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Abstract—With dynamic electricity pricing, the operation of
water distribution systems (WDS) is expected to become more
variable. The pumps moving water from reservoirs to tanks and
consumers, can serve as energy storage alternatives if properly
operated. Nevertheless, optimal WDS scheduling is challenged
by the hydraulic law, according to which the pressure along a
pipe drops proportionally to its squared water flow. The optimal
water flow (OWF) task is formulated here as a mixed-integer
non-convex problem incorporating flow and pressure constraints,
critical for the operation of fixed-speed pumps, tanks, reservoirs,
and pipes. The hydraulic constraints of the OWF problem are
subsequently relaxed to second-order cone constraints. To restore
feasibility of the original non-convex constraints, a penalty term
is appended to the objective of the relaxed OWF. The modified
problem can be solved as a mixed-integer second-order cone
program, which is analytically shown to yield WDS-feasible
minimizers under certain sufficient conditions. Under these con-
ditions, by suitably weighting the penalty term, the minimizers
of the relaxed problem can attain arbitrarily small optimality
gaps, thus providing OWF solutions. Numerical tests using real-
world demands and prices on benchmark WDS demonstrate
the relaxation to be exact even for setups where the sufficient
conditions are not met.

Index Terms—Water flow equations, convex relaxation, second-
order cone constraints, optimal water flow.

I. INTRODUCTION

While WDS serve as a critical infrastructure, there is an
increasing emphasis on improving their reliability, quality,
and efficiency. The cost-intensive installation and maintenance
of WDS components, such as pipelines, pump stations, and
reservoirs, have motivated network planning studies [1], [2],
[3], [4]. From an operational perspective, a recent survey
on WDS optimization identifies pump scheduling and water
quality as the two focus areas [5]. Recognizing that 4% of the
total electricity consumption in the United States is attributed
to water network operations [6], and that the electricity cost
for pumping constitutes the largest expenditure for water util-
ities [7], stresses the significance of optimal WDS scheduling.

A typical WDS schedule would run pumps mainly at
night when electricity prices are low to transfer water from
reservoirs through pipes and fill up elevated tanks located
closer to water demands. Under the smart city vision, dynamic
electricity pricing and demand-response programs incentivize
more flexible WDS schedules to minimize operational costs.
For example, a surplus of residential solar generation around
midday could be locally consumed to run pumps and fill up
pumps, thus serving as an energy storage alternative. Adaptive
WDS scheduling and the anticipated joint dispatching of
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electric power and water networks, motivate the need for
scalable optimization tools and more realistic system models.

The operation of WDS is constrained by minimum pres-
sure requirements; capacity limitations imposed by pumps,
pipelines, and tanks; and a set of hydraulic constraints. It is
exactly these hydraulic constraints that give rise to complex
mixed-integer and nonlinear formulations, and have been dealt
so far in three broad ways [5]. The first class of methods
enforces pressure and capacity constraints explicitly, while
the hydraulic constraints are included implicitly through water
network simulation tools, such as EPANET [8], [9]. Meta-
heuristic approaches such as genetic algorithms [7], ant-colony
optimization [10], or limited discrepancy search [11], are
then used together along with a WDS simulator to obtain
an operating point. Some variants replace the slow but exact
simulator with surrogate WDS models based on artificial
neural networks or interpretive structural models [12], [13]. It
has been demonstrated however that WDS optimization using
metaheuristics coupled with a simulator scales unfavorably due
to the computational effort required [14].

The second class of methods rely on formulating (mixed-
integer) nonlinear programs and handling them via nonlinear
solvers [15]. A mixed-integer second-order cone formulation
for optimal pump scheduling relaxes the hydraulic constraints
to render the problem convex in the continuous variables [16],
[17]. The relaxation is shown to be exact presuming all pipes
are equipped with pressure-relieving valves and upon ignor-
ing some pressure tank constraints. The water-power nexus
has been studied in [18], wherein the non-convex hydraulic
constraints are passed on to a non-convex solver with no
optimality guarantees. The security of interdependent water-
power-gas networks has been studied from a game-theoretic
viewpoint in [19], using the non-convex hydraulic constraints.

The third class of methods uses linearization to end up
with a computationally tractable mixed-integer linear program
(MILP) formulation [4], [20]. Adopting [17] to find an optimal
water-power flow dispatch, reference [21] handles the non-
convex constraints arising from both water and electric power
networks via a successive convex approximation technique.
The latter approach features computational advantages without
the inaccuracies of linearization; yet water flow directions and
the on/off status of pumps are assumed given. The participation
of WDS in demand response and frequency regulation through
pump scheduling with piece-wise linearization of hydraulic
constraints has been suggested in [22], [23], [24].

Towards computationally convenient WDS solvers, the con-
tribution of this work is two-fold. First, a generalized model
for various WDS components is developed in Section II.
Some of its distinct features include separability of binary and
continuous variables, flexibility of bypassing pumps, bidirec-
tional flows, and precise modeling of tank operation. Second,
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an OWF problem to minimize electricity operation cost for
fixed-speed pumps is put forth in Section III. Sections IV–V
develop a convex relaxation, which is later augmented by a
novel penalty term to promote minimizers that are feasible for
the water network. Under specific conditions, the penalized
relaxation is shown to yield a minimizer of the original non-
convex OWF problem. The numerical tests of Section VI on
benchmark WDS corroborate that the proposed relaxations can
yield feasible and optimal WDS dispatches even when the
analytical conditions are grossly violated.

II. WATER NETWORK MODELING

A water distribution system can be represented by a directed
graph G := (M,P). Its nodes indexed by m ∈ M corre-
spond to water reservoirs, tanks, and points of water demand.
Reservoirs serve as primary water sources and constitute the
subsetMr ⊂M. Similarly, the nodes hosting tanks comprise
the subset Mb ⊂ M. The nodes in Mr ∪Mb do not serve
water consumers. This is without loss of generality, since a
potential co-located consumer at a node m ∈ Mr ∪Mb can
be attached to an auxiliary node connected to the node m
through a lossless pipe. Let dtm be the rate of water injected
into the WDS from node m during period t. Apparently, for
reservoirs dtm ≥ 0; for demand nodes with water consumers
dtm ≤ 0; tanks may be filling or emptying; and for junction
nodes dtm = 0.

The elements of the edge set P of G represent water pipes,
and their cardinality is P := |P|. All edges in P are assigned
an arbitrary direction. The directed edge (m,n) ∈ P models
the pipeline linking nodes m and n. If (m,n) ∈ P , then
(n,m) /∈ P . The water flow on edge (m,n) is denoted by
dtmn. If water runs from node m to node n at time t, then
dtmn ≥ 0; and negative, otherwise. Flow conservation dictates

dtm =
∑

k:(m,k)∈P

dtmk −
∑

k:(k,m)∈P

dtkm, ∀m, t. (1)

In addition to water injections and flows, water distribution
system (WDS) operation is also governed by pressures. Water
pressure is typically surrogated by the quantity of pressure
head, which is measured in meters and is linearly related to
water pressure [20]. In detail, a pressure head of h meters
corresponds to a water pressure of hρg̃ pascal, where ρ is the
water density in kg/m3, assumed to be a known constant and g̃
is the acceleration due to gravity in m/sec2. The pressure head
(also known as piezometric pressure head) at a node equals
its geographical elevation plus the manometric pressure head
attributed to the height of the water column or pumps.

The pressure head or henceforth simply pressure at node
m during time t will be denoted by htm. The operation of
water networks requires a minimum manometric pressure at all
nodes m. Adding this common minimum value of manometric
pressure to the specific but known geographical elevation of
each node m ∈M gives a lower limit on its pressure as

htm ≥ hm. (2)

TABLE I
NOMENCLATURE

Symbol Meaning

M node set

Mr,Mb node sets of reservoirs and tanks

P , P edge set and number of edges

Pa, P̄a edge set hosting pumps and its complement

dtm injection at node m and time t

dtmn flow on edge (m,n) at time t

d̃tmn, dmn, dmn flow through pump (m,n) at time t, and limits

d (d̃) pipe (pump) flows at all times

htm, hm pressure at node m during time t, and limit

h nodal pressures at all times

cmn loss (consumption) coefficient of pipe (pump)

xmn flow direction (running status) for pipe (pump)

gmn pressure added by pump

αt
m connectivity status for reservoir or tank m

h̄m constant pressure at reservoir m

βt
m filling/emptying status of tank m

`tm, `m, `m water level in tank at time t and its limits

Am cross-sectional area for tank m

δ time interval

πt electricity cost at time t

f(d̃) total pumping cost given pump flows d̃

A(dt) incidence matrix based on flow directions at t

g(h) penalty function

λ weighing parameter

M big-M trick parameter

Water movement in a pipe results in a quadratic pressure drop.
In detail, the pressure drop across pipeline (m,n) ∈ P is
described by the Darcy-Weisbach equation [20]

htm − htn = cmn sign(dtmn)(dtmn)2 (3)

where the loss coefficient cmn := `mnfmn

4π2r5mng̃
depends on the pipe

length `mn; its inner radius rmn; and the Darcy friction factor
fmn. Although factor fmn actually depends on flow dmn in a
continuous nonlinear manner, it is typically approximated as
constant; see [4] and references therein. The sign function is
defined such as sign(0) = 0 and it ensures that pressure drops
in the direction of water flow. To avoid the discontinuity of
the sign, we propose a mixed-integer model using the big-M
trick for the pressure drop in pipeline (m,n) using the binary
variables {xtmn}Tt=1. In particular, the pressure drop equation
of (3) can be equivalently expressed through the constraints

−M(1− xtmn) ≤ dtmn ≤Mxtmn (4a)

−M(1− xtmn) ≤ htm − htn − cmn(dtmn)2 ≤M(1− xtmn)
(4b)

−Mxtmn ≤ htm − htn + cmn(dtmn)2 ≤Mxtmn (4c)
xtmn ∈ {0, 1} (4d)

for a large M > 0. If xtmn = 1, then constraint (4a) guarantees
that dtmn ≥ 0; constraint (4b) becomes an equality; and (4c)
holds trivially. If xtmn = 0, the flow changes direction dtmn ≤
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0; constraint (4c) becomes an equality; and (4b) holds trivially.
Observe that for dtmn = 0, the indicator variable xtmn becomes
inconsequential, and htm = htn for any value of xtmn.

To maintain nodal pressures at desirable levels, water utili-
ties use pumps installed on designated pipes to raise pressure.
A water pipe equipped with a pump may be modeled as an
ideal (lossless) pump followed by a pipe with pressure drop
dictated by (4). The subset of edges representing ideal pumps
is denoted by Pa ⊂ P . The remaining edges comprise the
set P̄a := P \ Pa and represent lossy pipes, for which the
constraints in (4) apply. Any reference to pump (m,n) will
henceforth refer to the ideal segment of the pump.

If pump (m,n) ∈ Pa is running during period t, its flow
is constrained to lie within the range dmn ≤ dtmn ≤ dmn
with dmn ≥ 0 due to engineering limitations [20]. The pump
(m,n) adds pressure gtmn ≥ 0 so that

htn − htm = gtmn. (5)

The pressure gain gtmn depends on the pump speed and the
water flow. This dependence is oftentimes approximated by a
quadratic function [25], [20], [17]. The dependence of gtmn
on water flow is relatively weak and may be ignored without
significant loss of accuracy [17], [26]. Thus, for a fixed-speed
pump, the pressure gain gmn is constant when the pump is
running; and zero, otherwise. Oftentimes, when a pump is not
running, water can flow freely in either directions through a
bypass valve connected in parallel to the pump and without
incurring any pressure difference [26]. The operation of a
pump along with its bypass valve can be captured using the
big-M trick via the mixed-integer model for all (m,n) ∈ Pa

htm − htn = −gmnxtmn (6a)

−M(1− xtmn) ≤ dtmn − d̃tmn ≤M(1− xtmn) (6b)

dmnx
t
mn ≤ d̃tmn ≤ dmnxtmn (6c)
xtmn ∈ {0, 1}. (6d)

The binary variable xtmn indicates whether pump (m,n) ∈ Pa
is running at time t. When the pump is running (xtmn = 1),
constraint (6a) implies (5); otherwise (xtmn = 0), it enforces
htm = htn. For xtmn = 1, constraints (6b)–(6c) imply that
d̃tmn = dtmn and the water flow in the pump is kept within
the positive limits [dmn, dmn]. For xtmn = 0, variable d̃tmn
is set to zero and dtmn represents the water flowing through
the bypass valve of the pump. The auxiliary variable d̃tmn will
be useful later in computing the energy consumption of pump
(m,n).

Note that a variable-speed pump model is not a gener-
alization of a fixed-speed one unless non-trivial upper and
lower bounds on the pump speeds are enforced. For instance,
the OWF formulation for variable speed pumps in [21],
[17] can not be used for fixed-speed pumps. Although there
is an ongoing transition towards variable-speed pumps, the
conventional WDS have a fleet of fixed-speed pumps which
give way to on/off and implicit flow control [9], [20], [14].
Thus, this work considers fixed-speed pumps.

The pressure at a reservoir can be assumed constant across
days or weeks [17]. Consider reservoir m ∈ Mr whose
constant pressure is h̄m. To draw water from this reservoir,

inflow 

outflow
 

m
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reference elevation 

Fig. 1. A schematic for a water tank sited at node m. The geographical
elevation has been incorporated by referring heights to a common reference.

its nodal pressure htm must be smaller than the constant
pressure head h̄m of the reservoir. This is enforced through
the constraints

0 ≤ dtm ≤Mαtm (7a)
htm ≤ h̄m +M(1− αtm) (7b)
αtm ∈ {0, 1} (7c)

for all m ∈ Mr and times. The binary variable αtm indicates
if water is drawn from reservoir m at time t. If αtm = 1,
reservoir m is connected to the WDS and the constraints in
(7) ensure that dtm ≥ 0 and htm ≤ h̄m. On the other hand,
when αtm = 0, reservoir m is disconnected, dtm = 0, and
constraint (7b) is trivially satisfied.

As opposed to reservoirs, the water volume in tanks varies
significantly during the day [17]. Variations in water volume
translate to variations in water level, which cause in turn
variations in pressure at the bottom of the tank. To model
the operation of tanks, let `tm denote the water level in tank
m ∈ Mb at the end of period t. To be consistent with the
piezometric pressure head, the water level `tm includes the
geographical elevation of tank m. If δ is the duration of a
control period and Am is the uniform cross-sectional area for
tank m, the water level in tank m satisfies the dynamics

`tm = `t−1
m − dtmδ

Am
. (8)

Due to its finite volume, the water level in tank m is con-
strained at all times t as

`m ≤ `tm ≤ `m. (9)

Typically, the net water exchange from tanks is kept at zero
during the entire period of operation, that is

`0m = `Tm. (10)

Each tank has two separate paths for filling and emptying;
see Fig. 1. The filling or inlet pipe is connected near the top,
and the emptying or outlet pipe is connected at the bottom. The
two pipes are controlled by two separate valves. The output
pressure of the valves can equal or less than the input pressure.
Therefore, when tank m is being filled in with water at time
t, it should hold htm ≥ `m. Conversely, when water flows out
of the tank, it follows that htm ≤ `tm. By closing both the
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inlet and outlet valves, the pressure htm at node m becomes
decoupled from the pressure at the bottom of the tank, `tm.

To capture the aforementioned tank operation, let us in-
troduce two binary variables (αtm, β

t
m) and the auxiliary

continuous variable h̃tm. The operation of tank m at time t
is described by the constraints

−M(1− αtm) ≤ h̃tm − htm ≤M(1− αtm) (11a)
−Mαtm ≤ dtm ≤Mαtm (11b)
−Mβtm ≤ dtm ≤M(1− βtm) (11c)

`m −M(1− βtm) ≤ h̃tm ≤ `tm +Mβtm (11d)
αtm, β

t
m ∈ {0, 1}. (11e)

The variable αtm indicates if tank m is connected at time t;
and if it is, the variable βtm indicates if the tank is filling.
When the tank is connected (αtm = 1), constraint (11a) yields
h̃tm = htm and (11b) holds trivially. If additionally the tank is
filling (βtm = 1), then dtm ≤ 0 from (11c) and h̃tm = htm ≥ `m
from (11d). If the tank is connected but emptying (αtm =
1, βtm = 0), then dtm ≥ 0 from (11c) and h̃tm = htm ≤ `tm from
(11d). When the tank is disconnected (αtm = 0), constraint
(11b) enforces dtm = 0, the pressure in the tank is not related
to the network pressure and the values of βtm and h̃tm are
inconsequential.

Valves are a vital flow-control component. Popular models
for valves include an on/off switch model; a linear pressure-
reducing model; and a flow-dependent nonlinear model [17].
Presuming a combination of on/off and linear valves on lossy
pipes, a convex relaxation for OWF was put forth in [17].
Although this simplistic setup can be incorporated here, this
work addresses the more realistic WDS setup where valves
are present only at reservoirs and tanks.

III. PROBLEM FORMULATION

With dynamic pricing, the objective here is to minimize
the cost of electricity consumed by water pumps. This section
collects the network constraints listed earlier and defines the
OWF problem. The mechanical power consumed by pump
(m,n) ∈ Pa during period t in watts is given by the product
of the induced pressure difference gmn measured in pascal,
times the water flow d̃tmn in m3/sec [17]. If the overall energy
efficiency of the pump is ηmn, it consumes electric energy
δρg̃gmn

ηmn
d̃tmn during time t of duration δ. For the fixed-speed

pumps considered here, the pressure gain gmn is constant and
we can thus define the electricity consumption coefficient

cmn :=
δρg̃gmn
ηmn

, ∀(m,n) ∈ Pa.

The OWF problem can be formally stated as follows. Given
the initial water level in tanks {`0m}m∈Mb

, the water de-
mands at consumption nodes {dtm}m∈M\Mb∪Mr

, the electric-
ity prices {πt}Tt=1, and network parameters (tank capacities,
pipe dimensions, pump pressure gains and minimum pressure
requirements, tank heights); the OWF task aims at minimizing
the electricity cost for running the pumps while meeting water
demands and respecting WDS limitations.

In detail, the pumping cost can be formulated as

f(d̃) :=

T∑
t=1

∑
(m,n)∈Pa

cmnπtd̃
t
mn (12)

where vector d̃ collects the water flows {d̃tmn}t in all pumps
(m,n) ∈ Pa and at all times. To simplify the presentation, the
price of electricity πt is assumed invariant across the WDS for
all t. The OWF problem can be posed as the minimization

min f(d̃) (P1)
over {htm}m∈M, {dtm}m∈Mb∪Mr

, {dtmn}(m,n)∈P ,

{h̃tm}m∈Mb
, {`tm}m∈Mb

, {d̃tmn}(m,n)∈Pa
,

{xtmn}(m,n)∈P , {αtm}m∈Mr∪Mb
, {βtm}m∈Mb

, ∀t
s.to (1), (2), (4), (6)− (11).

Problem (P1) involves the continuous variables
{htm, dtm, dtmn, h̃tm, d̃tmn} and the binary variables
{xtmn, αtm, βtm}. For fixed-speed pumps, the cost in (P1) is
linear. Although most of the constraints are linear thanks to the
big-M trick, the constraints (4b)–(4c) modeling the pressure
drop are non-linear. In fact, each one of these constraints
involves one convex and one non-convex quadratic inequality.
To obtain affordable OWF solutions, Section IV relaxes the
non-convex constraints and derives a mixed-integer problem
that is convex with respect to the continuous variables.

IV. CONVEX RELAXATION

The pressure drop across a lossy pipe (m,n) ∈ P̄a depends
on its water flow dtmn through the quadratic law of (3), which
can be relaxed to a convex inequality as
• htm − htn ≥ cmn(dtmn)2 for dtmn ≥ 0; or
• htn − htm ≥ cmn(dtmn)2 for dtmn ≤ 0.

Since the sign of dtmn is captured by the binary variable xtmn,
the relaxation can be alternatively performed on (4) to yield

−M(1− xtmn) ≤ dtmn ≤Mxtmn (13a)

−M(1− xtmn) ≤ htm − htn − cmn(dtmn)2 (13b)

htm − htn + cmn(dtmn)2 ≤Mxtmn. (13c)

Comparing (4) to (13), the rightmost inequality of (4b) and the
leftmost inequality of (4c) have been dropped in (13). These
are exactly the non-convex constraints. Replacing (4) by (13)
in (P1), leads to the relaxed problem

min f(d̃) (P2)
over {htm}m∈M, {dtm}m∈Mb∪Mr

, {dtmn}(m,n)∈P ,

{h̃tm}m∈Mb
, {d̃tmn}(m,n)∈Pa

,

{xtmn}(m,n)∈P , {αtm}m∈Mr∪Mb
, {βtm}m∈Mb

, ∀t
s.to (1), (2), (6)− (11), (13).

Problem (P2) is convex with respect to the continuous vari-
ables, and it could be handled by existing mixed-integer off-
the-shelf solvers. Being a relaxation, the optimal value of (P2)
serves as a lower bound for the optimal value of (P1). If a
minimizer of (P2) satisfies (13b) or (13c) with equality for
all (m,n) ∈ P̄a, the relaxation is deemed exact. In this case,
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the minimizer of (P2) coincides with the minimizer of (P1).
Nonetheless, the relaxation is not necessarily exact.

To study the feasible sets of (P1) and (P2), let h collect the
nodal pressures {htm}m,t; vector d the water flows {dtmn}t
for all (m,n) ∈ P; and d̃ has been defined after (P1). Define
the projection of the feasible set of (P1) into (d̃,d,h) as S1,
and the projection of the feasible set of (P2) into (d̃,d,h) as
S2. The next result shows there exists a bijection between S1

[resp. S2] and the feasible set of (P1) [resp. (P2)].

Lemma 1. The s := {d̃,d,h} components of any feasible
point of (P1) and (P2) are sufficient to characterize the
feasible point, modulo some inconsequential variables.

Proof: It will be shown that upon fixing (d̃,d,h), the
remaining variables listed under (P1)–(P2) can be determined,
with only possible ambiguities on the values of inconsequen-
tial variables as detailed below. Given d, the water injections
{dtn}n,t are set by (1). Subsequently, the water levels {`tm}m,t
are set by iterative computation of (8) starting from the known
initial tank level `0m.

The binary variables capturing flow directions in lossy pipes
can be recovered as

xtmn =

⌊
sign(dtmn) + 1

2

⌋
, ∀(m,n) ∈ P̄a, t

where bac denotes the floor function. If dtmn = 0, the value
of xtmn is inconsequential and the aforementioned mapping
sets it to zero. The binary variables pump statuses are set as
xtmn = sign(d̃tmn) for (m,n) ∈ Pa.

The variables governing reservoirs and tanks are set as

αtm = | sign(dtm)|, ∀m ∈Mb (14a)

βtm =

⌊
1− sign(dtm)

2

⌋
, ∀m ∈Mb (14b)

h̃tm = αtmh
t
m, ∀m ∈Mb. (14c)

If tank m is disconnected at time t, then αtm = 0 and the
values of βtm and h̃tm become inconsequential. In that case, the
mapping in (14) sets them to zero without harming feasibility.

Lemma 1 asserts that (P1) and (P2) can be equivalently
expressed only in terms of s := {d̃,d,h}. The remaining
variables have been introduced merely to avoid discontinuous
or non-differentiable functions (e.g., sign or absolute value)
as well as products between continuous and binary variables.
In light of Lemma 1 and with a slight abuse in terminology,
we will henceforth refer to S1 [resp. S2] as the feasible set of
(P1) [resp. (P2)]. Due to the relaxation, it holds S1 ⊆ S2.

When it comes to (P1), a feasible point can be constructed
only by its {d̃,d} components, since a feasible h can be
recovered from {d̃,d} as follows. Given {d̃,d}, the variables
{xtmn, αtm, βtm, dtm, `tm} can be set as in the proof of Lemma 1.
The values of pressure differences across pipes can be found
by (4) and (6a). The next question is how to recover pressures
from pressure differences.

To express pressure differences at time t = 1, . . . , T , let
us define an edge-node incidence matrix depending on the
water flow directions at time t. Define dt as the subvector

of d collecting water flows only at time t. Then, introduce
the P × |M| incidence matrix A(dt) so that if its p-th row
corresponds to pipe p = (m,n), then its (p, k) entry is

Ap,k(dt) :=

 − sign2(dtmn) + sign(dtmn) + 1 , k = m
sign2(dtmn)− sign(dtmn)− 1 , k = n
0 , otherwise.

In this way, vector A(dt)ht captures the pressure differences
taken across the direction of water flows. For zero flows,
the standard pipe direction (m,n) is selected without loss of
generality.

If (ht, d̃t) are the subvectors of (h, d̃) corresponding to
time t, the pressure differences can be expressed as

A(dt)ht = b(d̃t,dt), ∀t (15)

where b(d̃t,dt) is the mapping induced by (4) and (6a). Since
{d̃,d} is feasible for (P1), the overdetermined system in (15)
is consistent. However, its solution is not unique: The all-one
vector 1 belongs to the nullspace of A(dt) by definition, so
if ht satisfies (15), then ht + c1 satisfies (15) too for any c.

Satisfying (15) alone is not sufficient for ht to be feasible
for (P1). It should also satisfy the inequality constraints
(2), (7b), (11a), and (11d). These constraints are abstractly
expressed as

h(d̃,d) ≤ h ≤ h(d̃,d). (16)

Given {d̃,d} for a feasible point of (P1), a feasible pressure
vector h can be found by ensuring (15)–(16). A water utility
would implement h by controlling the pressures at reservoir
valves. The aforesaid procedure proves the following claim.

Lemma 2. Any feasible point of (P1) is characterized by its
{d̃,d} components modulo some inconsequential variables. A
vector of feasible pressures h can be recovered by solving the
linear program (LP)

find h (17)
s.to (15)− (16).

Let H(d̃,d) be the set of vectors h solving the feasibility
problem in (17). Lemma 2 implies that any solution to (17)
provides a feasible point for (P1).

Given Lemma 2, let us see if one can find a feasible point for
(P1) by solving (P2). Consider a minimizer s1 := {d̃1,d1,h1}
of (P1) attaining the cost f1 := f(d̃1). Consider also a
minimizer s2 := {d̃2,d2,h2} of (P2) with f2 := f(d̃2) with
f2 ≤ f1 due to the relaxation. The next cases can be identified
for s2 as illustrated in Figure 2:
C1. If the relaxation is exact, then h2 ∈ H(d̃2,d2); the costs

agree f2 = f1; and s2 can be implemented in lieu of s1.
C2. If the relaxation is inexact, vector h2 satisfies only the

equations in (15) related to pumps, whereas some of the
constraints related to lossy pipes in (13) are satisfied with
strict inequalities. In this case, one may try to recover a
vector of physically feasible pressures by enforcing (15)–
(16). The following subcases are identified.

C2.a. The linear system of (15) is consistent for b(d̃2,d2).
Again, two cases can be identified.
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Fig. 2. Possible cases for the feasibility of a minimizer obtained by (P2).
Problem (P3) converts case C2.a.i to C1. Moreover, under the conditions of
Lemma 3, it also converts case C2.b to C2.a.

C2.a.i. The LP in (17) is feasible for (d̃2,d2) with ȟ2 ∈
H(d̃2,d2). The point š2 := {d̃2,d2, ȟ2} is feasi-
ble for (P1) and attains the cost f̌2 := f(d̃2) = f2.
Because š2 is feasible for (P1), the optimal cost
has been attained, that is f̌2 = f2 = f1.

C2.a.ii. The LP in (17) is infeasible for (d̃2,d2). A feasible
point for (P1) cannot be recovered.

C2.b. The linear system of (15) is inconsistent for b(d̃2,d2).
A feasible point for (P1) cannot be recovered.

Cases C1 and C2.a.i are computationally useful since they
recover an optimal point. On the other hand, cases C2.a.ii and
C2.b, do not provide any useful output. Based on numerical
tests with different WDS networks and under various pric-
ing/demand scenarios, we have empirically observed that:
• Case C1 occurs rarely.
• Case C2.a.i is encountered frequently in radial networks.
• Case C2.b occurs frequently in meshed networks.

Spurred by these observations and to improve the chances for
an exact relaxation of (P1), the next section adds a penalty
term in the objective of (P2). It then studies the feasibility
and optimality of this penalized convex relaxation.

V. PENALIZED CONVEX RELAXATION

Toward an exact relaxation of (P1), define the penalty

g(h) :=

T∑
t=1

∑
(m,n)∈P̄a

|htm − htn| (18)

which sums up the absolute pressure differences across lossy
pipes and over all times. Let us formulate a penalized convex
relaxation by replacing the cost of (P2) by

min f(d̃) + λg(h) (P3)
s.to (1), (2), (6)− (11), (13)

for λ > 0. Sections V-A and V-B next study respectively the
feasibility and optimality of (P3).

A. Improving Feasibility

Although (P2) and (P3) share the same feasible set, this
section shows that (P3) features two advantages over (P2) as
depicted in Figure 2:
a1) Problem (P3) eliminates the occurrence of C2.a-i. The

problem instances falling under C2.a-i with (P2), fall
under the useful case C1 for (P3).

a2) Under some conditions, problem (P3) does not encounter
the unfavorable case C2.b either.

The following result establishes advantage a1) and is shown
in the appendix.

Theorem 1. If s3 := {d̃3,d3,h3} is a minimizer of (P3) and
H(d̃3,d3) is non-empty, then h3 ∈ H(d̃3,d3).

From Theorem 1 and Lemma 2, the next result follows.

Corollary 1. Under the assumptions of Theorem 1, the mini-
mizer s3 := {d̃3,d3,h3} of (P3) is feasible for (P1).

Corollary 1 asserts that if the water flows obtained from
(P3) can be mapped to physically feasible pressures, then
the minimizer of (P3) contains already physically feasible
pressures and this shows advantage a1). In other words, instead
of having to solve (P2) first and then (17) to recover a feasible
OWF schedule, a feasible schedule can be found by solving
(P3) alone.

Before moving to a2), some graph theory preliminaries are
reviewed. Given an undirected graph G := (M,P), its degree
is the number of incident edges. A graph is connected if there
exists a sequence of adjacent edges between any two of its
nodes. A minimal set of edges PT preserving the connectivity
of a connected graph constitutes a spanning tree of G; is
denoted by T := (M,PT ); and apparently, |PT | = |M| − 1.
The edges not belonging to a spanning tree T are referred to as
links with respect to T . A cycle is a sequence of adjacent edges
without repetition that starts and begins at the same node. A
tree is a connected graph with no cycles. In a directed graph,
each edge is assigned a directionality. A path from node m to
n is defined as a sequence of directed edges originating from
m and terminating at n. Given the undirected graph (M,P)
modeling a WDS and the vector dt of flows at time t, let us
define the directed graph (M,P(dt)) where edge p runs from
node m to node n if dtm,n ≥ 0; and vice versa, otherwise.

To show a2), we study the consistency of (15). Had the
WDS graph been a tree, the edge-node incidence matrix would
have been full row-rank [27]. Hence, the equations in (15)
would have been consistent for any b(d̃t,dt). This implies that
possible inconsistencies in (15) arise from cycles in G. Because
studying the generic case of cycles is not obvious, we consider
the special case of a cycle where all but one nodes have degree
two. This subset of edges will be henceforth termed a ring. A
ring can be rooted at the node with degree larger than two. We
provide conditions under which a minimizer of (P3) satisfies
the constraints in (13) with equality for all edges of a ring.

Lemma 3. Let s3 = {d̃3,d3,h3} be a minimizer of (P3) and
dt3 be the subvector of d3 collecting the flows at time t. If
the directed graph (M,P(dt3)) contains a ring R ⊆ P(dt3)
rooted at node m, such that
• all nodes incident to R have identical pressure limit h;
• all nodes incident to R but m host no tanks or reservoirs;
• all edges in R host no pumps;

then hti − htj = cij(d
t
ij)

2 for all directed edges (i, j) in R.

Leveraging Lemma 3, the ensuing result shows the advan-
tage a2) of (P3) over (P2) for a large class of WDS.
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Theorem 2. Let s3 := {d̃3,d3,h3} be a minimizer of (P3)
and (d̃t3,d

t
3) be the subvectors of (d̃3,d3) corresponding to

time t. The system of equations in (15) is consistent for s3 at
time t, if all undirected cycles in (M,P(dt3)) constitute rings
satisfying the conditions of Lemma 3.

To appreciate the claim of Theorem 2, recall that for a point
to be feasible for (P1), it is sufficient to satisfy (15) and (16).
Since A(dt)1 = 0, the next result can be inferred.

Corollary 2. Under the assumptions of Theorem 2, if the left
or right inequality in (16) are omitted, then a minimizer of
(P3) is feasible for (P1).

Corollary 2 asserts that (P3) can be advantageous for coping
with OWF tasks with no upper bounds on pressures; see
also [16]. An important problem complying to this setup is the
water flow (WF) task. Different from OWF, the WF problem
solves the WDS equations over a single period upon specifying
nodal water demands and a reference pressure. In a recent
work [28], we have dealt with the WF task using a similar
penalization, which is shown to yield the unique WF solution
for a broader class of WDS.

B. Optimality

The previous section documented the advantages of (P3)
over (P2) in terms of providing physically feasible OWF
schedules under the conditions of Lemma 3 and Theorem 2.
However, the objective in (P3) differs from the one of (P1): If
a minimizer s3 = {d̃3,d3,h3} of (P3) is feasible for (P1), it
will achieve in general a larger pumping cost than a minimizer
of (P1), that is f(d̃3) ≥ f1. However, this suboptimality gap
diminishes for decreasing λ as explained next. We first review
a general result on bi-objective optimization [29, Sec. 4.7.5]:

Lemma 4 ([29]). Consider the minimization problem

xλ := arg min
x∈X

fa(x) + λfb(x),

for some real valued functions fa(x) and fb(x) defined on X .
If λ2 > λ1 ≥ 0, then fa(xλ2

) ≥ fa(xλ1
).

Identifying functions (fa, fb) of Lemma 4 to functions
(f, h) in the objective of (P3) implies that for decreasing
λ, a minimizer of (P3) gives lower f(d̃3(λ)). However, the
feasibility of s3 for (P1) is not guaranteed. If the conditions
of Lemma 3 and Theorem 2 are met and s3 is feasible for (P1),
then f(d̃3) ≥ f1. Next, for λ = 0, problem (P3) degenerates
to (P2), and gives a lower bound on f1. Overall, we get that

f(d̃2) ≤ f1 ≤ f(d̃3(λ)). (19)

From Theorems 1 and 2, the advantage of the penalty term
g(h) does not depend on the value of λ as long as λ > 0.
So under the conditions of Lemma 3 and Theorem 2, one can
choose arbitrarily small λ to tighten the right-hand inequality
in (19). The caveat behind the bounds of (19) are the con-
ditions assumed by Lemma 3 and Theorem 2. Even though
these conditions were grossly violated during the tests of
Section VI, the inequalities in (19) were frequently tightened
to equalities. Albeit (P2) oftentimes attained the optimal cost

Fig. 3. Benchmark water distribution system. The length for lossy pipes and
head gain for pumps are shown in meters.
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Fig. 4. Per-node water demand across time.

f1, its minimizer was not feasible for (P1). In fact, there is no
obvious way of converting the minimizer of (P2) to a feasible
point. Instead, problem (P3) found a minimizer for (P1) in
most of the tests.

VI. NUMERICAL TESTS

The new OWF solver was evaluated on the benchmark WDS
of [21], [26], which is shown in Figure 3. It consists of 10
nodes including 2 reservoirs and a tank; 3 fixed-speed pumps;
and 7 lossy pipes. All lossy pipes have a diameter of 0.4m and
friction coefficient fm,n = 0.01. The efficiency for all pumps
is 85% and for their motors 95%, resulting in an overall effi-
ciency of η = 0.81. The minimum and maximum water flows
for all pumps are 100m3/hr and 1, 500m3/hr, respectively. The
pressure at reservoir nodes 1 and 2 is accordingly −2.5m and
5m. The minimum pressure requirement hm for nodes 3 to 10
is {10, 7, 12, 10, 5, 10, 10, 10}m. Tank node 10 has an area of
A10 = 490.87m2; water level limits `10 = 10 and `10 = 30m;
and initial water level `010 = 20m.

The WDS was scheduled hourly for a horizon of T = 12
hours for the demands of Figure 4; see [21]. The prices
{πt}12

t=1 were set to the average day-ahead locational marginal
prices during 8:00–20:00 on April 1, 2018 from the PJM mar-
ket, and are shown in Fig. 5. The OWF tests were solved using
the MATLAB-based optimization toolbox YALMIP along with
the mixed-integer solver Gurobi [30], [31]. All tests were run
on a 2.7 GHz, Intel Core i5 computer with 8 GB RAM.

We first checked whether the convex relaxation was ex-
act. A minimizer of (P3) was deemed feasible for (P1) if
|htm − htn| − cmn (dtmn)

2 ≤ 10−4 for all pipes and times. A
minimizer for (P3) was obtained in 8.34 sec for λ = 0.1. The
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Fig. 5. Top: Electric power consumed by pumps during hour t. Pumps (1, 4)
and (2, 5) were turned on during the same hours of lower electricity prices,
whereas pump (3, 7) was not operated. Albeit the two pumps add the same
pressure gain, they exhibit different electricity consumption due to different
water flows. Bottom: Water level in tank node 10 at the end of hour t.

TABLE II
PUMPING COST ATTAINED BY (P3) FOR DIFFERENT λ’S

λ 0 0.01 0.1 1

f(d̃3) 5,699.0 5,699.0 5,699.0 5,704.2

comment lower bound (P2) infeasible feasible feasible

minimizer was in fact feasible for (P1). Figure 5 presents the
power consumed by pumps (top) and the water level in tank 10
(bottom). The pumps run for the hours with the lowest prices
over which tank node 10 is filled, as expected. The tank is
emptied during the hours of higher electricity prices, and its
level is brought to its initial level at the end of the horizon.

The modeling accuracy of the minimizer obtained by (P3)
was also tested against the standard simulation software
EPANET [8].The water injections obtained for the previous
example by our MI-SOCP-based solver were fed into the water
flow solver of EPANET to calculate the related pressures over
the standard network model. The pressures found by the two
models differed only by 0–0.91ft across all nodes and times,
with the median deviation being 0.21ft. These differences
are relatively insignificant considering that the average nodal
pressure is on the order of 35ft.

We next evaluated the effect of λ on the feasibility and
optimality of a minimizer of (P3) with respect to (P1).
We first solved (P2) to obtain a lower bound f(d̃2) on
f1. As a heuristic for setting λ, we computed S :=∑T
t=1

∑
(m,n)∈P̄a

cmn(dtmn)2 from the minimizer of (P2), and
chose λ = 1 so that λS was approximately f(d̃2)/100. For
λ = 1, the minimizer of (P3) was feasible for (P1) and
provided an upper bound for f1. To tighten (19), problem
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Fig. 6. Day-ahead PJM electricity prices [¢/kWh] for March 10–19, 2018.

Fig. 7. EPANET Example Network-2 of a WDS from Cherry Hills, CT [32].

(P3) was solved for decreasing values of λ obtaining the
results of Table II. The minimizer of (P3) for λ = 0.1
was feasible for (P1) and attained the same pumping cost as
f(d̃2). The infeasibility observed for λ = 0.01 is attributed
to the numerical accuracy of the solver, and such cases could
be avoided by increasing λ. Hence, the minimizer of (P3)
constitutes a minimizer for (P1) as well. It is worth stressing
that even though the benchmark WDS of Figure 3 does not
meet the conditions of Lemma 3 and Theorem 2, an exact
relaxation has been achieved.

Similar tests were conducted for the PJM prices between
March 10–19, 2018 during 5:00–17:00 shown in Fig. 6. The
results are summarized in Table III. For all 10 days, problem
(P3) succeeded in finding a feasible point for the values of λ
reported in Table III. Moreover, the upper and lower bounds
f(d̃3) and f(d̃2) were close implying small suboptimality
gaps. It is worth stressing that the relaxation in (P2) was
inexact for all tests. Albeit cost f(d̃2) was equal to f(d̃3)
(and therefore equal to the optimal cost f1 as well) for some
cases, there is no obvious way to obtain an OWF dispatch
from the minimizer of (P2).

The feasibility of a minimizer obtained from (P3) was also
evaluated on the EPANET Example Network-2 representing a
WDS from Cherry Hills, Connecticut [32], which is shown in
Fig. 7. This WDS consists of 40 pipes, 34 demand nodes, one
tank and one pump station. Observe that none of the cycles in
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TABLE III
SUBOPTIMALITY GAP ATTAINED BY FEASIBLE POINTS OBTAINED THROUGH (P3)

Day of March 2018 10 11 12 13 14 15 16 17 18 19
f(d̃2) 6, 968.5 6, 915.0 8, 524.6 8, 404.6 8, 220.5 7, 237.9 7, 206.8 6, 807.4 6, 404.0 7, 206.8

f(d̃3) 7, 042.8 7, 010.9 8, 524.6 8, 404.6 8, 461.8 7, 264.7 7, 206.8 6, 807.4 6, 527.1 7, 206.8
f(d̃3)−f(d̃2)

f(d̃2)
[%] 1.06 1.39 7 · 10−9 3 · 10−7 2.93 0.37 2 · 10−7 7. · 10−4 1.92 2 · 10−7

λ 5 5 0.5 1 10 2 0.2 0.83 6 0.6
Solution time [min:sec] 00 : 07 21 : 00 00 : 09 00 : 06 22 : 19 00 : 29 00 : 10 00 : 51 20 : 50 00 : 18
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Fig. 8. Maximum errors in nodal pressures and pipeline flows in the minimizer
of (P3) obtained for the WDS of Fig. 7.

this WDS satisfy the assumptions of Lemma 3. We modified
the network by representing the pump station as a reservoir
with pressure 100ft connected to a fixed-speed pump with a
head gain of 100 ft. Assuming all nodes to be at the same
reference elevation, the minimum pressure requirement for all
nodes was set to 90ft. The pipe friction coefficients cmn’s, tank
dimensions and the base nodal demands dm’s were derived
from the related EPANET file.

To empirically evaluate the feasibility of a minimizer of
(P3), we generated 100 triplets of hourly nodal demands
upon scaling the base demand by an independent uniform
random variable within [0, 1]. These hourly demands were
used to solve 100 instances of the OWF problem on a
horizon of T = 3 hours with λ = 10. The maximum
value of |htm − htn| − cmn(dtmn)2 for all pipes and times
was recorded for all 100 instances. These values were found
to lie within [8 · 10−5, 0.56] with their median at 0.017. To
further understand the physical feasibility of the obtained
minimizers, the nodal demands, tank injections, pump status,
and reservoir pressures were used to solve a water flow (WF)
problem to find the resulting nodal pressures and pipeline
flows. A constrained energy function minimization-based WF
solver was used from [28]. The true pipeline flows and nodal
pressures obtained from the WF solver were then compared
to the corresponding values from the minimizers of (P3) to
quantify the error. The ranked maximum absolute differences
in nodal pressures and pipeline flows for the 100 problem
instances are shown in Fig. 8. Considering that the nodal
pressures are around 90− 190ft and network demands are in
the order of 200 GPM, the feasibility gap for a minimizer
of (P3) is small for a large number of problem instances.
Specifically, in 90% of the instances, the maximum error in
computed pressures was less than 0.04ft, while the maximum
error in computed flows was less than 10.3 GPM.

Fig. 9. A simple WDS for which the relaxation is inexact.

TABLE IV
INEXACT RELAXATION FOR THE WDS OF FIG. 9
Variable (P3) OWF in [16] (P1)
h1 10 10 22
h2 5 5 6
h3 6 6 6
h4 5 5 6
h5 5 5 6
d13 2 2 4
d34 0 0 2
d24 2 2 0
d45 2 2 2

comment inexact inexact optimal

On the computational side, the running times for the 100
OWF instances lied in the range of [7.5, 39.1]sec, with their
median at 39sec. The time horizon was limited to T = 3 to
reduce the running time and focus on the feasibility of (P3).
Observe that MI-SOCP problems are hard in general, their
computational complexity is not polynomial with respect to
the number of variables and constraints, and it may change
significantly across problem instances.

Finally, to provide an example of inexact relaxation, we built
the WDS of Figure 9. Problem (P3) and the OWF scheme
of [16] were solved on this WDS for minimum pressures at
nodes 3, 4, and 5, set to 6, 0, and 0. This setup features a
unique feasible point: Since all edges but (1, 3) are lossless,
nodes 2−5 must have equal pressures. Because h3 = 6m, the
second reservoir with h̄2 = 5m cannot supply water, the entire
demand must be fulfilled by reservoir 1. This feasible point is
shown in Table IV, along with the minimizers of (P3) and [16].
Both relaxed schemes yielded an infeasible point for (P1). The
solver of [16] was not tested on the 10-node WDS earlier
because it presumes: i) variable-speed pumps with speeds that
can reach zero; and ii) that once a solution (d̃,d) is found, a
feasible pressure h can always be obtained.

VII. CONCLUSIONS

To cater a more adaptive WDS operation, optimal pump
scheduling has been formulated here as an OWF task. Dif-
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ferent from existing formulations, the developed OWF model
includes critical pressure constraints capturing the operation
of tanks, reservoirs, pipes, and valves. The original mixed-
integer non-convex problem has been modified to a mixed-
integer second-order cone program over a relaxed feasible set.
Moreover, its objective is augmented by a judiciously designed
penalty term, so that under specific conditions, this modified
problem formulated as an MI-SOCP can recover minimizers of
the original problem. Numerical tests validate that by properly
tuning the penalization parameter λ, the modified problem
solves the original OWF over different scenarios of water
demand and electricity pricing.

Off-the-shelf MI-SOCP solvers have improved significantly
over the last years, yet MI-SOCP’s bear no computational
complexity guarantees. Although a related MI-SOCP-based
solver we have developed in [28] for the water flow problem
scales well with the network size, that is not always the
case here for (P3). The running time of (P3) depends on
water demands, electricity prices, and the values of M ’s
involved in the big-M constraints. To accelerate (P3), future
research could pursue two directions. First, one could exploit
the temporal dynamics of OWF. Water system decisions are
coupled across time only through the tank operation of (8).
Therefore, one could select tank levels {`tm}m∈Mb

as the
system states; discretize their values based on the desired
approximation/complexity trade-off; and handle (P3) using
approximate dynamic programing. Secondly, based on prior
experience, the WDS operator may be able to fix some of the
binary variables capturing the flow directions on pipes and the
operating statuses of pumps/reservoirs, to prespecified values.

Other pertinent research directions include generalizing our
OWF formulation towards scheduling variable-speed pumps
and/or incorporating stochasticity in water demands and elec-
tricity prices. Finally, the developed framework could be
readily used for jointly scheduling WDS and electric power
distribution networks to realize the vision for smart cities.

APPENDIX

Proof of Theorem 1: Being a minimizer, s̃3 is also
feasible for (P3). A feasible point of (P3) satisfies only those
equations in (15) related to pumps. The equality constraints in
(15) corresponding to lossy pipes are replaced by one-sided
linear inequality constraints in (P3). To express these facts in a
matrix-vector notation, partition A(dt) into submatrix Ap(d

t)
having the rows of A(dt) related to pumps; and submatrix
Al(d

t) having the rows related to lossy pipes. The rows of
A(dt) can be permuted without loss of generality so that

A(dt) =

[
Ap(d

t)
Al(d

t)

]
. (20)

Likewise, the mapping b(d̃t,dt) in (15) can be partitioned
into bp(d̃

t) and bl(d
t). A vector h is feasible for the relaxed

problem (P3) if instead of (15), it satisfies

Ap(d
t)ht = bp(d̃

t), ∀t (21a)
Al(d

t)ht ≥ bl(d
t) ≥ 0, ∀t. (21b)

Granted H(d̃3,d3) is non-empty by hypothesis, there exists
an ȟ3 ∈ H(d̃3,d3) so that š3 := {d̃3,d3, ȟ3} satisfies
(15)–(16). Because š3 satisfies (15), it satisfies the constraints
(21b) with equality. Thus, vector š3 is feasible for (P3).
Moreover, the cost of (P3) for š3 is f(d̃3) + λg(ȟ3) =
f3 + λ

∑T
t=1 ‖Al(d

t
3)ȟt3‖1, where f3 := f(d̃3), and ȟt3 and

dt3 are accordingly the subvectors of ȟ3 and d3 collecting the
entries corresponding to time t. Since š3 satisfies (21b) with
equality, the cost becomes f3 + λ

∑T
t=1 ‖bl(dt3)‖1.

Proving by contradiction, suppose h3 /∈ H(d̃3,d3). This
implies h3 does not satisfy the left-hand side of (21b) with
equality. Instead, there exists a sequence of εt ≥ 0, such that
Al(d

t
3)ht3 = bl(d

t
3)+εt for all t and

∑T
t=1 ε

t 6= 0. Evaluating
the objective of (P3) for the minimizer s3 yields

f(d̃3) + λg(h̃3) = f3 + λ

T∑
t=1

‖Al(d
t
3)ht3‖

= f3 + λ

T∑
t=1

(
‖btl(dt3)‖1 + ‖εt‖1

)
> f3 + λ

T∑
t=1

‖btl(dt3)‖1

where the second equality stems from bl(d
t) ≥ 0 and εt ≥ 0

for all t; and the strict inequality holds because λ > 0 and∑T
t=1 ε

t 6= 0. This inequality contradicts the optimality of s3,
and nullifies the hypothesis that h3 /∈ H(d̃3,d3).

Proof of Lemma 3: Since this proof refers to a particular
time, the superscript t is omitted for simplicity. Given a point
{d̃,d,h}, an edge will be termed (in)exact if constraint (13)
is satisfied with (in)equality for that point. Since all nodes
incident to R excluding m host no tanks or reservoirs, they
must have non-positive injections. Therefore, its two incident
edges cannot both have outgoing water flows from (1). This
implies that the ring can either consist of two parallel paths,
or a directed cycle. In the latter case, adding the constraints
hi − hj ≥ cij(dij)

2 around R would give
∑

(i,j)∈R cijd
2
ij ≤

hm−hm = 0, implying dij = 0 for all edges in R, which is a
contradiction. Thus, the ring R consists of two parallel paths
from m to some node n, henceforth termed P1 and P2.

The rest of the proof proceeds in two steps. The first step
shows there exists a minimizer of (P3) with at most one inexact
edge in R. The second step reduces the number to none.

For the first step, we will modify the pressure vector in s3

to construct ŝ3 := {d̃3,d3, ĥ3} for which there exists at most
one inexact edge in R. The new point ŝ3 is feasible for (P3)
and attains smaller or equal cost than s3. To do so, for each
node k incident to R excluding m and n, assign the pressure
consistent with (3) along the path Pmk from m to k:

ĥk := hm −
∑

(i,j)∈Pmk

cijd
2
ij ≥ hk ≥ h

where the first inequality stems from summing up the con-
straints hi − hj ≥ cijd

2
ij for all edges (i, j) along Pmk, and

guarantees that ĥk is feasible.
For the terminal node n, assign the pressure

ĥn := min
l∈{1,2}

{
hm −

∑
(i,j)∈Pl

cijd
2
ij

}
. (22)
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Adding the constraints hi − hj ≥ cijd2
ij for all edges (i, j) in

Pl and P2 separately, yields

hm − hn ≥
∑

(i,j)∈Pl

cijd
2
ij , l ∈ {1, 2}. (23)

Hence, we get that

hn ≤ min
l∈{1,2}

{
hm −

∑
(i,j)∈Pl

cijd
2
ij

}
= ĥn (24)

implying ĥn ≥ hn ≥ h.
Since the pressures on the nodes within R have been

increased and they are not upper bounded in the absence of
tanks or reservoirs, the point ŝ3 is feasible. The difference in
the objective of (P3) attained by s3 and ŝ3 is

f(d̃3) + λg(h3)− f(d̃3)− λg(ĥ3)

= λ
∑

(i,j)∈R

(
|hi − hj | − |ĥi − ĥj |

)
.

Since all directed edges in P1 and P2 have positive flows∑
(i,j)∈R

|hi − hj | =
∑

(i,j)∈P1

(hi − hj) +
∑

(i,j)∈P2

(hi − hj)

= 2(hm − hn).

Applying the same argument for ĥ3, it follows that

f(d̃3)+λg(h3)−f(d̃3)−λg(ĥ3) = 2λ(ĥn−hn) ≥ 0. (25)

If for s3 there exist inexact edges in both P1 and P2, then
(23) holds with strict inequality for both paths. It follows from
(24) that ĥn > hn, and so ŝ3 contradicts the optimality of s3.
This proves that all inexact edges inR must belong exclusively
to P1 or P2. In the latter case, the inequality in (24) holds with
equality, and from (25) the point ŝ3 becomes a minimizer of
(P3). Note ŝ3 has at most one inexact edge in R, and that is
the last edge in P1 or P2.

For the second step of this proof and proving by contra-
diction, suppose there exist exactly one inexact edge for the
minimizer s3 in P1. That means that (23) holds with inequality
for l = 1, and equality for l = 2, implying∑

(i,j)∈P1

cijd
2
ij <

∑
(i,j)∈P2

cijd
2
ij . (26)

From d3, construct a water flow vector ď3 with entries

ďij =

 dij + ε , (i, j) ∈ P1

dij − ε , (i, j) ∈ P2

dij , (i, j) ∈ P \ (P1 ∪ P2)
(27)

for some ε > 0. This redistribution of flows satisfies (1).
Moreover, for increasing ε, the LHS of (26) increases and
the RHS decreases. This is because cijd

2
ij is an increasing

function for positive dij . The goal is to select ε, so that∑
(i,j)∈P1

cij ď
2
ij =

∑
(i,j)∈P2

cij ď
2
ij <

∑
(i,j)∈P2

cijd
2
ij . (28)

While increasing ε to achieve (28), some of the {ďij}(i,j)∈P2

may become negative. This case is ignored for now.

Construct next a new pressure vector ȟ3 by changing the
entries of h3 corresponding to the non-root nodes in R as

ȟk := hm −
∑

(i,j)∈Pmk

cij ď
2
ij . (29)

For k = n, the sum in the RHS of (29) can be evaluated
over P1 or P2, since these two sums are equal from (28). The
constructed pressures for nodes incident to R satisfy

ȟk ≥ ȟn > hn ≥ h. (30)

The first inequality holds because node n has the largest value
for the sum in (29); and the second inequality because

ȟn = hm −
∑

(i,j)∈P2

cij ď
2
ij > hm −

∑
(i,j)∈P2

cijd
2
ij = hn.

The inequalities in (30) prove that ȟ3, and hence the point
š3 := {d̃3, ď3, ȟ3} is feasible for (P3). The difference in the
objective of (P3) attained by s3 and š3 is

f(d̃3) + λg(h3)− f(d̃3)− λg(ȟ3) = 2λ(ȟn − hn) > 0

which contradicts the optimality of s3.
Since all water injections at non-root nodes over R are non-

positive, the water flows are non-increasing along P2. This
implies that dij ≥ dn1,n for all (i, j) ∈ P2, where (n1, n) is
the last edge of P2. Thus, by increasing ε, the flow dn1,n may
become negative. In that case, the edge (n1, n) is removed
from P2 and appended to P1, forming a new pair of parallel
paths with n1 as the new terminal node. The second step of
this proof can be repeated on the new parallel paths.

Proof of Theorem 2: Let T := (M,PT ) be a spanning
tree of (M,P(dt3)). Reorder the equations in (15) as[

AT (dt3)
AT̄ (dt3)

]
ht =

[
bT (d̃t3,d

t
3)

bT̄ (d̃t3,d
t
3)

]
(31)

where AT (dt3) and bT (d̃t3,d
t
3) are the rows of A(dt3) and

b(d̃t3,d
t
3) corresponding to the edges in PT ; and AT̄ (dt3) and

bT̄ (d̃t3,d
t
3) the rows corresponding to the edges in P \ PT .

Being an edge-node incidence matrix for a tree, ma-
trix AT (dt3) is full row-rank [27], and hence the system
AT (dt3)ht = bT (d̃t3,d

t
3) is consistent. The rows of AT̄ (dt3)

correspond to the links defined by T . By the hypothesis, every
undirected cycle in (M,P(dt3)) is a ring. Then, all but one
of its edges belong to T , and the remaining edge belongs to
T̄ . In fact, every edge in T̄ must belong to a ring. Since by
the conditions of Lemma 3, no pumps are allowed on a ring,
every equation in the bottom part of (31) corresponds to a
lossy pipeline (k, l) and will be of the form htk−htl = ckld

2
kl.

Since we refer to time t, the superscript t is omitted to
unclutter notation. Consider link (k, l) ∈ T̄ that belongs to
the pair of parallel paths P1 and P2 with origin node m and
destination n. Without loss of generality, let also (k, l) ∈ P1.
From Lemma 3, it holds that hi − hj = cijd

2
ij for all (i, j) ∈

P1 ∪P2. Summing these constraints along P1 and P2 yields∑
(i,j)∈P1

(hi − hj) =
∑

(i,j)∈P1

cijd
2
ij = hm − hn (32a)

∑
(i,j)∈P2

(hi − hj) =
∑

(i,j)∈P2

cijd
2
ij = hm − hn (32b)
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so that (32a) equals (32b). Separating the contribution of
edge (k, l) from P1 in the leftmost and central parts of (32a)
provides

hk − hl =
∑

(i,j)∈P2

(hi − hj)−
∑

(i,j)∈P1\(k,l)

(hi − hj) (33a)

ckld
2
kl =

∑
(i,j)∈P2

cijd
2
ij −

∑
(i,j)∈P1\(k,l)

cijd
2
ij . (33b)

Note that the pressure drop equations along for all edges
(i, j) ∈ P1 ∪ P2 \ (k, l) are rows in the system AT (dt3)ht =
bT (d̃t3,d

t
3). From (33), the pressure drop equation corre-

sponding to edge (k, l) ∈ T̄ has been expressed as a linear
combination of the rows of AT (d3)h = bT (d̃3,d3). The
argument holds for all equations in the bottom part of (31),
thus making the overall system in (15) consistent.
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