complex systems that are shared
between private individuals, such as transportation systems and
power grids. In this case, a complete model may not be available
due to privacy concerns of model information for the subsys-
tems. While discussions on distributed design relying on limited
model information can be traced back to [2, Ch. 9], practical ap-
proaches to this problem are an active topic of current research.
For example, performance bounds of designing linear quadratic
regulators distributedly were discussed for systems with an in-
vertible input matrix in [10]. The distributed design framework
of [10] has been used to discuss the best closed-loop perfor-
mance achievable by distributed design strategies for a class of
fully actuated discrete-time systems [11]. In [12], independent
decoupled problems were derived for optimal decentralized con-
trol by utilizing the properties of posets. Recent work has started
to use distributed optimization techniques to realize distributed
synthesis in the dissipative framework [13]. Furthermore, the re-
cently proposed system-level approach has been promoted to ad-
dress distributed design of dynamic distributed controllers [14].

In this article, we propose a new distributed design method
for optimal decentralized control by exploiting the sparsity
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structure of the system. Our method uses local information on
the system model to design controllers that rely on subsys-
tems’ state measurements. The idea originates from the con-
nection between sparse positive semidefinite (PSD) matrices
and chordal graphs [15], [16]. The celebrated chordal decom-
position in graph theory [15], [16] allows us to decompose
a large sparse PSD cone into a set of smaller and coupled
ones, and has been successfully applied to decompose sparse
semidefinite programs [17], [18]. These results have recently
been used for performance analysis of sparse linear systems
[19]–[21], leading to significantly faster solutions than using
standard dense methods. Despite the scalability of these ap-
proaches, they all required global model information for cen-
tralized computation. Zheng et al. [22] proposed a sequential
approach to improve the scalability of solving a stabilization
problem of networked systems, where model privacy can be
maintained as a byproduct.

This article extends the scope of exploiting chordal decom-
position to distributed design of optimal decentralized control.
By using a classical parameterization technique that relies on
a notion of strongly decentralized stabilization [4], the opti-
mal decentralized control can be restricted to a convex prob-
lem that inherits the original sparsity pattern in the system.
The convex restriction can be equivalently decomposed into a
problem with partially coupled constraints, and we introduce a
distributed algorithm to solve the decomposed problem based
on the framework of alternative direction method of multipliers
(ADMM). Precisely, the main contributions of this article are as
follows.

1) We provide sufficient conditions to guarantee the fea-
sibility of the proposed convex restriction. These con-
ditions are based on characterizing the cases in which
the closed-loop system with decentralized feedback ad-
mits a block-diagonal Lyapunov function.1 In particular,
we identify two classes of networked systems admitting
strongly decentralized stabilization.

2) One notable feature of the convex restriction is that the
original sparsity pattern of the system is inherited in
the resulting convex optimization problem. We combine
chordal decomposition with ADMM to solve the con-
vex problem in a distributed fashion. In our algorithm,
no central model of the global plant is required and the
subsystems only need to share their model data with their
neighbors, which helps preserve the privacy of model
data.

The rest of this article is organized as follows. We present
the problem formulation in Section II. In Section III, we dis-
cuss sufficient conditions on strongly decentralized stabiliza-
tion. Section IV applies a chordal decomposition technique to
derive a decomposed problem, and a distributed algorithm is
introduced to solve the decomposed problem in Section V. Nu-
merical examples are given in Section VI. We conclude this
article in Section VII.

1The authors have summarized some preliminary results in an unpublished
technical report [23, Sec. 3]. The current manuscript serves as the official version
of the report [23], and we do not consider [23] for publication.

II. BACKGROUND AND PROBLEM STATEMENT

A. Optimal Decentralized Control

A directed graph G(V, E) is defined by a set of nodes V =
{1, 2, . . . , N} and a set of edges E ⊆ V × V . We consider a
complex system consisting of N subsystems. The interactions
between subsystems are modeled by a plant graph Gp(V, Ep),
in which each node in V denotes a subsystem, and the edge
(i, j) ∈ Ep means that subsystem i has dynamical influence on
subsystem j. The dynamics of each subsystem i ∈ V are

ẋi(t) = Aiixi(t) +
∑

j∈Ni

Aijxj (t) + Biui(t) + Midi(t) (1)

where xi ∈ Rni , ui ∈ Rmi , di ∈ Rqi denote the local state,
input and disturbance of subsystem i, respectively, and Ni

denotes the set of neighboring nodes that influence node
i, that is, Ni = {j | (j, i) ∈ E}. In (1), Aii ∈ Rni ×ni , Bi ∈
Rni ×mi ,Mi ∈ Rni ×qi represent local dynamics, and Aij ∈
Rni ×nj represents the interaction with neighbors. In this article,
we refer to Aii, Bi,Mi,Aij as model data of the system.

By collecting the subsystems’ states, the overall system can
be described compactly as

ẋ(t) = Ax(t) + Bu(t) + Md(t) (2)

where x := [xT
1 , xT

2 , . . . , xT
N ]T, and the vectors u, d are de-

fined similarly. The matrix A is composed of blocks Aij ,
which has a block sparsity pattern, that is, A ∈ Rn×n (Ep , 0)
with a partition {n1 , . . . , nN } corresponding to the dimen-
sion of each subsystem’s state. The matrices B,M are of the
forms B = diag(B1 , . . . , BN ) and M = diag(M1 , . . . ,MN ).
Our goal is to design a decentralized static state feedback

ui(t) = −Kiixi(t), i = 1, . . . , N (3)

such that the H2 norm of the transfer function Tzd from dis-
turbance d to the desired performance output z is minimized.
In (3), the global K has a decentralized structure K as

K ∈ K := {K ∈ Rm×n |Kij = 0 if i �= j}
where m =

∑N
i=1 mi, n =

∑N
i=1 ni , and each entry Kij is a

block of dimension mi × nj .
The design objective is

min
K

‖Tzd‖2

s.t. (A − BK) is Hurwitz

K ∈ K
(4)

where ‖ · ‖ is the H2 norm of a transfer function. In this article,
the performance output z is chosen as

z =

[
Q

1
2

0

]
x +

[
0

R
1
2

]
u

where Q := diag(Q1 , . . . , QN ) and R := diag(R1 , . . . , RN )
denote the state and control performance weights, respectively,
and diagonal block Qi,Ri correspond to the subsystem i. Adopt-
ing the same terminology in [1] and [4], we refer to (4) as the
optimal decentralized control problem.
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The constraint K does not allow any equivalent convex refor-
mulation of the optimal decentralized problem (4) in general.
Hence, problem (4) is challenging to solve exactly. Previous
work either imposed special structures on system dynamics [6],
[12], [24]; used certain relaxation/restriction techniques [4], [8];
or applied nonconvex optimization directly [7] to address this
problem.

B. Convex Restriction via Block-Diagonal Lyapunov
Functions

It is well known that the H2 norm of a stable linear system
can be calculated using a linear matrix inequality [25].

Lemma 1 ([25]): Consider a stable linear system ẋ(t) =
Ax(t) + Md(t), z(t) = Cx(t). The H2 norm of the transfer
function from d to z can be computed by

‖Tzd‖2 = inf
X�0

{Tr
(
CXCT) | AX + XAT + MMT � 0}

where Tr(·) denotes the trace of a symmetric matrix.
According to Lemma 1, the optimal decentralized control

problem (4) can be equivalently reformulated as

min
X,K

Tr
(
(Q + KTRK)X

)

s.t. (A − BK)X + X(A − BK)T + MMT � 0

X � 0,K ∈ K.

(5)

The first inequality in (5) does not depend linearly on X and K.
A standard change of variables Z = KX leads to

min
X,Z

Tr(QX) + Tr
(
RZX−1ZT)

s.t. (AX − BZ) + (AX − BZ)T + MMT � 0

X � 0, ZX−1 ∈ K.

To handle the nonlinear constraint ZX−1 ∈ K, a classi-
cal parameterization idea [4] is to assume a block diagonal
X = diag(X1 , . . . , XN ) with block size compatible to the sub-
system’s dimensions, which leads to ZX−1 ∈ K ⇔ Z ∈ K.
Considering the block-diagonal structures of Q,R, we have

Tr(QX) =
N∑

i=1

Tr (QiXi)

Tr
(
RZX−1ZT) =

N∑

i=1

Tr
(
RiZiX

−1
i ZT

i

)
.

By introducing Yi 
 ZiX
−1
i ZT

i and using the Schur comple-
ment [25], a convex restriction to (4) is derived

min
Xi ,Yi ,Zi

N∑

i=1

Tr(QiXi) + Tr(RiYi)

s.t. (AX − BZ) + (AX − BZ)T + MMT � 0 (6a)
[

Yi Zi

ZT
i Xi

]

 0,Xi � 0, i = 1, . . . , N. (6b)

Problem (6) is convex and ready to be solved using general
conic solvers, and the decentralized controller is recovered as
Kii = ZiX

−1
i , i = 1, . . . , N . In this article, we make the fol-

lowing assumption.
Assumption 1: Problem (6) is feasible or, equivalently, sys-

tem (2) is strongly decentralized stabilizable (see Definition 3).
Remark 1: The block-diagonal strategy was formally dis-

cussed in the early 1990s [4], which was later implicitly or
explicitly used in the field of decentralized stabilization [1],
[13], [22]. This strategy requires the closed-loop system to
admit a block-diagonal Lyapunov function V (x) = xT Px =∑N

i=1 xT
i Pixi , where Pi = X−1

i , i ∈ V . Problem (6) is a convex
restriction of the original decentralized control problem (4), and
allows computing an upper bound of the optimal cost. However,
quantifying the gap between the solution to (6) and the optimal
solution to (4) is a challenging open problem, which is beyond
the scope of this article. Indeed, problem (6) might be infeasible
even for the cases in which problem (4) is feasible.

C. Problem Statement

To connect the block-diagonal strategy with past work on
decentralized control, we first present three classical definitions.

Definition 1 (Stabilization): System (2) is called stabiliz-
able, if there exists a centralized controller u = −Kx such
that the closed-loop system ẋ = (A − BK)x is asymptotically
stable.

Definition 2 (Decentralized stabilization [3]): Sys-
tem (2) is called decentralized stabilizable, if there ex-
ists a decentralized controller ui = −Kiixi, i ∈ V such that
the closed-loop system ẋ = (A − BK)x is asymptotically
stable.

Definition 3 (Strongly decentralized stabilization [4]):
System (2) is called strongly decentralized stabilizable if there
exists a decentralized ui = −Kiixi, i ∈ V such that the closed-
loop system ẋ = (A − BK)x admits a block-diagonal Lya-
punov function V (x) =

∑N
i=1 xT

i Pixi .
Then, we define three classes of complex systems:

Σ0 = {(A,B) | (2) is stabilizable}
Σ1 = {(A,B) | (2) is decentralized stabilizable}
Σ2 = {(A,B) | (2) is strongly decentralized stabilizable}.

It is easy to see Σ2 ⊆ Σ1 ⊆ Σ0 . In fact, the inclusion relation-
ship is strict (see counterexamples in Appendix A)

Σ2 ⊂ Σ1 ⊂ Σ0 . (7)

The sets Σ0 and Σ1 can be algebraically characterized by cen-
tralized fixed modes and decentralized fixed modes [3], [26].
The class Σ2 is useful for synthesizing decentralized controllers
as discussed in Section II-B, but has been less studied before.
This motivates the first objective of our article.

Problem 1 (Explicit characterizations): Derive sufficient
conditions to characterize Σ2 .

Solving (6) directly requires global model knowledge,
implicitly assuming the existence of a central entity to collect
the complete model data. This performs a centralized design
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of the decentralized controllers. We note that the problem
of distributed design using limited model information has
received increasing attention [10], [11], [13], [14]. In this
article, we partition the subsystems into clusters to solve (6) in
a distributed fashion. The second objective is as follows.

Problem 2 (Distributed computation): Given system (2) in
Σ2 with a plant graph Gp(V, Ep), we aim 1) to partition the sub-
systems into t clusters C1 , . . . , Ct , where V = ∪t

i=1Ci , and 2) to
design a distributed algorithm to solve (6), where the model data
of subsystem i are only shared within the clusters that contain it.

We show that a chordal decomposition technique can be nat-
urally used for the partition C1 , . . . , Ct , and that the number
of clusters depends on the sparsity of Gp(V, Ep). We address
Problem 1 in Section III and Problem 2 in Sections IV and V.

III. SUFFICIENT CONDITIONS ON STRONGLY

DECENTRALIZED STABILIZATION

In this section, we discuss two classes of systems in Σ2 : 1)
fully actuated systems, and 2) weakly coupled systems.

A. Fully Actuated Systems

Definition 4 (Fully actuated systems): System (2) is called
fully actuated, if each input matrix Bi has full row rank, i ∈ V .

Proposition 1: If system (2) is fully actuated, then we have
(A,B) ∈ Σ2 .

Proof: Consider the singular value decomposition of the
input matrix Bi

Bi = Ui

[
Γi 0

]
V T

i

where 0 is a zero block of appropriate size, and Γi ∈ Rni ×ni

is invertible since Bi has full row rank. We then consider a
decentralized feedback controller

Kii = Vi

[
Γ−1

i

0

]
UT

i (Aii + αiIni
), i ∈ V (8)

where αi ∈ R. This choice leads to

Aii − BiKii = −αiIni
, i ∈ V.

Using the decentralized controller (8), the closed-loop system
matrix becomes

A − BK =

⎡

⎢⎢⎢⎢⎢⎣

−α1In1 A12 . . . A1N

A21 −α2In2 . . . A2N

...
...

. . .
...

AN 1 AN 2 . . . −αN InN

⎤

⎥⎥⎥⎥⎥⎦
. (9)

By choosing an appropriate αi > 0, we can always make
A − BK diagonally dominant with negative diagonal elements.
Therefore, A − BK is diagonally stable, i.e., there exists a diag-
onal Lyapunov function to certify the stability of (9). Therefore,
we have (A,B) ∈ Σ2 . �

In essence, a fully actuated system is able to actuate each
individual state directly. If each subsystem is of dimension
one, i.e., ni = 1, then the condition in Proposition 1 means
that the system pair of (Ai,Bi) is controllable. For general

Fig. 1. Examples of directed acyclic graphs.

subsystems, the condition that Bi has full row rank is stronger
than the controllability of (Ai,Bi). Note that fully actuated
systems have been used in some work on distributed design [10],
[11], where it required the input matrix B to be invertible.
Here, we show that a fully actuated system is indeed strongly
decentralized stabilizable and suitable for the later development
of the distributed algorithm.

B. Weakly Coupled Systems

Here, we discuss two types of weakly coupled systems: topo-
logically weakly coupled systems and dynamically weakly cou-
pled systems. A directed graph G is called acyclic if there exist
no directed cycles in G. Fig. 1 shows some examples. A complex
system with an acyclic Gp means that the dynamical influence
among subsystems is unidirectional.

Definition 5 (Topologically weakly coupled system): Sys-
tem (2) is called weakly coupled in terms of topological con-
nections, if the plant graph Gp is acyclic.

Proposition 2: For the class of topologically weakly cou-
pled systems, we have

Σ1 = Σ2 = {(A,B) | (Aii, Bi) is stabilizable, i ∈ V}.
Proof: This result is a simple consequence of [27] and [28].

If Gp is acyclic, then there exists an ordering of the nodes such
that for every edge (v1 , v2), node v1 precedes node v2 in the or-
dering. For this ordering, the resulting system matrix A is block
lower triangular. Thus, without loss of generality, for a topolog-
ically weakly coupled system (2), the closed-loop system with
a decentralized controller remains block lower triangular. It is
known that a block triangular matrix is stable if and only if it
is block-diagonally stable [27], [28], i.e., there exists a block-
diagonal Lyapunov function to certify the stability of the closed-
loop system. Therefore, for the class of topologically weakly
coupled systems, we have (A,B) ∈ Σ1 ⇔ (A,B) ∈ Σ2 . Mean-
while, considering the block triangular structure, the overall
closed-loop system is stable if and only if each isolated closed-
loop subsystem Aii − BiKii is stable, i ∈ V . �

We note that the class of topologically weakly coupled sys-
tems is also known as hierarchical systems; see [2, Ch. 10].
Hierarchical systems have useful properties, e.g., the equiva-
lence between stability and block-diagonal stability [27], [28].
Proposition 2 further shows that for this type of systems, de-
centralized stabilization is equivalent to strongly decentralized
stabilization (Σ1 = Σ2).

Next, we consider dynamically weakly coupled systems. If
each pair (Aii, Bi) is stabilizable, then there exists a local
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feedback Kii such that Aii − BiKii is stable. Consequently,
given any Qi � 0, there exists a Pi � 0, such that

(Aii − BiKii)TPi + Pi(Aii − BiKii) + Qi ≺ 0.

In some cases, e.g., the singular values of Aij are small (the
strength of interactions is low), there may still exist a solution
Pi � 0 for the following inequality:

(Aii − BiKii)TPi + Pi(Aii − BiKii)

+ Pi

( ∑

j∈Ni

AijA
T
ij

)
Pi + Qi ≺ 0.

(10)

In (10), recall that Ni denotes the set of neighboring nodes
of node i. This observation leads to a concept of dynamically
weakly coupled systems.

Definition 6 (Dynamically weakly coupled systems): Sys-
tem (2) is weakly coupled in terms of dynamical interactions,
if there exists a local feedback Kii such that the following in-
equality holds:

(Aii − BiKii)TPi + Pi(Aii − BiKii)

+ Pi

⎛

⎝
∑

j∈Ni

AijW
−1
ij AT

ij

⎞

⎠Pi +
∑

j∈N̂i

Wji ≺ 0 (11)

for some Wij � 0, j ∈ Ni , Pi � 0, i ∈ V , where N̂i denotes the
set of nodes coming out of node i in Gp .

Definition 6 is more general than condition (10), since in-
equality (11) is reduced to (10) when setting Wij = Inj

, j ∈ Ni ,

and Qi = σiIni
, where σi denotes the number of nodes in N̂i .

Proposition 3: For a dynamically weakly coupled sys-
tem (2), i.e., (11) holds, we have (A,B) ∈ Σ2 .

The proof utilizes the following Lemma.
Lemma 2: Given two matrices X,Y of appropriate dimen-

sions, we have

XTWX + Y TW−1Y 
 XTY + Y TX (12)

for any W � 0 of appropriate dimension.
Proof: Observe that

XTWX + Y TW−1Y − (XTY + Y TX)

= (WX − Y )TW−1(WX − Y ) 
 0.

This means (12) holds. �
Proof of Proposition 3: Consider a decentralized controller

K = diag(K11 , . . . ,KN N ). Upon defining Âii = Aii − BiKii

and ignoring the disturbance, the closed-loop dynamics for each
subsystem become

ẋi(t) = Âiixi(t) +
∑

j∈Ni

Aijxj (t) ∀ i ∈ V. (13)

Next, we consider a block-diagonal Lyapunov function
V (x) =

∑N
i=1 xT

i (t)Pixi(t). The derivative of V (x) along the

closed-loop trajectory (13) is

V̇ (x) =
N∑

i=1

(
ẋT

i Pixi + xT
i Piẋi

)

=
N∑

i=1

⎛

⎜⎜⎜⎜⎜⎝
xT

i

(
ÂT

iiPi + PiÂii

)
xi

+

⎛

⎝
∑

j∈Ni

Aijxj

⎞

⎠
T

Pixi + xT
i Pi

⎛

⎝
∑

j∈Ni

Aijxj

⎞

⎠

︸ ︷︷ ︸
coupling term

⎞

⎟⎟⎟⎟⎟⎠
.

(14)

For the coupling term in (14), according to Lemma 2, we have
⎛

⎝
∑

j∈Ni

Aijxj

⎞

⎠
T

Pixi + xT
i Pi

⎛

⎝
∑

j∈Ni

Aijxj

⎞

⎠

=
∑

j∈Ni

(
xT

j AT
ijPixi + xT

i PiAijxj

)

≤
∑

j∈Ni

(
xT

i PiAijW
−1
ij AT

ijPixi + xT
j Wijxj

)
(15)

for any Wij � 0, j ∈ Ni . Substituting (15) into (14), we get

V̇ (x) ≤
N∑

i=1

⎛

⎝xT
i

⎛

⎝ÂT
iiPi + PiÂii

+Pi

⎛

⎝
∑

j∈Ni

AijW
−1
ij AT

ij

⎞

⎠Pi

⎞

⎠xi +
∑

j∈Ni

xT
j Wijxj

⎞

⎠

=
N∑

i=1

xT
i

⎛

⎝ÂT
iiPi + PiÂii

+Pi

⎛

⎝
∑

j∈Ni

AijW
−1
ij AT

ij

⎞

⎠Pi +
∑

j∈N̂i

Wji

⎞

⎠xi.

If condition (11) holds for some Wij � 0, j ∈ Ni , Pi � 0, i ∈
V , then, V̇ (x) is negative definite. Thus, V (s) is a block-
diagonal Lyapunov function for the closed-loop system. �

Note that condition (11) can be equivalently formulated into
the following problem: we aim to find static scaling matrices
Wij � 0 such that there exist Kii, i ∈ V satisfying

‖Ŵi(sI − Aii + BiKii)−1ÂiWi‖∞ < 1, i ∈ V (16)

where Âi = [Aij1 Aij2 . . . Aijs
],Wi = diag{W− 1

2
ij1

,

W
− 1

2
ij2

, . . . ,W
− 1

2
ijs

}, Ŵi = (
∑

j∈N̂i
Wji)

1
2 , and Ni = {j1 , . . . ,

js}. It is clear that both (11) and (16) are coupled between
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Fig. 2. Examples of chordal graphs. (a) Line graph. (b) Triangulated
graph. (c) Star graph.

subsystems due to the scaling matrices Wij � 0. If we a priori
fix the weights Wij , then the constraints in (11) and (16) are
decoupled. This leads to a set of localized conditions to certify
the dynamically weakly coupled condition (11). The sufficient
conditions for block-diagonal stability based on scaled diagonal
dominance in [27] may be good choices for choosing the
weights Wij .

IV. CHORDAL DECOMPOSITION IN OPTIMAL

DECENTRALIZED CONTROL

In this section, by assuming that an undirected version of
the plant graph Gp(V, Ep) is chordal, we derive a decomposed
version of problem (6), leading to multiple local subproblems.
The chordal structure provides a way to define local computing
agents or clusters of subsystems. This facilitates us to develop
a distributed algorithm to solve (6) in Section V.

A. Chordal Graphs and Sparse Matrices

For completeness, we first review some graph-theoretic no-
tion, and refer the interested reader to [29], [30] for details.
Graph G(V, E) is called undirected if (i, j) ∈ E ⇔ (j, i) ∈ E .
A clique C is a subset of nodes in V where any pair of
distinct nodes has an edge, i.e., (i, j) ∈ E ,∀i, j ∈ C, i �= j. If
a clique C is not included in any other clique, then it is
called a maximal clique. A cycle of length k is a sequence of
nodes {v1 , v2 , . . . , vk} ⊆ V with (vk , v1) ∈ E and (vi, vi+1) ∈
E ∀i = 1, . . . , k − 1. A chord in a cycle {v1 , v2 , . . . , vk} is an
edge (vi, vj ) that joins two nonadjacent nodes in the cycle.

An undirected graph G is called chordal if every cycle of
length at least four has one chord [29]. Note that the set of
maximal cliques is unique in a chordal graph, and the graph
decomposition based on the maximal cliques is unique accord-
ingly [30]. Fig. 2 illustrates some examples, and there are two
maximal cliques, C1 = {1, 2} and C2 = {2, 3} for the chordal
graph shown in Fig. 2(a). We highlight that maximal cliques
can serve as computing agents and the overlapping elements,
e.g., node 2 in Fig. 2(a), will play a role of coordination among
maximal cliques. This feature enables preserving model data
privacy (see Remarks 3 and 4).

Given a sequence of integers {n1 , . . . , nN }, and an undirected
graph G(V, E), we define the space of symmetric block matrices
with a particular sparsity pattern as

S
n (E , 0) := {X ∈ S

n |Xij = XT
j i = 0 if (j, i) /∈ Ê}

where n =
∑N

i=1 ni , Xij is a block of dimension ni × nj

and Ê = E ∪ {(i, i),∀i ∈ V}. The cone of sparse block PSD
matrices is defined as

S
n
+(E , 0) := {X ∈ S

n (E , 0)|X 
 0}.
Given a partition {n1 , . . . , nN } and a maximal clique Ck of

G, we define a block index matrix ECk
∈ R|Ck |×n with |Ck | =∑

j∈Ck
nj and n =

∑N
i=1 ni as

(ECk
)ij :=

{
Ini

, if Ck (i) = j

0ni ×nj
, otherwise

where Ck (i) denotes the ith node in Ck , sorted in the natural
ordering, Ini

denotes an identity matrix of size ni × ni , and
0ni ×nj

denotes a zero matrix of size ni × nj . Note that Xk =
ECk

XET
Ck

∈ S
|Ck | extracts a principal submatrix according to

clique Ck , and the operation ET
Ck

XkECk
inflates a |Ck | × |Ck |

matrix into a sparse n × n matrix. Then, we have the following
result.

Lemma 3 ([15], [20], [31]): Let G(V, E) be a chordal
graph with maximal cliques {C1 , C2 , . . . , Ct}. Given a partition
{n1 , n2 , . . . , nN }, we have X ∈ S

n
+(E , 0) if and only if there

exist matrices Xk ∈ S
|Ck |
+ , k = 1, . . . , t, such that

X =
t∑

k=1

ET
Ck

XkECk
.

Example 1: Consider the following positive semidefinite
matrix with a trivial partition {1, 1, 1}

⎡

⎢⎣
2 1 0

1 1 1

0 1 2

⎤

⎥⎦ 
 0

which has a chordal sparsity pattern corresponding to Fig. 2(a)
with maximal cliques C1 = {1, 2} and C2 = {2, 3}. Then,
Lemma 3 guarantees the following decomposition:

⎡

⎢⎣
2 1 0

1 1 1

0 1 2

⎤

⎥⎦ = ET
C1

[
2 1

1 0.5

]

︸ ︷︷ ︸

0

EC1 + ET
C2

[
0.5 1

1 2

]

︸ ︷︷ ︸

0

EC2

where

EC1 =

[
1 0 0

0 1 0

]
, EC2 =

[
0 1 0

0 0 1

]
.

Indeed, for any PSD matrix with partition {2, 1, 1} correspond-
ing to Fig. 2(a), Lemma 3 guarantees a blockwise decomposition
as follows (∗ denotes a real number):
⎡

⎢⎢⎢⎢⎣

∗ ∗ ∗ 0

∗ ∗ ∗ 0

∗ ∗ ∗ ∗
0 0 ∗ ∗

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸

0

=

⎡

⎢⎢⎢⎢⎣
|

∗ ∗ ∗ 0

∗ ∗ ∗ 0

∗ ∗ ∗ 0

0 0 0 0

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸

0

+

⎡

⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 ∗ ∗
0 0 ∗ ∗

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸

0

.
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Fig. 3. Constructing the transpose graph. (a) Directed plant graph
Gp (V, Ep ). (b) Transpose graph of Gp .

B. Chordal Decomposition of Problem (6)

In (6), the variables Xi, Yi, Zi are coupled by the inequal-
ity (6a) only, while the rest of the constraints and the objective
function are naturally separable due to the separable perfor-
mance weights Q,R. Meanwhile, thanks to the block-diagonal
assumption on X , the coupled linear matrix inequality has a
structured sparsity pattern characterized by an undirected ver-
sion of Gp(V, Ep). Precisely, we define an undirected graph
Gu (V, Eu ) with Eu = Ep ∪ ET

p , where ET
p denotes the edge set

of the transpose graph of Gp , i.e., the graph associated to the
transpose of the adjacency matrix of Gp .

Assumption 2: Graph Gu is chordal with maximal cliques
C1 , . . . , Ct .

Remark 2: The undirected graph Gu will be used in the
development of distributed computation using ADMM. For ex-
ample, consider an interconnected system with a directed line
graph in Fig. 3(a). Its transpose graph is shown in Fig. 3(b),
and the resulting undirected graph Gu is the same as that in
Fig. 2(a). If Gu is not chordal, we can add suitable edges to Eu

to obtain a chordal graph [30]. In this case, sharing model data
with directed neighbors in Gp is not sufficient for the proposed
distributed solution. Still, privacy of model data are maintained
within each maximal clique in Gu . For simplicity, we assume
that Gu is chordal. As shown in Fig. 2, some graphs, such as
chains, trees and stars, are already chordal.

Considering the inherent structure of system (1), it is straight-
forward to see that (AX − BZ) + (AX − BZ)T + MMT ∈
S

n (Eu , 0). To ease the exposition, we define

F (X,Z) := −(AX − BZ) − (AX − BZ)T − MMT.

According to Lemma 3, F (X,Z) 
 0 is equivalent to the con-
dition that there exist Jk ∈ S

|Ck |
+ , k = 1, . . . , t, such that

F (X,Z) =
t∑

k=1

ET
Ck

JkECk
. (17)

Therefore, (6) can be equivalently decomposed into

min
Xi ,Yi ,Zi ,Jk

N∑

i=1

Tr(QiXi) + Tr(RiYi)

s.t.
t∑

k=1

ET
Ck

JkECk
= F (X,Z)

[
Yi Zi

ZT
i Xi

]

 0,Xi � 0, i = 1, . . . , N

Jk 
 0, k = 1, . . . , t. (18)

One notable feature of (18) is that the global constraint (6a) is
replaced by a set of small coupled constraints (17). In other
words, (18) has partially coupled constraints, which can be
solved in a distributed way by introducing consensus variables.

The cliques C1 , . . . , Ct give a partition of subsystems, and will
serve as local computing agents. If there is no overlap among the
cliques C1 , . . . , Ct (i.e., the system (2) is composed by dynam-
ically disjoint components), then (18) is trivially decomposed
into t decoupled subproblems of decentralized optimal control,
which can be solved by cliques C1 , . . . , Ct independently. In the
case where different cliques share some common nodes with
each other, we can introduce appropriate auxiliary variables to
achieve a distributed solution using ADMM.

V. DISTRIBUTED DESIGN BASED ON ADMM

To formulate our distributed approach to solve the decom-
posed problem (18) [equivalent to problem (6)], we briefly re-
view the basic setup of ADMM; see [32] for a comprehensive
review. ADMM is a first-order method that solves a convex
optimization problem of the form

min
x,y

f(x) + g(y)

s.t. Ex + Fy = c (19)

where x ∈ Rnx , y ∈ Rny are decision variables, f and g are
convex functions, and E ∈ Rnc ×nx , F ∈ Rnc ×ny , and c ∈ Rnc

are problem data. Given a penalty parameter ρ > 0, the scaled
ADMM algorithm solves (19) using the following iterations:

xh+1 = arg min
x

f(x) +
ρ

2
‖Ex + Fyh − c + λh‖2

yh+1 = arg min
y

g(y) +
ρ

2
‖Exh+1 + Fy − c + λh‖2

λh+1 = λh + Exh+1 + Fyh+1 − c

where λ ∈ Rnc is a scaled dual variable, and h denotes the
iteration index. In many applications, splitting the minimization
over x and y often leads to multiple subproblems, allowing
distributed computation; see [32] for detailed discussions.

A. Simple Example

To illustrate the approach, we first consider an intercon-
nected system characterized by a chain of three nodes, as
shown in Fig. 2(a). In this case, the model data are B =
diag{B1 , B2 , B3},M = diag{M1 ,M2 ,M3}, and

A =

⎡

⎢⎣
A11 A12 0

A21 A22 A23

0 A32 A33

⎤

⎥⎦ .

Note that the following illustration is directly suitable for sys-
tems with a directed graph. For example, if the plant graph is
a directed line as in Fig. 3(a), then we have A12 = 0, A23 = 0
in matrix A and need to construct the same undirected graph in
Fig. 2(a) for the distributed computation.
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In this case, there are two cliques C1 = {1, 2}, C2 = {2, 3},
and Jk , k = 1, 2 in (17) are in the following form:

J1(X1 ,X2 , Z1 , J22,1) := −
[
J11 A12X2 + X1A

T
21

∗ J22,1

]

J2(X2 ,X3 , Z3 , J22,2) := −
[
J22,2 A23X3 + X2A

T
32

∗ J33

]

where ∗ denotes the corresponding symmetric part and

J11 := A11X1 − B1Z1 + (A11X1 − B1Z1)T + M1M
T
1

J33 := A33X3 − B3Z3 + (A33X3 − B3Z3)T + M3M
T
3 .

The coupling effect is imposed on the overlapping node 2

J22,1 + J22,2 = A22X2 − B2Z2

+ (A22X2 − B2Z2)T + M2M
T
2 .

For any coupling variables that appear in two cliques, we in-
troduce auxiliary variables. For this case, we introduce auxiliary
variables for node 2

J22,1 = Ĵ22,1 , J22,2 = Ĵ22,2

X2 = X2,1 , X2 = X2,2 .
(20)

Also, we split the variables according to the cliques and the
overlapping node

Node 2, y := {X2 , Y2 , Z2 , Ĵ22,1 , Ĵ22,2}
Clique C1 , xC1 := {X1 , Y1 , Z1 ,X2,1 , J22,1}
Clique C2 , xC2 := {X3 , Y3 , Z3 ,X2,2 , J22,2}.

The variable y corresponds to the same y in the canonical
form (19) and variables xC1 , xC2 corresponds to x in (19). This
can be seen more directly in (21). Next, we show that (18) can
be rewritten into the standard ADMM form (19) by defining
indicator functions as

ISk
(xCk

) :=

{
0, xCk

∈ Sk

+∞, otherwise

IL(y) :=

{
0, yl ∈ L
+∞, otherwise

where sets S1 ,S2 are defined as

S1 :=
{

xC1

∣∣∣∣J1(X1 ,X2,1 , Z1 , J22,1) 
 0,X1 � 0

[
Y1 Z1

ZT
1 X1

]

 0 are feasible

}

S2 :=
{

xC2

∣∣∣∣J2(X2,2 ,X3 , Z3 , J22,2) 
 0,X3 � 0

[
Y3 Z3

ZT
3 X3

]

 0 are feasible

}

and L is defined by

L :=
{

y

∣∣∣∣Ĵ22,1 + Ĵ22,2 = A22X2 − B2Z2

+ (A22X2 − B2Z2)T + M2M
T
2

X2 � 0,

[
Y2 Z2

ZT
2 X2

]

 0 are feasible

}
.

This allows us to rewrite (18) as an optimization problem in
the form of (19)

min
xCk , y

2∑

k=1

fk (xCk
) + g(y)

s.t. (20) holds (21)

where f1(xC1 ), f2(xC2 ) based on each clique are defined as

f1(xC1 ) := Tr(Q1X1) + Tr(R1Y1) + IS1 (xC1 ) (22a)

f2(xC2 ) := Tr(Q3X3) + Tr(R3Y3) + IS2 (xC2 ) (22b)

and g(y) based on the overlapping node 2 is defined as

g(y) := Tr(Q2X2) + Tr(R2Y2) + IL(y).

Upon denoting x̂Ck
as the variables in xCk

that appears in the
consensus constraint (20), and yl(Ck ) as the corresponding lo-
cal copies, e.g., x̂C1 = {X2,1 , J22,1}, y(C1) = {X2 , Ĵ22,1}, the
ADMM algorithm for (21) takes a distributed form.

ADMM Algorithm for the Distributed Design
1) x-update: for each clique k, solve the local problem

xh+1
Ck

= arg min
xCk

fk (xCk
) +

ρ

2
‖x̂Ck

− yh(Ck ) + λh
Ck
‖2 .

(23)
2) y-update: solve the following problem to update local

variables

yh+1 = arg min
y

g(y) +
ρ

2

2∑

k=1

‖x̂h+1
Ck

− y(Ck ) + λh
Ck
‖2 .

(24)
3) λ-update: compute the dual variable

λh+1
Ck

= λh
Ck

+ x̂h+1
Ck

− yh+1(Ck ), k = 1, 2. (25)

At each iteration h, subproblem (23) only depends on each
clique Ck . Consequently, the cliques can serve as computing
agents to solve subproblem (23) to update the variable xh+1

Ck
in

parallel. For example, clique C1 needs to solve the following
convex problem:

min
xC1

Tr(Q1X1) + Tr(R1Y1) +
ρ

2
‖x̂C1 − yh(C1) + λh

C1
‖2

s.t.

[
J11 A12X2,1 + X1A

T
21

∗ J22,1

]
� 0

[
Y1 Z1

ZT
1 X1

]

 0,X1 � 0
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Fig. 4. Illustration of the ADMM algorithm for solving (21): cliques
C1 = {1, 2} and C2 = {2, 3} serve as two computing agents and the
overlapping node 2 plays a role of a coordinator.

where the regularization term is

‖x̂C1 − yh(C1) + λh
C1
‖2 = ‖X2,1 − Xh

2 + Λh
2,1‖2

+ ‖J22,1 − Ĵh
22,1 + Λh

22,1‖2 .

The subproblems (24) and (25) deal with the consensus variables
yh+1 and multipliers λh+1

Ck
, k = 1, 2, which can be computed by

node 2. Fig. 4 illustrates the distributed nature of this algorithm.
Remark 3 (Privacy of model data): At each iteration, the

coordinator (i.e., node 2) only requires model data of itself
A22 , B2 ,M2 and the local copies Xh+1

2,k , Jh+1
22,k from cliques

Ck , k = 1, 2 to update yh+1 , λh+1
Ck

by solving (24) and (25).
Therefore, the proposed ADMM algorithm for solving (18) has
a distributed nature (see Fig. 4 for illustration): cliques C1 and
C2 can solve (23) based on the model data within each clique in
parallel, and node 2 plays a role of coordination by updating the
auxiliary variables yh+1 , λh+1

Ck
. Consequently, the model data

of node 1 (i.e., A11 , B1 ,M1 , A12 , A21) are accessible only to
clique C1 only, while clique C2 holds the model data of node 3
(i.e., A33 , B3 ,M3 , A32 , A23), exclusively.

Remark 4 (Privacy and maximal cliques): In our ADMM
algorithm, the privacy of model data is maintained within each
maximal clique ofGu . Therefore, the level of privacy depends on
the sparsity of Gu . For highly interconnected systems with only
one maximal clique, the decomposition (17) brings no benefit
for privacy, and a global model is still required. In practice, if the
plant graphGp is a chain or star graph (see Fig. 2 for illustration),
then each maximal clique is of size two only, meaning that each
subsystem need to share its model data with its direct neighbors
only, and the model data privacy can be, therefore, maintained
to a large extent.

Remark 5 (Convergence of the ADMM algorithm): The
general ADMM algorithm is guaranteed to converge for convex
problems under very mild conditions [32, Sec. 3.2]. In this case,
under the feasibility assumption of (6), the proposed ADMM
algorithm (23)–(25) is guaranteed to find a solution asymp-
totically. In the examples considered in this article, ADMM
typically found a solution with moderate accuracy (in the sense
of standard stopping criteria [32, Sec. 3.3]) within a few hun-
dred iterations (see Section VI). Note that adjusting the penalty
parameter ρ dynamically may further improve the practical con-
vergence of the ADMM algorithm [32, Sec. 3.4.1]. In our sim-
ulations, we used a fixed choice of ρ = 5, since it led to a
satisfactory convergence for our instances.

B. General Case

The idea abovementioned can be extended to solve (18)
with a general chordal graph pattern, and the general

problem (18) shares great similarities with the simple ex-
ample in Section V-A. First, we define a set N0 := {i ∈
V | ∃q, k = 1, . . . , p, such that i ∈ Cq ∩ Ck} that contains the
overlapping nodes, and a set E0 := {(i, j) ∈ Eu | ∃q, k =
1, . . . , t, such that (i, j) ∈ (Cq × Cq ) ∩ (Ck × Ck )} that con-
tains the overlapping edges. For the example in Fig. 4, we
have N0 = {2} and E0 = ∅. Also, we define Ni := {k | i ∈
Ck , k = 1, . . . , p} that denotes the cliques containing node i,
and Eij := {k | (i, j) ∈ Ck × Ck , k = 1, . . . , t} that denotes the
cliques containing edge (i, j).

In fact, the elements in N0 and E0 make the constraint (17)
coupled among different maximal cliques. Similar to (20), for
each node i ∈ N0 , we introduce local consensus constraints

Xi = Xi,k , Ĵii,k = Jii,k ∀k ∈ Ni . (26)

For each overlapping edge (i, j) ∈ E0 , we introduce local con-
sensus constraints

Xij = Xi,k , Ĵij,k = Jij,k ∀(i, j) ∈ Eij . (27)

Then, variable xCk
for each maximal clique k = 1, . . . , t in-

cludes the following:
1) Xi, Yi, Zi, i ∈ Ck \ N0 that belongs to clique Ck

exclusively;
2) Xi,k , Jii,k , i ∈ Ck ∩N0 that corresponds to overlapping

nodes in Ck ;
3) Jij,k , (i, j) ∈ (Ck × Ck ) ∩ E0 that corresponds to over-

lapping edges in Ck .
We also collect the local copies Xi, Yi, Zi, Ĵii,k , i ∈ N0 and

Ĵij,k ,Xij,k , (i, j) ∈ E0 as the consensus variable y.
Then, (18) can be written into the canonical ADMM form

min
xCk , y

t∑

k=1

fk (xCk
) + g(y)

s.t. (26) and (27) hold (28)

where the clique function fk (xCk
) is defined as

fk (xCk
) :=

∑

i∈Ck \N0

Tr(QiXi) + Tr(RiYi) + ISk
(xCk

) (29)

and g(y) is defined as

g(y) :=
∑

i∈N0

Tr(QiXi) + Tr(RiYi) + IL(y). (30)

In (29), set Sk is defined as

Sk :=
{

xCk

∣∣∣∣Jk (xCk
) 
 0,Xi � 0

[
Yi Zi

ZT
i Xi

]

 0, i ∈ Ck \ N0 are feasible

}
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and in (30), set L is defined as

L :=
{

y

∣∣∣∣
∑

k∈Ni

Ĵii,k = AiiXi − BiZi + (AiiXi − BiZi)T

+ MiM
T
i , Xi � 0,

[
Yi Zi

ZT
i Xi

]

 0, i ∈ N0

∑

k∈Ei j

Ĵij,k = AijXij + XjiA
T
j i , (i, j) ∈ E0 are feasible

}
.

By applying the ADMM to (28), we obtain iterations that are
identical to (23)–(25). Note that the set L can be equivalently
rewritten as a product of sets defined by Xi, Yi, Zi, Ĵii,k , i ∈
N0 and Ĵij,k ,Xij , (i, j) ∈ E0 . For each i ∈ N0 , the set for
Xi, Yi, Zi, Ĵii,k is defined as

Li :=
{

(Xi, Yi, Zi, Ĵii,k )
∣∣∣∣
∑

k∈Ni

Ĵii,k = AiiXi − BiZi

+ (AiiXi − BiZi)T + MiM
T
i , Xi � 0,

[
Yi Zi

ZT
i Xi

]

 0
}
.

This means that y-update (24) can be distributed among the
overlapping nodes N0 and overlapping edges E0 . Therefore,
similar to the example in Section V-A, variables xh

Ck
can be

updated on each clique in parallel, and the overlapping elements
inN0 and E0 can update yh

Ck
, λh

Ck
individually until convergence.

Here, as stated in Remark 3, we emphasize that the main
interest of this algorithm is the ability of distributing the com-
putation to cliques and overlapping elements, thus preserving
the privacy of model data in the problem.

VI. NUMERICAL CASES

This section demonstrates the effectiveness of the proposed
distributed design method.2 For the examples, we ran the
ADMM algorithm with termination tolerance 10−3 and the
number of iterations was limited to 500. In our simulations,
SeDuMi [33] and YALMIP [34] were used to solve the sub-
problems within each clique and overlapping elements.

A. First-Order Systems With Acyclic Directed Graphs

We first consider a network of four unstable coupled first-
order subsystems, where Gp is the directed acyclic graph shown
in Fig. 1(b). In the experiment, the global dynamics are

ẋ(t) =

⎡

⎢⎢⎢⎢⎣

1 0 0 0

1 2 0 0

0 2 3 4

1 2 0 4

⎤

⎥⎥⎥⎥⎦
x(t) + u(t) + d(t). (31)

This system is both fully actuated and topologically weakly
coupled according to Section III. We chose Qi = 1 and Ri =
1, i ∈ V in our simulation. When the global dynamics are avail-
able, solving (6) directly returned a decentralized controller

2Code is available via https://github.com/zhengy09/distributed_design_
methods.

Fig. 5. Illustration of the ADMM algorithm for solving (6) corresponding
to the example (31): the cliques C1 = {1, 2, 4} and C2 = {2, 3, 4} serve
as two computing agents and the overlapping nodes play a role of coor-
dinators by updating the axillary variables.

Fig. 6. Primal and dual residuals versus iteration number for the di-
rected graph (42). (a) Primal residual. (b) Dual residual.

Fig. 7. (a) Chain of five nodes. (b) Four maximal cliques Ci = {i, i +
1}, i = 1, 2, 3, 4, which serve as four computing agents relying only on
the model data within each clique; the overlapping nodes 2, 3, and 4
play a role of coordinators.

K11 = 7.34;K22 = 11.38;K33 = 6.16,K44 = 13.48 with an
H2 performance of 5.36.

Instead, when the privacy of model data is concerned, the pro-
posed ADMM algorithm can solve (6) in a distributed fashion.
As shown in Fig. 5, for clique 1, only the model data of nodes 1,
2, and 4 are required, while clique 2 only needs the model data of
nodes 2, 3, 4, and the overlapping nodes 2 and 4 play a role of co-
ordinations in the algorithm. In this way, the model of node 1 can
be kept private within clique 1 and the model of node 3 is known
within clique 2 exclusively. For this instance, after 54 iterations,
the ADMM algorithm returned the decentralized controller
K11 = 7.35;K22 = 11.41;K33 = 6.16,K44 = 13.49 with an
H2 performance of 5.37. The convergence plot of our algorithm
for this instance is given in Fig. 6.

B. Chain of Unstable Second-Order Coupled Systems

Here, we use a chain of five nodes (see Fig. 7) to provide a
comparison between the proposed ADMM algorithm and the
following three approaches.

https://github.com/zhengy09/distributed_design_methods
https://github.com/zhengy09/distributed_design_methods
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TABLE I
COMPARISON OF THE PROPOSED ADMM ALGORITHM, SEQUENTIAL

APPROACH [22], LOCALIZED LQR [2, CH. 7.3], AND TRUNCATED LQR
DESIGN FOR THE SYSTEM (32)

‡: Successful percentage of returning a stabilizing decentralized controller.
†: Average H2 performance of based on common successful instances.

Fig. 8. Cumulative plot of the fraction of 100 random trails of (32) that
required a given number of iterations to converge.

1) A sequential approach [22], which exploits the properties
of clique trees in chordal graphs.

2) Localized LQR design [2, Ch. 7.3], which computes a
local LQR controller for each subsystem independently
by ignoring the coupling terms Aij .

3) Truncated LQR design, which computes a centralized
LQR controller using the global model data and only
keeps the diagonal blocks for decentralized feedback.

It is assumed that each node is an unstable second order
system coupled with its neighboring nodes

ẋi =

[
1 1

1 2

]
xi +

∑

j∈Ni

Aijxj +

[
0

1

]
(ui + di) (32)

where the entries of coupling term Aij were generated ran-
domly from −0.5 to 0.5 to ensure that the numerical examples
are strongly decentralized stabilizable. There are four maxi-
mal cliques Ci = {i, i + 1}, i = 1, 2, 3, 4. The model data can
be kept private within each clique, and the overlapping nodes
(i.e., 2, 3, 4) coordinate the consensus variables among maxi-
mal cliques. In the simulation, the state and control weights
were Qi = I2 and Ri = 1 for each subsystem.

We generated 100 random instances of this interconnected
system (32). The performance comparison between the four
methods is listed in Table I. The proposed ADMM algorithm
was able to return stabilizing decentralized controllers for all
100 tests, while the sequential approach, localized LQR and
truncated LQR design only succeeded for 72%, 54%, 62%
of the tests, respectively. This is expected since the proposed
ADMM algorithm only requires the system being strongly de-
centralized stabilizable. The sequential approach requires an
additional equal-splitting assumption among maximal cliques
(see [22, Sec. VI-B]), and the localized LQR and truncated
LQR design has no guarantees of success in general. Also, the

average H2 performance for the common succeeded instances
by the ADMM algorithm is the best. Finally, Fig. 8 shows the
cumulative plot of convergence performance of our algorithm,
where 90% of the tests required less than 150 iterations.

VII. CONCLUSION

We introduced a distributed design method for decentralized
control that relies on local model information only. Our main
strategy is consistent with the recent general idea of exploiting
sparsity in systems theory via chordal decomposition [19]–[22].
In this article, we further demonstrated the potential of chordal
decomposition in distributed design of decentralized controllers,
by combining this approach with the ADMM algorithm. Similar
to [13], [22], our method relies on a block-diagonal Lyapunov
function, which may bring some conservatism in general. Cur-
rently, we are studying convex restrictions that are less restric-
tive than the block-diagonal assumption, while still allowing
distributed computation.

APPENDIX

This appendix shows (7) using counterexamples. Consider
the following system with two scalar subsystems

[
ẋ1

ẋ2

]
=

[
1 2

a1 a2

][
x1

x2

]
+

[
0 0

0 1

][
u1

u2

]
(33)

where the first scalar subsystem is not affected by the first
control input, i.e., B1 = 0 in (1). Since (33) is controllable
∀a1 ∈ R, a2 ∈ R, then, we know

([
1 2

a1 a2

]
,

[
0 0

0 1

])
∈ Σ0 ∀a1 ∈ R, a2 ∈ R.

Next, consider a decentralized controller for (33) u1 =
−k1x1 , u2 = −k2x2 , then the closed-loop system becomes

[
ẋ1

ẋ2

]
=

[
1 2

a1 a2 − k2

][
x1

x2

]
. (34)

The stability of (34) means that the real parts of its eigenvalues
are negative. This requires

{
a2 + 1 − k2 < 0

a2 − k2 − 2a1 > 0

which is equivalent to a2 + 1 < k2 < a2 − 2a1 . This means
([

1 2

a1 a2

]
,

[
0 0

0 1

])
∈ Σ1 , ⇔ a1 < −0.5, a2 ∈ R.

The Lyapunov inequality with a diagonal certificate reads as
[
p1 0

0 p2

][
1 2

a1 a2 − k2

]
+

[
1 2

a1 a2 − k2

]T [
p1 0

0 p2

]

=

[
2p1 2p1 + a1p2

2p1 + a1p2 2a2p2 − 2k2p2

]
≺ 0 (35)
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where p1 > 0, p2 > 0. Since the first principle minor 2p1 > 0,
we know that (35) is infeasible, ∀a1 , a2 , k2 . Thus, we have

([
1 2

a1 a2

]
,

[
0 0

0 1

])
/∈ Σ2 ∀a1 ∈ R, a2 ∈ R.

If both subsystems are fully actuated, i.e., B1 = 1, B2 = 1
in (33), then according to Proposition 1, we know

([
1 2

a1 a2

]
,

[
1 0

0 1

])
∈ Σ0 ∀a1 ∈ R, a2 ∈ R

([
1 2

a1 a2

]
,

[
1 0

0 1

])
∈ Σ1 ∀a1 ∈ R, a2 ∈ R

([
1 2

a1 a2

]
,

[
1 0

0 1

])
∈ Σ2 ∀a1 ∈ R, a2 ∈ R.

This simple example also shows that the ability of actuating the
nodes is important for strongly decentralized stabilization.
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