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Estimating the Frequency Coupling Matrix from

Network Measurements
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Abstract—Power converters are present in increasing numbers
in the electric power grid. They are a major source of harmonic
currents and voltages, which can reduce power quality and trip
protection devices. The frequency coupling matrix (FCM) is
a general technique for modeling converter harmonics. It can
be obtained through experimental characterization or, given a
converter’s internal parameters, direct calculation. In this paper,
we estimate FCMs from network measurements. We give a novel
harmonic reduction theorem for computing equivalent, virtual
FCMs for unobservable portions of a network. We estimate FCMs
and harmonic line admittances from PMU measurements, and
give an efficient online version for the FCM problem. We test our
approaches on a numerical example, and show that the estimation
error is low under noisy observations.

Index Terms—estimation, frequency coupling matrix, harmon-
ics, power systems

I. INTRODUCTION

POWER-ELECTRONIC converters are required to inte-

grate renewables like photovoltaics and wind turbines into

the grid [1]–[3]. Converters approximate sinusoidal signals

with switched signals, which introduces harmonics into the

power system [1], [4]. Harmonics have a number of undesir-

able consequences, including reduced power quality, increased

losses, and vibration in mechanical equipment [1], [5]–[7].

Harmonics are difficult to model accurately because they

are the result of numerous non-idealities. The frequency cou-

pling matrix (FCM) is a powerful technique for modeling

converter harmonics because it can be computed directly from

converter parameters [8]–[11], or empirically from laboratory

measurements [12]–[14]. In this paper, we extend the empirical

approach to the network setting.

In this work, we formulate least squares problems for

estimating the FCM and harmonic line admittances from

phasor measurement units (PMUs). We give a novel network

reduction theorem for representing unobservable portions of

the network with an equivalent virtual FCM. This information

can be used in several applications such as power flow analysis

and for the placement of fault protection devices [15]. It can

also facilitate the control of harmonic injected in the network,

for example, by incorporating harmonics in optimal power

flow [16].
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We now review the relevant literature. A number of authors

have computed the FCM using the converter’s modulation

characteristics [8], [17]–[20]. These approaches have a limited

reach for network estimation as they cannot be used with-

out exact knowledge of the converters’ internal parameters.

In [11], an analytical calculation of the FCM is given for

converters in steady state. References [12]–[14] describe a

method for obtaining the FCM of an individual converter

experimentally and with no knowledge of internal parameters.

This experimental approach is accurate, but requires offline

measurements prior to the installation of the power converter.

It also falls short when the FCM changes through time due to

modifications in its operational parameters like the switching

times or input dc current.

Several approaches have been proposed to compute the line

admittance matrix of a network. In [21], the admittance matrix

is determined experimentally from known subnetwork models

such as transmission lines, transformers and step-voltage reg-

ulators. In [22], the fundamental frequency admittance matrix

is estimated using least squares. They also consider topology

identification. We extend the least squares estimation portion

of [22] to include harmonic frequencies as well.

In this paper, we estimate the FCM and line admittances

from PMU measurements. Signal processing tools such as the

fast Fourier transform can be used to decompose the voltage

and current measurements into fundamental and harmonic

phasors [23]–[25]. The maximum harmonic order K depends

on the sampling rate of the PMU. Given the standard 48

samples per cycle PMU, harmonic phasors up to K = 24
can be computed for a fundamental frequency of 60 Hz.

The sampling rate of more recent PMUs is as high as 128

samples per cycle [26], enabling harmonic analysis up to

K = 64. According to Standard C37.118-2005, a PMU should

be able to transmit at a rate between 10 Hz and half its

nominal frequency [27]. This would provide an adequate flow

of measurements to estimate the FCM in real-time.

Our contributions are the following:

• We give a network reduction theorem, which enables us

to represent unobservable portions of the network with

an equivalent, virtual FCM;

• We formulate a least squares problem for estimating

harmonic line admittances from network measurements;

• We formulate a least squares problem for estimating

FCMs from network measurements;

• We give an efficient online algorithm for cases in which

the FCM is time-varying;
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• We validate the reduction theorem and solve the least

squares estimation problems in a numerical example.

II. NOTATION & BACKGROUND

A. Harmonic network

We consider a three-phase network and model harmonic

frequencies up to the K th order. We denote the set of nodes of

the network by N = {1, 2, . . . , N} and the set of transmission

lines by M ⊆ N ×N .

Let ikn,t ∈ C and vk
n,t ∈ C be the harmonic current and

voltage for the kth harmonic at node n ∈ N and time t.
For a node n with a power converter, ikn,t and vk

n,t represent

the current and voltage on the grid side of the converter. Let

ikn,t,dc ∈ C and vk
n,t,dc ∈ C be the kth harmonic current and

voltage on the dc side of the converter. Let zkn,m ∈ C and

yk
n,m ∈ C denote the impedance and admittance at harmonic

frequency k between node n and m for (n,m) ∈ M. We

denote individual phases by appending (a), (b) or (c) to a

variable or parameter.

B. Line Admittance

At frequency k, phase a and time t, we have

ikbus,t(a) = Yk
line(a)v

k
bus,t(a).

Combining the three phases we obtain

ikbus,t = Yk
linev

k
bus,t,

where Yk
line = blockdiag

(
Yk

line(p), p = a, b, c
)
, ikbus,t =

(
ikbus,t(a) ikbus,t(b) ikbus,t(c)

)⊤
and similarly for vk

bus,t.

Let u = 3N(K + 1). Define the block diagonal harmonic

admittance matrix YH ∈ Cu×u as:

YH = blockdiag
(
Y0

line,Y
1
line,Y

2
line, . . . ,Y

K
line

)
.

We can then write



i0bus,t

i1bus,t

i2bus,t
...

iKbus,t




= YH




v0
bus,t

v1
bus,t

v2
bus,t
...

vK
bus,t




. (1)

We write (1) in short form as:

ibus,t = YHvbus,t.

Note that the off-diagonal terms in YH are neglected due to

the weak linkage between different harmonics in the lines.

C. Frequency coupling matrix

The frequency coupling matrix models the harmonics gen-

erated by power converters [8], [10], [11], [17]. We use the

formulation of [11]. At a power converter, the FCM, F̃ relates

the harmonic currents and voltages as



iH(a)
iH(b)
iH(c)
vH

dc


 = F̃




vH(a)
vH(b)
vH(c)
iHdc


 , (2)

where

iH =
(
i−K i−K+1 . . . i−1 i0 i1 . . . iK−1 iK

)⊤
,

vH =
(
v−K v−K+1 . . . v−1 v0 v1 . . . vK−1 vK

)⊤
.

Note that, due to the definition of phasors, i−k and v−k are

the complex conjugates of ik and vk .

Our objective is to estimate the FCM in order to model the

harmonics injected in the network by the converter. Hence,

we drop the dc voltage in the left-hand side of (2), which

is typically very tightly regulated. Furthermore, we neglect all

harmonic currents on the dc side of the converter because they

are typically very small in magnitude [11], [13], [16]. These

assumptions lead to



iH(a)
iH(b)
iH(c)


 = F̂




vH(a)
vH(b)
vH(c)
i0dc


 , (3)

where F̂ is the matrix F̃ with the appropriate rows and

columns removed. Without loss of generality, we rewrite (3) as

a real-valued equation using the transformation detailed in [11,

Appendix D], leading to




Re
(
i0(a)

)

Im
(
i0(a)

)

Re
(
i1(a)

)

Im
(
i1(a)

)

...

Re
(
iK(a)

)

Im
(
iK(a)

)

Re
(
i0(b)

)

Im
(
i0(b)

)

...

Re
(
iK(c)

)

Im
(
iK(c)

)




= F




Re
(
v0(a)

)

Im
(
v0(a)

)

Re
(
v1(a)

)

Im
(
v1(a)

)

...

Re
(
vK(a)

)

Im
(
vK(a)

)

Re
(
v0(b)

)

Im
(
v0(b)

)

...

Re
(
vK(c)

)

Im
(
vK(c)

)

i0dc




. (4)

We write (4) in condensed form by

i = Fv, (5)

where i, v and F are real-valued. Observe that the last entry

of the vector v is i0dc, a real-valued current.

Also, note that vk
dc for k = 0, 1, . . . ,K can be included

in (5) if this quantity is of interest. In this case, all of the

following sections except III apply.

D. Observability

A network is observable if the available measurements

allow the computation of a unique voltage phasor at every

node [28], [29]. An observable island is a portion of the

network that is fully observable, and a node is observable if

its voltage phasor can be uniquely estimated. The definitions

extend straightforwardly to our setting due to the linearity of

the lines. See [28, Chapter 4] for methods to determine the

observability of a network.
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III. NETWORK REDUCTION

We now present a result that allows us to model the

harmonics of an arbitrary subtree with a single, virtual FCM.

This is useful when portions of a network are unobservable,

e.g., due to lack of PMUs. Let FS be the virtual FCM for a

subtree S. If no converters are part of the tree, the dc current

is zero and the FCM FS is the equivalent load admittance

matrix of the tree as no coupling between frequencies occur.

The results of this section enable us to compute the FS using

only current and voltage measurements at the root of S.

Before stating our results, we give a few definitions. For

any voltage and dc current vector v, we define v ∈ R6(K+1)

such that

v =

(
v

i0dc

)
. (6)

Similarly, we define F ∈ R6(K+1)×6(K+1) and f ∈ R6(K+1)

such that

F =
(
F f

)
. (7)

Let Ẑn,m ∈ C3(2K+1)×3(2K+1) be a diagonal matrix of the

impedances between two adjacent nodes n,m ∈ N for all

harmonic frequencies k = −K,−K + 1, . . . ,−1, 0, 1, . . . ,K
and phases a, b and c. Let Zn,m ∈ R

6(K+1)×6(K+1) be

the real-valued impedance matrix obtained by applying [11,

Appendix D] to Ẑn,m.

Theorem 1. Let S be a tree of maximum depth one. Let s
be the root node and S∗ = S\{s} be the leaf nodes. Let P
be the set of converters connected to s. Suppose there is a

power converter at each node n ∈ S∗ with FCM Fn. Assume

Ms,n = Zs,nFn + I is invertible for all n ∈ S∗. Then there

exists an FCM for S, FS , such that is = FSvs for any feasible

voltage and current at s. The FCM FS is fully determined by

the line impedances, FCMs, and dc currents in the subtree S.

Proof: Suppose that is and vs are the voltage and current

at the root node, s. We show by construction that there exists

a unique matrix FS such that is = FSvs.

Evaluating Kirchhoff’s current law at node s gives

is =
∑

p∈P

ip +
∑

n∈S∗

in. (8)

For all p ∈ P and n ∈ S∗, substituting (5) in (8) gives

is =
∑

p∈P

Fpvp +
∑

n∈S∗

Fnvn. (9)

We now use the definitions (6) and (7) in (9). The voltage

vp = vs for all p ∈ P because they are at the same bus. We

re-express the first sum of the right-hand side as

is =
∑

p∈P

(
Fp fp

)( vs

i0dc,p

)
+
∑

n∈S∗

Fnvn

=
∑

p∈P

Fp

︸ ︷︷ ︸
FP

vs +
∑

p∈P

fpi
0
dc,p

︸ ︷︷ ︸
fP

+
∑

n∈S∗

Fnvn

= FPvs + fP +
∑

n∈S∗

Fnvn. (10)

We use Ohm’s Law to relate the voltage at s with the voltage

at the leaf nodes. For n ∈ S∗, we have

vs − vn = Zs,nin.

Using (5) for all n ∈ S∗ leads to

vs = Zs,nFnvn + vn

= Zs,nFn

(
vn

i0n,dc

)
+ vn

= Zs,n

(
Fnvn + fni

0
n,dc

)
+ vn.

Rearranging the terms, we have

vs =
(
Zs,nFn + I

)
vn + Zs,nfni

0
n,dc.

Now recall that Ms,n = Zs,nFn+ I. By assumption, Ms,n is

invertible. Solving for vn, we have

vn = M−1
s,n

(
vs − Zs,nfni

0
n,dc

)
. (11)

Let ℓ be the last term of the right-hand side of (10). We first

re-express ℓ in term of vn, and then substitute it into (11). We

have

ℓ =
∑

n∈S∗

Fn

(
vn

i0n,dc

)

=
∑

n∈S∗

Fn

(
M−1

s,n

(
vs − Zs,nfni

0
dc,n

)

i0n,dc

)

=
∑

n∈S∗

(
Fn fn

)(M−1
s,nvs −M−1

s,nZs,nfni
0
n,dc

i0n,dc

)

=
∑

n∈S∗

FnM
−1
s,nvs − FnM

−1
s,nZs,nfni

0
n,dc + fni

0
n,dc

=
∑

n∈S∗

(
fn − FnM

−1
s,nZs,nfn

)
i0n,dc + FnM

−1
s,nvs. (12)

Define

f̂S =
∑

n∈S∗

(
fn − FnM

−1
s,nZs,nfn

)
i0n,dc,

F̂S =
∑

n∈S∗

FnM
−1
s,n.

We can then write (12) as

ℓ = F̂Svs + f̂S .

Substituting ℓ into (10), we obtain

is = FPvs + fP + F̂Svs + f̂S

is =
(
FP + F̂S fP + f̂S

)

︸ ︷︷ ︸
FS

(
vs

1

)

= FSvs.

where vs = (vs 1)
⊤

. This establishes the existence of the

matrix FS . Observe that because we assume that Ms,n is full

rank for all n ∈ S∗, FS is uniquely determined by the above

construction.

Note that if several power converters are connected to n ∈
S∗, then Theorem 1 can be first applied with n as the root
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1 2

3 4

a

S

(a) Full tree with subtree S

1 S

a

(b) Equivalent reduced tree

Fig. 1. Network reduction (gray: nodes with power converters, white: node
with an equivalent FCM, black: regular nodes)

node and S∗ = ∅ to obtain an equivalent FCM for a single,

virtual converter. Also note that there is no physical quantity

for the dc current of the virtual FCM. For this reason, we set

the resulting mathematical quantity, i.e., the last element of

vS , to one. The next result generalizes Theorem 1 for trees of

depth greater than one.

Corollary 1 (General tree). Let T be a tree with power

converters at each node n ∈ T . Assuming that Mm,n is

invertible for any pair of adjacent nodes m,n ∈ T , then there

exists an equivalent, virtual FCM FT for the tree T and it is

unique.

Proof: We prove this corollary by iteratively applying

Theorem 1. Let Tr be the reduced tree after Steps 1 and 2

have been applied r times and let Lr ⊆ Tr be the set of leaf

nodes of Tr. Let Pn be the set of power converters connected

to node n and Sn be the subtree with root node n. We obtain

FT via the following steps.

1) For each l ∈ Lr such that card (Pl) > 1, apply

Theorem 1 with s = ℓ and S∗
n = ∅. This ensures that

all leaf nodes are associated with a single FCM.

2) For all subtrees Sn of depth 1 comprised only of nodes

l ∈ Lr and a parent node n, apply Theorem 1.

3) Update Tr and Lr.

Repeating Steps 1-3 will eventually reduce the network to a

single node described by a single, virtual FCM, which we

denote FT .

Note that the FCM of a node without a converter is

equivalent to the node’s load admittance matrix, appropriately

formatted to match our notation.

A visual representation of the network reduction process

is shown in Figure 1. Given the FCMs and impedances of all

components in subtree S in Figure 1a, Theorem 1 enables us to

compute an equivalent, virtual FCM, FS , shown in Figure 1b.

Theorem 1 could then be applied a second time on the reduced

tree to calculate the equivalent FCM for the entire tree.

This result also enables us to estimate unobservable portions

of a network. Suppose that the only measurements available

for subtree S in Figure 1a are the voltage and current at node 2.

One can then formulate an estimation problem for the virtual

FCM, FS . If there are enough measurements to guarantee a

unique solution to the estimation problem, then Theorem 1

guarantees that the result will be the unique, physically correct

virtual FCM for subtree S.

IV. LINE ADMITTANCE ESTIMATION

In this section, we formulate a least squares estimation

problem for the line admittances. We assume that we have

access to direct measurement at all nodes of the network [22]

and that we have access to sufficient measurement data from

PMUs. The harmonic admittance matrix estimation problem

takes the following form:

min
YH∈Ru×u

T∑

t=1

‖ibus,t −YHvbus,t‖
2
F . (13)

Let Inetwork ∈ C
u×T and Vnetwork ∈ C

u×T be the voltage and

current measurement for all nodes, harmonics, and times. The

estimation problem (13) can be rewritten equivalently as

min
YH∈Ru×u

‖Inetwork −YHVnetwork‖
2
F , (14)

where ‖ · ‖F denotes the Frobenius norm. The admittance

matrix is highly sparse due to the topology of the power

network. It is also by definition a symmetric matrix. Thus,

we can reduce the number of unknown parameters in (14) by

following the approach of [22]. This is done by taking the

lower triangular part of YH and then transforming it into a

vector.

First, define the mapping f : Cu×u 7→ Cu(u+1)/2 which

takes the lower triangular element of its input matrix and

returns it as a vector. Second, define QYH
∈ {0, 1}u

2
×u(u+1)/2

such that vec (YH) = QYH
f(YH) [22]. The estimation prob-

lem can be re-written as,

min
x∈Ru(u+1)/2

∥∥vec (Inetwork)−
(
V⊤

network ⊗ Iu

)
QYH

x
∥∥2 ,

where vec (·) is the vectorization operator, ⊗ is the Kronecker

product and Iu ∈ Ru×u is the identity matrix.

In [22], the goal is also to identify the topology of the

network. Here we instead estimate the harmonic admittances

assuming full knowledge of the topology. Let s = 3(K +
1)(N + 1

2 cardM) be the number of unknown network pa-

rameters. Define a second mapping g : Cu×u 7→ Cs which,

similar to f , takes the lower triangular matrix of its input and

returns it as a vector without the zero entries corresponding

to pairs (i, j) /∈ M.

Let T ∈ {0, 1}u
2
×s be defined such that f(YH) =

Tg(YH). The information about the topology of the network

is preserved by using T as it encodes the location of the sparse

entries of the harmonic admittance matrix. It thus permits to

retrieve the original symmetric matrix from the output of g.

The matrix T is obtained by inserting a row of zeros at row

numbers corresponding to sparse entry of f(YH) to the u2×u2

identity matrix. The original admittance matrix is then given

by f−1 (Tg (YH)).
Using T and g, we constrain the entries of the harmonic

admittance matrix corresponding to coordinates (i, j) /∈ M to

be zero, reducing the number of unknowns in the estimation

problem. The final harmonic admittance estimation problem

takes the following form:

min
y∈Rs

∥∥vec (Inetwork)−
(
V⊤

network ⊗ Iu

)
QYH

Ty
∥∥2 .
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The estimated harmonic admittance parameters, yest , are given

by

yest =
(
X⊤X

)−1
X⊤ vec (Inetwork) ,

where X =
(
V⊤

network ⊗ Iu

)
QYH

T. Lastly, the harmonic

admittance matrix is given by YH = f−1 (Tyest).
The problem has s unknowns and u equations. Each sample

contains the information for the 3 phases and K + 1 fre-

quencies. Thus, if T ≥ 1
2 cardM then the problem is fully

determined and the harmonic admittance matrix can be directly

estimated in a noiseless setting.

V. FCM ESTIMATION

We estimate the FCM using least squares. We consider a

single converter, npc ∈ N , because the multiple converter

case decouples into a collection of single converter problems.

We assume that the node npc is observable. We use harmonic

current and voltage measurements to compute the estimate.

Let p = 6(K + 1) and q = 6(K + 1) + 1, the dimensions of

the measured vectors ipc and vpc. The phasor ipc and the first

6(K + 1) entries of vpc would typically be obtained from a

PMU, and the last entry of vpc, the dc current, from a smart

meter.

In this section, we assume that the FCM does not vary

over time. Given inpc,t and vnpc,t for all t = 1, 2, . . . , T , then

provided that T is sufficiently large, the frequency coupling

matrix at node npc can be estimated using the following convex

program:

min
F∈Rp×q

T∑

t=1

∥∥inpc,t − Fvnpc,t

∥∥2
2
.

Equivalently, let I ∈ Rp×T and V ∈ Rq×T be measurement

matrices where column t is the vector inpc,t and vnpc,t respec-

tively for I and V. Then the least squares problem is:

min
F∈Rp×q

‖I− FV‖2F .

We assume that the rows of V are linearly independent. Given

T ≥ q, the problem is either fully determined (T = q) or over-

determined (T > q). The FCM F is then given by:

F = IV⊤
(
VV⊤

)−1
(15)

Note that if the rows of V are linearly dependent, then the

inverse is replaced by the pseudo-inverse in (15).

Throughout this section, we assumed that we have access

to i0dc. This assumption is mild because it can be estimated

from metering or other measurements with lower resolution

than PMUs.

VI. ONLINE FCM ESTIMATION

In this section, we give an online estimation algorithm for

when the FCM varies through time. An example is a parking

garage equipped with charging stations where electric cars are

temporarily connected. Each newly connected or disconnected

car would modify the garage’s aggregate FCM. The FCM

would therefore need to be continually updated to correctly

describe the resulting harmonics. The online algorithm is

shown in Algorithm 1. At each time, we solve the following

problem to estimate the FCM:

Ft = argmin
F∈Rp×q

t+T∑

j=t+1

∥∥inpc,j − Fvnpc,j

∥∥2
2
.

The number of samples T is fixed to some value greater

than or equal to q, and the measurement matrices It and

Vt are iteratively updated to incorporate the T most recent

measurements (see Line 10 of Algorithm 1). The Sherman-

Morrison formula [30] is used to update the inverse matrix

Vt =
(
VtV

⊤
t

)−1
in (15) using only algebraic operations [31].

First, the oldest data from round t−T are factored out of the

inverse matrix on Line 7 in Algorithm 1. Second, the new

data collected at time t are factored into the inverse matrix on

Line 9. The costly inverse operation of (15) is only performed

once during the initialization step. Finally, using the updated

Vt matrix at time t the estimate is obtained.

Algorithm 1 Online FCM estimation algorithm

1: Initialization: Set I0 ∈ Rp×T and V0 ∈ Rq×T using

preliminary measurements.

2: Compute V0 =
(
V0V

⊤
0

)−1
.

3: Compute F0 by solving (15).

4: for t = 1, 2, . . . do

5: Obtain inpc,t and vnpc,t.

Factor out old measurements:

6: Set c = Vt(:, 0)
7:

Ṽt = Vt−1 +
Vt−1cc

⊤Vt−1

1− c⊤Vt−1c

Factor in new measurements:

8: Set d = vnpc,t

9:

Vt = Ṽt −
Ṽ tdd

⊤Ṽt

1 + d⊤Ṽtd

10: Update measurement matrices:

It =
(
It−1 ( all , 2 to last) inpc,t

)

Vt =
(
Vt−1( all , 2 to last) vnpc,t

)

11: Update FCM:

Ft+1 = ItVtVt

12: end for

VII. NUMERICAL EXAMPLES

We now test each estimation problems and Theorem 1 on

the three node system shown in Figure 2a. The system’s

parameters are given in Table I. In all cases, the maximum

harmonic order is K = 50.

A. Line admittance estimation

We first estimate the line admittances of the example in

Figure 2a. We generate the exact harmonic admittances using
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F4
i4

F1
i1

iS

vS

Z1,2

i1,2
Z1,3

i1,3

F2

i2

F3

i3

i03,dci02,dc

i04,dci01,dc

1©

2© 3©v3v2

v1 v4

(a) 4-FCM network

FS

i0S,dc=1 A
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lent network

Fig. 2. Example of the reduction theorem on a 4-FCM network

the resistances and susceptances given in Table I for the

fundamental frequency. We assume that the lines are purely

inductive. We set the impedance of each line at harmonic

frequencies to zm,n(p) = rm,n(p)+jkxm,n(p) for all (i, j) ∈
M, k = 0, 2, 3, . . . ,K and p = a, b, c. The impedance is then

used to compute the admittance. Note that a more accurate

model, e.g., one based on the steady state solution to the

telegrapher’s equations or accounting for the skin effect, could

equivalently be used to set the harmonic impedances.

The node voltages are sampled from a normal distribution

at each time t. The mean voltage for k = 1 is provided in

Table II. For 0th harmonic, only the real part of the mean

is used. For k 6= 0, this mean is divided by 1.1k to obtain

different values across the frequencies. The standard variation

of the normal distribution for frequency k is 0.005/1.1k.

The harmonic current is set to ibus,t = Y∗
Hvbus,t where Y∗

H

is the exact harmonic admittance matrix. Zero-mean Gaussian

noise is then added to the harmonic current and voltage to

model measurement errors. The standard deviation of the noise

is set to be a percentage of the mean voltage or current. We

vary this percentage in the simulation.

The relative error of an estimate is defined as:

E(YH) =
‖Y∗

H −YH‖2F
‖Y∗

H‖
2
F

.

We present the relative estimation error of the harmonic

line admittance matrix averaged over of 100 simulations in

Figure 3. In Figure 3a, the estimation error is shown as a

function of the standard deviation of the noise for T = 10. As

anticipated, the error increases with the standard deviation of

the noise. To improve the performance under high variance

noise, T can be increased. Figure 3b shows the relative

estimation error as a function of the sample size, T , with 1%

TABLE I
3-NODE NETWORK PARAMETERS

Parameter Value Unit

i0
1,dc 0.05 A

i0
2,dc 0.025 A

i0
3,dc

0.075 A

i0
4,dc

0.06 A

r1,2(a) 0.05 Ω

r1,2(b) 0.06 Ω

r1,2(c) 0.04 Ω

r1,3(a) 0.075 Ω

r1,3(b) 0.08 Ω

r1,3(c) 0.07 Ω

x1,2(a) 0.1 Ω

x1,2(b) 0.95 Ω

x1,2(c) 0.15 Ω

x1,3(a) 0.15 Ω

x1,3(b) 0.145 Ω

x1,3(c) 0.155 Ω

TABLE II
MEAN VOLTAGES AT FUNDAMENTAL FREQUENCY FOR HARMONIC

ADMITTANCE ESTIMATION

Mean voltage Phase a [V] Phase b [V] Phase c [V]

v1
1

1.25 + 0.625j 1 + 0.5j 0.75 + 0.375j

v1
2

2.5 + 0.125j 2 + 0.1j 1.5 + 0.075j

v1
3

0.625 + 1.25 0.5 + j 0.375 + 0.75j

noise standard deviation. As expected, increasing the length

of the sampling window can decrease error.

B. Batch FCM estimation

We now estimate the FCM of the power converter shown in

Figure 4. In our numerical simulations, we sample the input

harmonic voltages at each time from a normal distribution

with mean vk
e and standard deviation 0.005 for the real

and imaginary components for each harmonic k. The mean

harmonic voltage vk
e is set to the input voltages used in [11,

Table II].

We solve for the harmonic currents using ie,t = F∗
evnpc,t,

where F∗
e denotes the exact FCM computed using the calcula-

tion described in [11]. To simulate measurement errors, zero-

mean Gaussian noise with variances corresponding to 0.1% or

1% of the mean of the harmonic current and voltage norm are

added to each component of ie,t and ve,t.

To compute the FCM, internal component values (resis-

tance, inductance of each phase, capacitance), the switching

times and sequence are required. These are set according

to [11, Table I]. The switching times are sampled uniformly

between 0 and 2π and each element of a switching sequence is

sampled according to a Bernoulli distribution with probability

one half. Each time a new FCM is needed, the switching times

and sequence are re-sampled while the internal parameters are

kept constant.
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(b) Relative estimation error as a function of T under 1% noise

Fig. 3. Harmonic admittance relative estimation error averaged over 100
simulations

Fe
ie

e©

vei0e,dc

Fig. 4. Single power converter FCM estimation

For an estimated FCM Fe, the relative estimation error Ee

is given by:

E(Fe) =
‖F∗

e − Fe‖
2
F

‖F∗
e‖

2
F

. (16)

The operator desires an instantaneous estimate of the con-

verter’s FCM. Note that by invoking Theorem 1 and Corol-

lary 1, the FCM at the node could represent the aggregate FCM

for a downstream subtree. The operator measures harmonic

voltages, currents, and dc current for T rounds before the

estimate is needed. The dc current, i0e,dc, is set to 5 mA for

the numerical simulations and is subject to the same noise

as the input voltage. We present performance results without

measurement noise, 0.1% and 1% measurement noise. The

estimation error (16) is given in Figure 5 as a function of

400 600 800 1000 1200 1400
Sample size T

10−4

10−3

10−2

E
(F

e
)

(a) 0.1% measurement noise

400 600 800 1000 1200 1400
Sample size T

10−2

10−1

100

E
(F

e
)

(b) 1% measurement noise

Fig. 5. Batch estimation relative error for T = q + 1 to 5q

T for the 0.1% and 1% noise level of noise. Without noise,

the estimation error is virtually zero. We see that the error

decreases with the noise and as T increases.

Figure 5 shows error when there is observation noise. The

estimation error is below 0.01% of the Frobenius norm of the

exact FCM when T is greater than 2.3q. Under higher noise,

a larger value of T can be used to obtain similar performance.

For example, when we set T = 165q and run the simulation

100 times under 1% noise, the average estimation error is

9.69 × 10−5. This shows that similar performance can be

obtained when subject to strong measurement noise if the

number of samples T is large enough.

C. Online FCM estimation

We now assume that the FCM changes with time. We

replace Fe with Fe,t at time t in Figure 4. We consider a

0.1% observation noise and horizon T = 2q. As previously

mentioned, this could represent a scenario where electric

vehicles can come and go at a parking garage. We set the

time horizon to 104 and consider 4 different configurations

during this time horizon as shown in Figure 6. Each of the
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four FCM configurations corresponds to a different duty cycle,

as described in the previous section. The relative estimation

error for the online case is given by

Et(Fe,t) =

∥∥F∗
e,t − Fe,t

∥∥2
F

maxτ
∥∥F∗

e,τ

∥∥2
F

. (17)

The results for the relative estimation error are presented

in Figure 7. The estimator performs well except during brief

transitions between configurations. This is because the mea-

surement matrices have data from the previous configuration.

To remedy this, the estimator could be combined with an

event detection algorithm to omit prior measurements when

a significant change is occurring.

0 2000 4000 6000 8000 10000
Round t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
o
n
fi
g
u
ra
ti
o
n

Fig. 6. Power converter configuration as a function of t

0 2000 4000 6000 8000 10000
Round t

10−4

10−3

10−2

10−1

100

101

102

103

E
t
(F

e
,t
)

Fig. 7. Online FCM estimation relative estimation error for T = 2q

D. Network reduction example

In this section, we apply the reduction theorem to the

network Figure 2a and obtain the equivalent, virtual FCM FS

of Figure 2b. Two FCMs, F1 and F2 are directly connected

TABLE III
VALIDATION PERFORMANCE FOR 250 TESTS

Mean error Value

εreduction 1.23× 10−15

εestimated 1.99× 10−11

εcomparison 1.99× 10−11

E(Festimated
S

) 9.28× 10−23

to node 1. Two other FCMs, F2 at node 2 and F3 at node 3,

are connected to node 1 via lines with impedance Z1,2 and

Z1,3 respectively.

We set the average value of the dc currents, resistances,

susceptances according to Table I and vS according to [11,

Table II]. To the each dc current, resistances, susceptances

and components of vS , we add a zero-mean Gaussian noise

with standard deviation given respectively by 0.005, 0.01,

0.01, 0.005. The four exact FCMs have the same internal

parameters and randomly sampled switching sequences as in

Section VII-B. We omit measurement noise as our objective

is to validate the theoretical results of Section III.

We run 250 tests. In each test, we compute the equivalent

reduced FCM, FS , using Theorem 1 given all four FCMs

and their dc input current. We estimate the equivalent reduced

FCM, Festimation
S

, using Section V with T = 2q. The exact

harmonic current iS is calculated using the network equations

given the four FCMs, their dc currents and vS . The details

for the computation of iS are given in Appendix A. We also

compute the harmonic current obtained with the equivalent

reduced FCM, ireduction
S

= FSvS , and that obtained from the

estimated FCM, iestimated
S

= Festimated
S

vS . Table III gives the

mean FCM error as well as the following current error metrics:

εreduction =

∥∥iS − ireduction
S

∥∥
‖iS‖

,

εestimated =

∥∥iS − iestimated
S

∥∥
‖iS‖

,

εcomparison =

∥∥ireduction
S

− iestimated
S

∥∥
∥∥iestimated

S

∥∥ .

All errors are effectively zero, in accordance with the theoret-

ical results of Section III.

VIII. CONCLUSION

We have presented basic approaches for estimating network

parameters necessary for modeling harmonics. We have posed

least squares problems for estimating the line admittances and

FCMs, and an online algorithm for the latter case. We have

also given a network reduction theorem, which enables one to

model arbitrary, unobservable subtrees with a single, virtual

FCM. We have validated all methods on a simple numerical

example.

APPENDIX A

NETWORK EQUATION SOLUTION

In this appendix, we solve for the relevant electrical quan-

tities in the 4-FCM network in Figure 2a. All voltages are
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the same at a given node, and hence vS = v1 = v4. By

Kirchhoff’s current law, we have i1,2 = i2 and i1,3 = i3.

There are 8 unknown vectors: i1, i2, i3, i4, vS , v2, v3. We

set vS as our input data.

For the 4-FCM network, we have the following equations.

By Kirchhoff’s current law at node 1, we have

i1 + i2 + i3 + i4 = iS . (18)

Using Ohm’s law on line (1, 2), we obtain:

v2 − v1 = Z1,2i2, (19)

and for line (1, 3),

v3 − v1 = Z1,3i3. (20)

We apply the FCM relation at the three nodes:

i1 = F1

(
v1

idc1

)
= FvS + f1i

0
1,dc, (21)

i2 = F2

(
v2

idc2

)
= Fv2 + f2i

0
2,dc, (22)

i3 = F3

(
v3

idc3

)
= Fv3 + f3i

0
3,dc, (23)

i4 = F4

(
v4

idc4

)
= FvS + f4i

0
4,dc. (24)

Fixing vS at a measured value, we have 7 unknown vectors

and 7 sets of equations. Let Ip ∈ R
p×p be the identity matrix,

0 ∈ Rp×p a matrix made only of zeros and 0 ∈ Rp a vector

made only of zeros. We rewrite (18)–(24) as



Ip Ip Ip Ip −Ip 0 0

0 Z1,2 0 0 0 Ip 0

0 0 Z1,3 0 0 0 Ip

Ip 0 0 0 0 0 0

0 Ip 0 0 0 −F2 0

0 0 Ip 0 0 0 −F3

0 0 0 Ip 0 0 0







i1
i2
i3
i4
iS
v1

v2




=




0

vS

vS

FSv1 + f1i
0
1,dc

f2i
0
2,dc

f3i
0
3,dc

FSvS + f4i
0
4,dc




,

(25)

and solve for the 7 unknown vectors. From the solution of (25),

we obtain the exact value of iS .
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