
1

Range-based Coordinate Alignment for Cooperative
Mobile Sensor Network Localization

Keyou You, Senior Member, IEEE, Qizhu Chen, Pei Xie, and Shiji Song, Senior Member, IEEE

Abstract—This paper studies a coordinate alignment problem
for cooperative mobile sensor network localization with range-
based measurements. The network consists of target nodes,
each of which has only access position information in a local
fixed coordinate frame, and anchor nodes with GPS position
information. To localize target nodes, we aim to align their
coordinate frames, which leads to a non-convex optimization
problem over a rotation group SO(3). Then, we reformulate
it as an optimization problem with a convex objective function
over spherical surfaces. We explicitly design both iterative and
recursive algorithms for localizing a target node with an anchor
node, and extend to the case with multiple target nodes. Finally,
the advantages of our algorithms against the literature are
validated via simulations.

Index Terms—Coordinate alignment, cooperative localization,
mobile sensor networks, parallel projection.

I. INTRODUCTION

Cooperative localization is an important positioning tech-
nology [1]–[4]. In the past decades, there are many methods
for cooperative localization, such as semidefinite program-
ming (SDP) [5], second-order cone programming [6], sum
of squares [7], multidimensional scaling (MDS) [8], convex
relaxation [9] and parallel projection algorithms (PPA) [10],
[11]. Among them, PPA is reported to yield comparable
accuracy to SDP and MDS with much shorter running time
[11], and is an attractive localization approach.

By using both target-anchor and target-target range mea-
surements, this work is concerned with cooperative local-
ization problems over mobile sensor networks where anchor
nodes are encoded with GPS positions and each target node
is only aware of its position information in a local fixed
coordinate frame, whose orientation and position relative to
the global frame of the GPS are unknown. This framework
is of great importance in both the underwater [12] and aerial
localization [13]. For example, in case of multiple autonomous
underwater vehicles (AUVs) the GPS information is often
available to a very limited number of AUVs. Then, it is sen-
sible to use cooperative methods to localize other AUVs with
the inter-AUV range measurements [14]–[17]. For unmanned
aerial vehicles (UAVs), the target UAV in [13] is assumed to

This research was supported by National Natural Science Founda-
tion of China under Grants No.41576101 and No.41427806, and Na-
tional Key Research and Development Program of China under Grant
No.2016YFC0300801.

K. You and S. Song are with the Department of Automation and BN-
Rist,, Tsinghua University, Beijing 100084, China. Email: {youky, shi-
jis}@tsinghua.edu.cn.

Q. Chen is with Beijing Science and Technology Co, three fast online,
China. Email: chenqizhu@meituan.com.

P. Xie is with the JD.COM, China. Email: xiepei13@jd.com.

access to the Inertial Navigation System (INS), but the INS
may continuously drift after initiation and lose the connection
with the global coordinate system. That is, the GPS position
of the target UAV is unavailable and requires to use inter-UAV
range measurements for localization.

If a series of consistent positions in a local fixed coordinate
frame can be obtained for a target node, its GPS position can
be localized by aligning its local frame with the global frame
of the GPS by using target-anchor measurements. To this end,
a natural way is to parameterize the local coordinate frame
by a rotation matrix R ∈ SO(3) and a translation vector T ∈
R3. Then, the alignment problem reduces to the estimation of
(R, T), which is the key idea of [12], [13] and is also closely
related to the idea of estimating the deviation of the local
coordinate from the global coordinate in [14], [18], [19].

This work starts from investigating the problem of local-
izing a target node with an anchor node. The least squares
estimate of (R, T) can be obtained by solving an optimization
problem with a non-convex objective function and non-convex
constraints. Such a non-convex optimization problem in [13] is
firstly relaxed as a SDP problem with 11 equality constraints
and the decision vector is a 17 × 17 positive semi-definite
matrix, hoping that the solution to the SDP problem can
provide a good suboptimal solution. To further refine the SDP
solution, they design a gradient descent algorithm over the
rotation group SO(3). Differently from [13], we exploit the
geometric relations between nodes and reformulate the non-
convex problem as a well-structured optimization problem
with a convex cost over spherical constraints. This idea was
presented in our conference paper [12], the major results of
which are all contained in Section III(A)-(B) of this work.

The striking feature of our approach is that we are able
to simultaneously solve the coordinate alignment problem for
multiple target nodes in a general sensor network by using both
target-anchor and target-target range measurements. Note that
the authors in [13] only consider the case with only a target
node, and is unclear how to extend to the general case with
multiple target nodes.

With the aid of the block coordinate descent method [20],
we propose a parallel projection algorithm (PPA) to solve the
above reformulated problem. The projection is with respect to
the spherical surfaces and can be explicitly written in a simple
form, after which the constraint R ∈ SO(3) can also be easily
resolved. Overall, the iteration of the PPA is given in a simple
form and can be implemented with a low computational cost,
which is important to the sensor network. In comparison with
[13], the PPA requires a much lower computational cost with
comparable localization accuracy, both of which have been

ar
X

iv
:1

81
2.

04
20

1v
2

 [
cs

.S
Y

]
 2

2
Fe

b
20

20

2

validated via numerical experiments.
Interestingly, the PPA can easily incorporate new mea-

surements to update our estimate of (R, T). Specifically, we
propose a recursive version of the PPA, which is termed
as recursive projection algorithm (RPA), to approximately
solve the optimization problem for coordinate alignment. More
importantly, we are able to extend our method to the case of
multiple target nodes in a mobile sensor network. For a time-
varying network, we further use the block coordinate descent
idea to design the PPA to reduce the computational load. For
a time-invariant network, we jointly use the Jacobi iterative
method to run the PPA and obtain a distributed PPA, which
only requires each target node to exchange information with
its neighboring target nodes.

The rest of this paper is organized as follows. In Section
II, we formulate the coordinate alignment over a time-varying
network as a non-convex optimization. In Section III, focusing
on two-node coordinate alignment problem, we propose the
PPA and RPA. In Section IV, we extend them to the multi-
node setting and propose a PPA algorithm by using the block
coordinate descent idea. For a fixed communication graph, a
distributed method with the Jacobi iteration is designed. The
numerical experiments are conducted in Section V. Finally,
some concluding remarks are drawn in Section VI.

II. PROBLEM STATEMENT

A. The mobile sensor network

The mobile sensor network is represented by a sequence
of time-varying graphs G(t) = (V, E(t)) where V is the set
of a fixed number of mobile nodes and E(t) is the set of
edges between nodes at discrete time t ∈ N. Specifically, V
is the union of a target set T = {1, . . . , n} and an anchor set
A = {n + 1, . . . , n + r} where an anchor node can access
its position information in the GPS while a target node does
not and is only aware of its position information in a local
fixed coordinate frame whose orientation and position relative
to the global frame of the GPS are unknown. See an example
of collaborative UAVs in Section I. For brevity, the former is
called the global position and the later is called local position.
Our objective is to localize the global positions of target nodes
under information flow constraints, which are modeled by the
graph G(t).

Specifically, for target node i and anchor node a, (i, a) ∈
E(t) identifies the communication from a to i. For any pair of
target nodes i and j such that (i, j) ∈ E(t), then (j, i) ∈ E(t)
and both nodes can communicate with each other. Moreover,
two noisy range measurements dij(t) and dji(t) are taken by
node i and node j, respectively. Note that dij(t) and dji(t)
may not be equal due to the use of different range sensors.
While for a target node i and an anchor node a such that
(i, a) ∈ E(t), only the range measurement ria(t) is available to
node i and (a, i) /∈ E(t). A target node i is said to be connected
to an anchor node a in G(t) if there is a path of consecutive
edges in E(t) that connects the two nodes. Given a target node
i, let Ti(t) be the set of its neighboring target nodes, i.e.,
Ti(t) = {j|j ∈ T , (i, j) ∈ E(t)} and Ai(t) is the set of neigh-
boring anchor nodes, i.e., Ai(t) = {a|a ∈ A, (i, a) ∈ E(t)}.

Thus, the set of range measurements available to the target
node i at time t is given as

mi(t) = {dij(t), ria(t)|j ∈ Ti(t), a ∈ Ai(t)}. (1)

B. Coordinate alignment for cooperative localization

Let pga(t) ∈ R3 be the global position of an anchor node
a and pli(t) ∈ R3 be the local position of a target node i at
time t, whose local coordinate system is parameterized by a
rotation matrix R∗i ∈ SO(3) which is defined as

SO(3) = {R ∈ R3×3|RR′ = I, det(R) = 1}
and a translation vector T ∗i ∈ R3. Clearly, the global position
of the target node i is expressed as R∗i p

l
i(t) +T ∗i . To localize

the target node i, we aim to compute its coordinate parameters
(R∗i , T

∗
i) with noisy range measurements up to time t̄, i.e.,

dij(t) = ‖R∗i pli(t) + T ∗i −R∗jplj(t)− T ∗j ‖+ ξij(t),

ria(t) = ‖R∗i pli(t) + T ∗i − pga(t)‖+ ξia(t), t ∈ [1 : t̄],

where e = (i, j) or e = (i, a) indicates an edge and {ξe(t)}tt=1

is a sequence of temporally uncorrelated with zero mean and
the sequence {ξe(t)}e∈E(t) is spatially uncorrelated at any time
t, and [1 : t̄] = {1, . . . , t̄}. Given a pair of R = [R′1, . . . , R

′
n]′

and T = [T ′1, . . . , T
′
n]′, the least squares estimate uses the

quadratic loss function

fTij (t, R, T) = (dij(t)− ‖Rip
l
i(t) + Ti −Rjp

l
j(t)− Tj‖)2,

fAia(t, R, T) = (ria(t)− ‖Rip
l
i(t) + Ti − pga(t)‖)2.

(2)

Our coordinate alignment problem for cooperative localiza-
tion is formulated as a constrained optimization problem

minimize
Ri,Ti

f(R, T) :=

n∑
i=1

fi(R, T)

subject to Ri ∈ SO(3), Ti ∈ R3,∀i ∈ T
(3)

where each summand in the objective function is given by

fi(R, T) =

t∑
t=1

(∑
j∈Ti(t)

fTij (t, R, T) +
∑

a∈Ai(t)

fAia(t, R, T)
)
.

(4)
Under mild conditions, we show that the constrained opti-

mization problem in (3) is solvable.
Proposition 1: If each target node is connected to an anchor

node in the union graph
⋃t

t=1 G(t), then the constrained opti-
mization problem in (3) contains at least an optimal solution.

Proof: See Appendix A.
In the sequel, we shall design explicit algorithms to solve

the optimization problem in (3) by using projection technique.

III. LOCALIZING A TARGET NODE WITH AN ANCHOR
NODE

In this section, we consider the problem of localizing only a
mobile target node with an anchor node. This is well motivated
by localizing a GPS-denied AUV. Another AUV with known
global position is deployed to serve as a communication and

3

pg(t)

r(t)

Rpl(t) + T

Fig. 1. Two mobile AUVs with range measurements. One is a CNA and the
other is a GPS-denied AUV.

navigation aid (CNA) [14], [19]. They cooperatively work in
the underwater and communicate with each other to obtain
a series of range measurements, see Fig. 1. In this case, the
minimum number of range measurements is 7 [21].

To simplify notations of this section, let pg(t) ∈ R3 be the
global position of the anchor node, pl(t) ∈ R3 be the local
position of the GPS-denied target node and r(t) ∈ R be the
range measurement between the two nodes at time t. Then,
the information set for the target localization performed in the
time interval t̄ is collectively given by

I(t) =
⋃t

t=1
{pl(t), pg(t), r(t)}, (5)

and the optimization problem in (3) is reduced as

minimize
R,T

∑t

t=1
ft(R, T)

subject to R ∈ SO(3), T ∈ R3 (6)

where the summand in the objective function is

ft(R, T) = (r(t)− ‖Rpl(t) + T − pg(t)‖)2. (7)

A. Optimization problem reformulation using projection

To solve the optimization problem in (6), there are at least
two challenges. The first is that ft(R, T) is non-convex, which
usually is approximately solved by the convex relaxation
[9], [10], [13], [22]. Here we solve it by expressing as the
minimization of a convex function over a spherical surface.
The second lies in the constraint set of a rotation group SO(3),
which fortunately can be explicitly solved as well.

One can show that ft(R, T) is the squared range between
the point Rpl(t)+T and the spherical surface centered at pg(t)
with a radius r(t) [9], see Fig. 2. That is,

ft(R, T) = min
y∈S(t)

‖Rpl(t) + T − y‖2, (8)

where S(t) is a spherical surface, i.e.,

S(t) =
{
y ∈ R3| ‖y − pg(t)‖ = r(t)

}
. (9)

In view of (8), we obtain the following optimization problem

minimize
R,T,y1:t

∑t

t=1
‖Rpl(t) + T − y(t)‖2

subject to R ∈ SO(3), T ∈ R3, y(t) ∈ S(t), t ∈ [1 : t].
(10)

()p tg

y

()t+

()lRp t T�

()r t

(,)tf R T

Fig. 2. Projection onto a spherical surface if r(t) < ‖Rpl(t)+T −pg(t)‖.

Remark 1: Note that target localization is not instantaneous
but performed in time interval t̄. In [9], the so-called disk
relaxation is adopted by relaxing the spherical surface S(t)
into a closed ball B(t) = {y|‖y − pg(t)‖ ≤ r(t)}. This leads
to an underestimated convex problem, and is useless here as
SO(3) is not convex.

Clearly, the two optimization problems in (6) and (10) are
essentially equivalent in the sense that both achieve the same
minimum value and the same optimal set of (R, T). The
good news is that the optimization problem (10) has favorable
properties. First, its objective function is quadratically convex.
Second, the newly introduced sets S(t), t ∈ [1 : t] are spherical
surfaces which are not difficult to compute the associated
Euclidean projection. In fact, given a vector y ∈ R3, its
Euclidean projection onto a spherical surface S(t), t ∈ [1 : t]
is explicitly expressed as

PS(t)(y) = pg(t)+
r(t)

‖y − pg(t)‖ (y−pg(t)) if y /∈ S(t). (11)

To be specific, the projection of any matrix Ω ∈ R3×3

onto SO(3) is obtained by solving a constrained optimization
problem, i.e.,

PSO(3)(Ω) = argmin
R∈SO(3)

‖R− Ω‖2F

where ‖ · ‖F denotes the Frobenius norm. In view of [23],
PSO(3)(Ω) is explicitly given as

PSO(3)(Ω) = UDV ∗, (12)

where U and V are obtained via the singular value decompo-
sition of Ω, i.e., Ω = UΣV ∗, and

D =

{
diag(1, 1,+1), if det(UV ∗) = 1,

diag(1, 1,−1), if det(UV ∗) = −1.

Next, we shall design algorithms to effectively solve the
optimization problem (10).

B. Parallel projection algorithm

Once the target node has access the information set I(t̄)
in (5), it solves the optimization problem (10) by a block
coordinate descent algorithm [20] with parallel projections.
We use master and worker to denote the order of updating per
iteration. Specifically, one master is used to update (Rk, T k)
and t-parallel workers are responsible for simultaneously up-
dating yk(t), t ∈ [1 : t]. The superscript k denotes the number
of iterations for solving the optimization problem (10).

4

Algorithm 1 The Parallel Projection Algorithm (PPA) for
Localizing a Target Node with an Anchor Node

1: Input: I(t), which is the information set for the target
node, see (5).

2: Initialization: The master arbitrarily selects R0 ∈
SO(3) and T 0 ∈ R3, and sends to every worker
t ∈ [1 : t].

3: Repeat
4: Parallel projection: Each local worker t simultaneously

computes

yk(t) = PS(t)(R
kpl(t) + T k), t ∈ [1 : t]

and sends yk(t) to the master.
5: Master update: The master computes the correlation

matrix P k in (16) and uses (12) to update as follows

Rk+1 = PSO(3)(P
k),

T k+1 = yk −Rk+1pl.

6: Set k = k + 1.
7: Until a predefined stopping rule (e.g., a maximum

iteration number) is satisfied.

At the k-th iteration, each worker receives the latest update
(Rk, T k) from the master, and then performs the following
projection in a parallel way

yk(t) = argminy(t)∈S(t)‖Rkpl(t) + T k − y(t)‖
= PS(t)(R

kpl(t) + T k), t ∈ [1 : t],
(13)

where PS(t)(·) is given in (11), and sends yk(t) to the master.
Once the master receives (yk(1), . . . , yk(t)), it solves the

following constrained least squares optimization

minimize
R∈SO(3),T

∑t

t=1
‖Rpl(t) + T − yk(t)‖2. (14)

Proposition 2: The optimization problem in (14) is explic-
itly solved as

Rk+1 = PSO(3)(P
k),

T k+1 = yk −Rk+1pl,
(15)

where PSO(3)(·) is given in (12), pl = 1
t

∑t
t=1 p

l(t) and yk =
1
t

∑t
t=1 y

k(t) are “mean” vectors of {pl(t)} and {yk(t)}, and
P k is their “correlation” matrix

P k =
∑t

t=1
(yk(t)− yk)(pl(t)− pl)′. (16)

Proof: See Appendix B.
is interesting that (14) is closely related to the basic Pro-

crustes problem [24] and can be found in its full version in
[25]. For completeness, we also include a proof in Appendix.
Finally, we summarize the above result in Algorithm 1.

Remark 2: Instead of using a SDP initialization [13], we
just randomly select a pair of (R0, T 0). Clearly, we can also
adopt the same initialization to avoid getting into a bad local
minimum.

Since the optimization problem in (10) is inherently non-
convex, it cannot be guaranteed to converge to a global
optimal solution. However, it at least sequentially reduces
the objective function per iteration, and achieves a better
solution. To exposit it, let q := (R, T, y1, . . . , yt̄) and g(q) :=∑t

t=1 ‖Rpl(t) + T − y(t)‖2 be the decision variables and the
objective function, respectively. We have the following result.

Proposition 3: Let {qk} be iteratively computed in Algo-
rithm 1. Then, it holds that g(qk) ≤ g(qk−1),∀k and there
exists a convergent subsequence of {qk}.

Proof: See Appendix C.
Remark 3: In [13], a semidefinite programming (SDP) re-

laxation is firstly devised to find an initial estimate of (R, T),
which involves solving a SDP with 11 equality constraints and
the decision vector is a 17× 17 positive semi-definite matrix.
Then, they solve the optimization problem in (6) by using the
projection of the gradient M := ∂

∂R

∑t
t=1 ft(R, T) onto the

tangent space of SO(3), which is explicitly given as

MT (R) =
1

2
(M −RM ′R).

The discretized version is essentially gradient descent (GD)
and given by Rk+1 = PSO(3)

(
Rk − αkMT (Rk)

)
, where αk

is a stepsize. Notably, they also explicitly state (without proof)
that the SDP relaxation is important in providing a good
initialization. Solving such a SDP and extracting a feasible
R0 ∈ SO(3) from the SDP’s solution inevitably increases the
computation cost. Though Algorithm 1 is only randomly ini-
tialized, numerical results show that its localization accuracy
is still comparable to that of [13].

More importantly, the focus of the equivalent optimization
problem in (10) allows us easily to devise a recursive algorithm
to estimate (R, T) in an online way (c.f. Section III-C) and
generalize to the case of generic mobile sensor networks (c.f.
Section IV). It is worthy mentioning that the approach in [13]
currently only applies to a star topology.

C. The recursive projection algorithm

While Algorithm 1 produces good results if t is moderately
large, it does not exploit the sequential collection of the mea-
surement, and the number of local intermediate variables y(t)
increases linearly with the number of range measurements. To
resolve it, this subsection presents an approximate Recursive
Projection Algorithm (RPA) which only performs one iteration
whenever new measurement arrives.

At time t, suppose we have already obtained a prior esti-
mate (R(t − 1), T (t − 1)) and collected a new measurement
{pl(t), pg(t), r(t)}. Using this information, we shall recur-
sively update the estimate of (R, T) in an online way.

Similar to (13), we perform an online projection

y(t) = PS(t)(R(t− 1)pl(t) + T (t− 1)), (17)

where S(t) is defined in (9). In comparison with (14), the
projection operation for y(t) is only performed once. Then,
the new estimate of (R, T) is set as follows

(R(t), T (t)) = argmin
R∈SO(3),T

t∑
k=1

‖Rpl(k) + T − y(k)‖2, (18)

5

Algorithm 2 The Recursive Projection Algorithm (RPA) for
Localizing a Target Node with an Anchor Node

1: Initialization: The target node randomly selects R(0) ∈
SO(3) and T (0) ∈ R3, and chooses ȳ(0) = p̄l(0) = 0 ∈
R3, P (0) = 0 ∈ R3×3.

2: Online projection: At time t, the target node receives
a triple {pl(t), pg(t), r(t)} and performs an online pro-
jection

y(t) := PS(t)(R(t− 1)pl(t) + T (t− 1)),

where spherical surface S(t) is defined in (9).
3: Recursive update: The target node recursively updates

the triple (ȳ(t), p̄l(t), P (t)) by using (19) and sets

R(t) = PSO(3)(P (t)),

T (t) = ȳ(t)−R(t)p̄l(t).

4: Set t = t+ 1.

which can be recursively computed.
Proposition 4: Let ȳ(t), p̄l(t) and P (t) be recursively com-

puted by

ȳ(t) = ȳ(t− 1) +
1

t
(y(t)− ȳ(t− 1)),

p̄l(t) = p̄l(t− 1) +
1

t
(pl(t)− p̄l(t− 1)),

P (t) = P (t− 1) + (1− 1

t
)

× (y(t)− ȳ(t− 1))(pl(t)− p̄l(t− 1))′

(19)

where ȳ(0) = p̄l(0) = 0 ∈ R3 and P (0) = 0 ∈ R3×3. Then,
the optimization problem in (18) is solved by

R(t) = PSO(3)(P (t)),

T (t) = ȳ(t)−R(t)p̄l(t).
(20)

Proof: See Appendix D.
The recursive algorithm is summarized in Algorithm 2. In

practice, we shall further adopt the idea of smoothing [26] to
improve the algorithmic performance. Instead of solving (18),
it is better to consider

(R(t), T (t)) = argmin
R∈SO(3),T

t∑
k=1

‖Rpl(k) + T − ý(k)‖2, (21)

where ý(k) = PS(k)(R(t − 1)pl(k) + T (t − 1)) if k ∈
[t− b, t− 1] and ý(k) = y(k) if k < t− b. Here b denotes the
length of smoothing interval and indicates the tradeoff between
computational cost and performance improvement. Clearly,
Algorithm 2 corresponds to the special case b = 1. Then,
the optimization problem in (21) can be recursively solved.
Let ∆(k) = ý(k) − y(k), which is zero if k < t − b, and
compute ∆̄(t) = 1

t

∑t
k=1 ∆(k). We solve it by replacing ȳ(t)

and P (t) with ȳ(t) + ∆̄(t) and

P (t) +
∑t

k=t−b
(∆(k)− ∆̄(t))(pl(k)− p̄l(t))′

in (20), respectively.
Since the localization problem is typically non-convex,

we are unable to prove the asymptotic convergence of

(R(t), T (t)). Jointly with (17) and (18), one may also use
a discount factor α ∈ (0, 1) to emphasize the importance of
the latest range measurements, e.g.,

(R(t), T (t)) = argmin
R∈SO(3),T

t∑
k=1

α−k‖Rpl(k) + T − y(k)‖2

and replace 1/t in (19) by (1− α)/(1− αt).

IV. LOCALIZING MULTIPLE TARGET NODES IN THE
SENSOR NETWORK

In this section, we are interested in the localization problem
of multiple target nodes in the mobile sensor network with
generic time-varying communication topology G(t). In [13],
the SDP based approach can only deal with the network setting
that the only one anchor is connected to all target nodes. Such
a scenario gives a star topology, which is trivial to treat by
using the results on the situation with one anchor and one
target node. While for general mobile sensor networks, they
leave it to future work. By using the approach in Section III,
we are able to solve this problem, which is the focus of this
section.

A. Optimization problem reformulation using projection

The loss function (4) introduces coupled summands, which
makes the problem difficult. We shall use the projection idea
in Section III to reformulate the optimization problem in (3).
As in (9), define the spherical surfaces

Sij(t) = {y ∈ R3|‖y‖ = dij(t)},∀(i, j) ∈ E(t),

Sia(t) = {y ∈ R3|‖y − pga(t)‖ = ria(t)},∀(i, a) ∈ E(t).

In view of (8), the loss functions in (2) are rewritten as

fTij (t)

= min
yij(t)∈Sij(t)

‖Rip
l
i(t) + Ti −Rjp

l
j(t)− Tj − yij(t)‖2,

fAia(t) = min
yia(t)∈Sia(t)

‖Rip
l
i(t) + Ti − yia(t)‖2.

(22)

With a slight abuse of notations, let

y(t) = {yij(t), yia(t)}(i,j)∈E(t),(i,a)∈E(t),

S(t) = {Sij(t),Sia(t)}(i,j)∈E(t),(i,a)∈E(t).
(23)

Jointly with (22), the problem in (3) can be reformulated as

minimize
R,T,y(t),t∈[1:t]

t̄∑
t=1

n∑
i=1

fi(R, T, y(t))

subject to R ∈ SO(3)n, y(t) ∈ S(t), t ∈ [1 : t],

(24)

where the summand is given by

fi(R, T, y(t)) =
∑

a∈Ai(t)

‖Rip
l
i(t) + Ti − yia(t)‖2

+
∑

j∈Ti(t)

‖Rip
l
i(t) + Ti −Rjp

l
j(t)− Tj − yij(t)‖2.

In the sequel, we shall design a block coordinate descent
algorithm to solve the optimization problem in (24).

6

B. Parallel projection algorithms

Clearly, the objective function in (24) is quadratically con-
vex. We only need to handle the non-convex constraints SO(3)
and spherical surfaces S(t), t ∈ [1 : t].

Now, we design a block coordinate descent algorithm [20]
with parallel projections to solve (24). Specifically, given
(Rk, T k), we update y(t), t ∈ [1 : t] by

yk(t) = argmin
y(t)∈S(t)

n∑
i=1

fi(R
k, T k, y(t)),

which can be explicitly expressed as

ykij(t) = PSij(t)(R
k
i p

l
i(t) + T k

i −Rk
j p

l
j(t)− T k

j),

ykia(t) = PSia(t)(R
k
i p

l
i(t) + T k

i),∀(i, j), (i, a) ∈ E(t)
(25)

and the projection onto a spherical surface is given in (11).
Next, we shall update (R, T) by fixing y(t) = yk(t), i.e.,

minimize
R∈SO(3)n,T

n∑
i=1

t̄∑
t=1

fi(R, T, y
k(t)), (26)

To solve the above optimization problem, the major diffi-
culty lies in the constraints of SO(3). Two ideas are adopted.

1) Constrained least squares: The first idea is to solve an
unconstrained least squares problem, i.e.,

(Zk, T k+1) = argmin
Z,T

n∑
i=1

t̄∑
t=1

fi(Z, T, y
k(t)), (27)

and then project Zk onto the constraints of SO(3)n, i.e.,

Rk+1
i = argmin

Ri∈SO(3)

‖Ri − Zk
i ‖2F ,

which is explicitly given in (12).
The remaining problem is how to effectively solve the

least squares problem in (27). For this purpose, we represent
Zip

l
i(t) + Ti as a linear function of xi, where xi ∈ R12 is a

column vector reshaping from (Zi, Ti). Specifically, denote

Bi(t) =
[
I3 ⊗ pli(t)′, I3

]
, xi =

[
vec(Zi)

′, T ′i
]′
,

where ⊗ denotes the Kronecker product, vec(Zi) ∈ R9 is a
large vector by stacking all the columns of Zi ∈ R3×3, and
I3 ∈ R3×3 is an identity matrix. Then, it follows that

Zip
l
i(t) + Ti = Bi(t)xi,

and the objective function in (27) is rewritten as

f(x) =

t̄∑
t=1

 ∑
(i,j)∈E(t)

‖Bi(t)xi −Bj(t)xj − ykij(t)‖2+

∑
(i,a)∈E(t)

‖Bi(t)xi − ykia(t)‖2
 ,

which clearly is quadratic in the decision vector x.
For a graph G(t), we define a sparse block matrix E(t) ∈

R|E(t)|×n⊗R3×12 over the graph for a compact form of f(x).
Particularly, if e = (i, j) ∈ E(t) and j ∈ Ti(t), then the (e, i)-
th block of E(t) is Bi(t) and the (e, j)-th block of E(t) is
−Bj(t). If e = (i, a) ∈ E(t) and a ∈ Ai(t), then the (e, i)-th

block of E(t) is Bi(t). All the unspecified blocks are set to be
zero matrices with compatible dimensions. This implies that
the objective function in (27) can be compactly expressed as

f(x) =
∑t

t=1
‖E(t)x− yk(t)‖2.

Clearly, the minimizer of f(x) is simply given by

xls =

(
t̄∑

t=1

E(t)′E(t)

)−1(
t̄∑

t=1

E(t)′yk(t)

)
∈ R12n. (28)

To compute the above xls, let Q(t) = E(t)′E(t) ∈ Rn×n⊗
R12×12. Denote the (i, j)-th block of Q(t) by Q(t)(i,j) ∈
R12×12, it follows that

Q(t)(i,i) = (2|Ti(t)|+ |Ai(t)|)(B′i(t)Bi(t)) (29)

and

Q(t)(i,j) =

{
−2B′i(t)Bj(t), if (i, j) ∈ E(t),
0, otherwise. (30)

where |Ti(t)| and |Ai(t)| denote the cardinality of the sets
Ti(t) and Ai(t) respectively, and

B′i(t)Bj(t) =

[
I3 ⊗ pli(t)plj(t)′ I3 ⊗ pli(t)
I3 ⊗ plj(t)′ I3 ⊗ I3

]
.

Similarly, the i-th block of E(t)′yk(t) is defined as
E(t)′yk(t)(i) and given by

Bi(t)

 ∑
j∈Ti(t)

(ykij(t)− ykji(t)) +
∑

a∈Ai(t)

ykia(t)

 ∈ R12.

Let ŷki (t) =
∑

j∈Ti(t)
(
ykij(t)− ykji(t)

)
+
∑

a∈Ai(t)
ykia(t),

then
E(t)′yk(t)(i) =

[
ŷki (t)⊗ pli(t)

ŷki (t)

]
. (31)

Jointly with (29)-(31), the minimizer in (28) can be readily
computed. If the graph G(t) is fixed, (28) can be cast as a
sparse least squares problem, see e.g. [27] for details.

2) Jacobi iterative method: We can also solve the optimiza-
tion problem in (26) by using the Jacobi iterative method [20].
Particularly, we compute (Ri, Ti)

k+1 by setting (R−i, T−i) to
be (R−i, T−i)

k, where (R−i, T−i) = {(Rj , Tj)}j∈T ,j 6=i, i.e.,

(Ri, Ti)
k+1 = argmin

Ri∈SO(3),Ti

t̄∑
t=1

gi(R, T, y
k(t))

subject to (R−i, T−i) = (R−i, T−i)
k,

(32)

where the objective collects all summands in the objective
function of (26) containing the decision variables (Ri, Ti), and
gi(R, T, y

k(t)) is given by

gi(R,T, y
k(t)) =

∑
a∈Ai(t)

‖Rip
l
i(t) + Ti − ykia(t)‖2

+
∑

j∈Ti(t)

‖Rip
l
i(t) + Ti −Rk

j p
l
j(t)− T k

j − ykij(t)‖2.

Then, the optimization problem in (32) has a similar struc-
ture to that of (14), and can be solved as

Rk+1
i = PSO(3)(P

k
i),

T k+1
i = yki −Rk+1

i pli,
(33)

7

Algorithm 3 The Parallel Projection Algorithm for Localizing
Multiple Target Nodes

1: Input: Every target node i collects the information
Ii(t) =

⋃t̄
t=1{mi(t), p

l
i(t), p

g
a(t)|i ∈ Ti(t), a ∈ Ai(t)},

where mi(t) is defined in (1). A master (fusion center)
collects time-varying graphs

⋃t̄
t=1 G(t).

2: Initialization: The master arbitrarily selects R0
i ∈

SO(3) and T 0
i ∈ R3, and sends to each target node

i ∈ T .
3: Repeat
4: Parallel projection: Each target node i simultaneously

computes

{ykij(t), ykia(t)|j ∈ Ti(t),Ai(t)}, t ∈ [1 : t]

and E(t)′yk(t)(i) by using (25) and (31), respectively,
and send E(t)′yk(t)(i) to the master.

5: Master update: The master computes the least squares
vector in (28), which is the solution of (27) and obtains
(Zk, T k+1). Then, it sets

Rk+1
i = PSO(3)(Z

k
i)

by using (12) and sends (Rk+1
i , T k+1

i) to each target
node i ∈ T .

6: Set k = k + 1.
7: Until a predefined stopping rule (e.g., a maximum

iteration number) is satisfied.

where yki and pli are two mean vectors and P k
i is a correlation

matrix, i.e.,

yki =
1

ni

∑t

t=1

(∑
j∈Ti(t)

y̆kij(t) +
∑

a∈Ai(t)
ykia(t)

)
,

pli =
1

ni

t∑
t=1

(|Ti(t)|+ |Ai(t)|) pli(t),

P k
i =

∑t

t=1

(∑
j∈Ti(t)

P k
ij(t) +

∑
a∈Ai(t)

P k
im(t)

)
,

ni =
∑t

t=1
(|Ti(t)|+ |Ai(t)|),

y̆kij(t) = ykij(t) +Rk
j p

l
j(t) + T k

j ,

P k
ij(t) = (y̆kij(t)− yki)(pli(t)− pli)′,
P k
ij(t) = (ykia(t)− yki)(pli(t)− pli)′.

Different from (28), the Jacobi iterative method does not
need to solve the least squares problem in (27), which
may need to compute the inverse of a large matrix, i.e.,∑t̄

t=1E(t)′E(t) ∈ Rn×n ⊗ R12×12. Instead, we only need
to use (33) to replace Step 5 in Algorithm 3.

C. Distributed implementation of Jacobi method for fixed
graphs

Centralized algorithms are not scalable for the large net-
work. If G(t) is fixed, the Jacobi iterative method can even be
implemented in a distributed way, which is termed as DPPA
and given in Algorithm 4.

Algorithm 4 The Distributed PPA (DPPA) for Localizing
Multiple Target Nodes in a Fixed Graph

1: Input: Every target node i collects the information
Ii(t) =

⋃t̄
t=1{mi(t), p

l
i(t), p

g
a(t)|i ∈ Ti, a ∈ Ai},

where mi(t) is defined in (1).
2: Initialization: Every target node i randomly selects

R0
i ∈ SO(3) and T 0

i ∈ R3, and then broadcasts to its
neighboring target nodes j ∈ Ti.

3: Repeat
4: Distributed update: Each target node i simultaneously

computes

{ykij(t), ykia(t)|j ∈ Ti,Ai}, t ∈ [1 : t]

by using (25), and (Rk+1
i , T k+1

i) by using (33). Then, it
broadcasts (Rk+1

i , T k+1
i) to its neighboring target nodes

j ∈ Ti.
5: Set k = k + 1.
6: Until a predefined stopping rule (e.g., a maximum

iteration number) is satisfied.

Remark 4: By Proposition 2.3.1 [20], we can obtain the
similar result as Proposition 3 for Algorithms 3-4. Take
Algorithm 3 as an example. Let y = [y(1), . . . , y(t̄)] and

g(R, T,y) =

n∑
i=1

t̄∑
t=1

fi(Z, T, y(t)).

Then, there is a convergent subsequence of
{(Rk, T k,yk)}. To elaborate it, we obtain from (27)
that g(Zk, T k+1,yk) ≤ g(Rk, T k,yk). Since the
projection operator is non-expansive, it implies that
g(Rk+1, T k+1,yk) ≤ g(Zk, T k+1,yk). By (25), it holds that
g(Rk+1, T k+1,yk+1) ≤ g(Rk+1, T k+1,yk). Combining the
above, it finally yields that

g(Rk+1, T k+1,yk+1) ≤ g(Rk, T k,yk).

The rest of proof follows exactly the same as that of Proposi-
tion 3.

V. NUMERICAL EXPERIMENTS

In this section, we perform numerical experiments to val-
idate the proposed algorithms in Python 2.7 environment
on a MacBook Pro with 2.2 GHz Intel Core i7 CPU and
16GB DDR3. Open source packages such as Numpy 1.12.1
and cvxopt 1.1.9 are used for numerical computation. The
experiments are implemented in both two dimensional space
and three dimensional space. As there is no difference between
the two cases, we only report results of the two dimensional
case for visualization convenience.

A. Experiment setup

For the two-node localization problem, the coordinate sys-
tem of the target node is generated by a rotation matrix R and
a transformation vector T as follow

R =

[
cos θ − sin θ
sin θ cos θ

]
, T =

[
a
b

]
,

8

where the rotation angle θ ∼ U(0, 2π), and a, b ∼ U(−1, 1)
are randomly selected with uniform distributions. The target
node and the anchor node are randomly moving in a square
area [1, 9] × [1, 9]. We also randomly select pl(t) and pg(t)
such that pg(t) ∈ [1, 9]× [1, 9] and Rpl(t)+T ∈ [1, 9]× [1, 9].

Then their range measurements at time slot t are generated
by r(t) = ‖Rpl(t)+T −pg(t)‖+ξ where the random noise is
ξ ∼ N(0, σ2). To quantify the noise level, define the signal-
to-noise ratio (SNR) by

SNRdB = 10 log10

(
d2

0

σ2

)
,

where d0 = 4.1712 is the average range of two nodes
in the area [1, 9] × [1, 9]. Clearly, a smaller SNR means a
higher noise level. Our objective is to compute the coordinate
system parameters under different signal-to-noise ratios by the
proposed algorithms, which are denoted as R̂ and T̂ . We are
concerned with their relative errors

errR =
‖R̂−R‖F
‖R‖F

, errT =
‖T̂ − T‖
‖T‖ . (34)

For each target node i ∈ T in the multi-node localization
problem, R̂i and T̂i are denoted as the same way as that in the
two-node localization scenario. Similarly, all nodes are limited
to the square area [1, 9]× [1, 9].

B. Experimental results of the two-node localization problem

We compare the proposed PPA with the SDP based method
[13]. Since the method in [13] is unable to deal with general
multi-node situations, we only compare their algorithm for
localizing one target node with one anchor node.

Numerical experiments are performed under two noise
levels1 (SNR = 20 and SNR = 80) and three different t.
The results in Fig. 3 are obtained by averaging over 104

independent simulations. Since rotation matrices are more
difficult to estimate, we choose to report results mostly on
rotations and only include the final results on translations
for saving space. The green line corresponds to the use of
the pure SDP, and the red line is the result of the PPA of
Algorithm 1. The blue line is the result of the GD with
the SDP initialization [13], i.e., SDP+GD, while the purple
line is the result of the PPA with the SDP initialization,
i.e., SDP+PPA. We also record the time used for running
different algorithms. In Fig. 3(a), it takes 4.96e-01s to find
the SDP based solution. To achieve the same relative rotation
error, it only takes 2.19e-03s by using PPA. Moreover, it only
takes 4.20e-03s for PPA to outperform the SDP+GD, whose
running time is (4.96e-01+6.88e-03)s. We also observe that
the SDP+PPA finally achieves the smallest relative rotation
error. If the SNR is large, see Fig.3(b), the PPA cannot reduce
the relative rotation error as small as that of the SDP due to
the use of random initialization and the gap induced by the
SDP relaxation decreases with SNR. However, the SDP+PPA
performs much better than the SDP+GD, both in terms of
running time and accuracy. In Table I, we include the final

1Kindly note that the results of SNR = 10, 20, 30 are consistent, we only
report the case of SNR = 20 for saving space.

0 200 400 600 800
Iteration k

1E+00

4E-01

5E-01

6E-01

7E-01

8E-01

9E-01

||R
k
−
R
|| F

/
||R
|| F

t=10, SNR=20

SDP

PPA

SDP+PPA

SDP+GD

4.96e-01s
2.19e-03s

4.20e-03s
2.65e-04s
6.88e-03s

0 10 20 30

6E-01

5E-01

7E-01

(a) t = 10, SNR = 20

0 200 400 600 800
Iteration k

1E-03

1E-02

1E-01

1E+00

||R
k
−
R
|| F

/
||R
|| F

t=10, SNR=80

SDP

PPA

SDP+PPA

SDP+GD

1.45e-01s
2.54e-02s

0 5 10 15

1E+00

1E-02

1E-01

(b) t = 10, SNR = 80

0 200 400 600 800
Iteration k

1E-01

1E+00

2E-01

3E-01

4E-01

5E-01

6E-01

7E-01

8E-01
9E-01

||R
k
−
R
|| F

/
||R
|| F

t=20, SNR=20

SDP

PPA

SDP+PPA

SDP+GD

1.99e-01s
6.81e-03s

8.43e-03s
1.27e-02s

1.74e-02s
2.29e-02s

0 25 50 75 100 125 150 175

2E-01

(c) t = 20, SNR = 20

0 200 400 600 800
Iteration k

1E-04

1E-03

1E-02

1E-01

1E+00

||R
k
−
R
|| F

/
||R
|| F

t=20, SNR=80

SDP

PPA

SDP+PPA

SDP+GD

1.27e-01s
3.51e-02s
5.21e-02s
6.34e-02s

0 50 100 150 200 250 300 350

2E-04

(d) t = 20, SNR = 80

0 200 400 600 800
Iteration k

1E-01

1E+00

7E-02
8E-02
9E-02

2E-01

3E-01

4E-01

5E-01

6E-01

7E-01
8E-01
9E-01

||R
k
−
R
|| F

/
||R
|| F

t=40, SNR=20

SDP

PPA

SDP+PPA

SDP+GD

1.55e-01s
4.66e-03s

6.11e-03s
1.05e-02s

9.22e-03s
1.35e-02s

0 20 40 60 80 100 120

1E-01

9E-02

8E-02

(e) t = 40, SNR = 20

0 200 400 600 800
Iteration k

1E-04

1E-03

1E-02

1E-01

1E+00

||R
k
−
R
|| F

/
||R
|| F

t=20, SNR=80

SDP

PPA

SDP+PPA

SDP+GD

1.27e-01s
3.51e-02s
5.21e-02s
6.34e-02s

0 50 100 150 200 250 300 350

2E-04

(f) t = 40, SNR = 80

Fig. 3. Convergence and running time of the PPA and the state-of-the-art
algorithms for different t and SNR.

results, i.e., the number of iterations is set to 1000, on the
relative translation errors when t̄ = 20. In summary, both Fig.
3 and Table I consistently validate the advantages of the PPA
of Algorithm 1.

TABLE I
RELATIVE ERRORS OF TRANSLATION (%).

Algorithms SDP PPA SDP+PPA SDP+GD
SNR=20 7.85 5.87 5.87 5.99
SNR=30 6.20 4.48 4.48 5.12
SNR=80 0.09 0.06 0.06 0.06

Next, the performance of the RPA of Algorithm 2 is shown
in Fig. 4, which illustrates that the relative error of the
rotation matrix essentially decreases with the number of range
measurements. Due to the use of approximation in deriving
the RPA of (17), it further induces performance degradation
in comparison with the PPA. Note that the method in [13] is
unable to write in a recursive form.

C. Experimental results of the multi-node localization problem
In this subsection, we apply Algorithm 3 to a sensor network

which contains 110 target nodes and 4 anchor nodes. All

9

0 50 100 150 200
Number of measurements

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

R
el

at
iv

e
er

ro
rs

 o
f

ro
ta

tio
n

PPA
RPA

Fig. 4. Relative errors of rotation matrices by PPA and RPA for SNR=20.

TABLE II
DISTRIBUTION OF TARGET-ANCHOR MEASUREMENTS OVER TARGET

NODES

of target-anchor
range measurements 0 ≤ 5 ≤ 10 ≤ 15 ≤ 20 > 20

of target nodes 56 23 17 10 3 1
percentages (%) 50.9 20.9 15.5 9.1 2.7 0.9

the target nodes are randomly deployed in a two dimen-
sional area [1, 9] × [1, 9], and 4 anchor nodes are located
at (2, 2), (2, 8), (8, 2), (8, 8) respectively. Each node moves
randomly in a unit square centered at its initial position.

Two nodes can communicate only if their distance is within
1, which clearly results in time-varying communication graphs.
The SNR of each node is set to SNR = 100. The localization
results of target nodes at time slots t = 5 and t = 25 are
presented in Fig. 5. We observe that the localization accuracy
is improved when t increases and all target nodes are well
localized.

At the time slot t = 25, we count the number of target-
anchor range measurements for each target node, which is
shown in Table II. One can observe that in our cooperative
localization method, more than a half (50.9%) of target nodes
have never directly taken range measurements with respect
to any anchor node. However, their positions can also be
successfully localized by Algorithm 3 as shown in Fig. 5(b),
which confirms the benefit of using cooperative methods.

Finally, we compare Algorithm 3 with the DPPA of Algo-
rithm 4 in a fixed graph G = (V, E) with 110 target nodes and
4 anchor nodes. Note that the DPPA is only applicable to a
fixed graph. Define the average degree by

Deg = |E|/|V|

which characterizes the edge density of a network. By varying
the average degree and the SNR, we implement both algo-
rithms using the range measurements in a period of time t
(t is set from 5 to 25). The resulting coordinate alignment
relative errors are presented in Fig.6, which illustrate that
their performances are very close, and increasing the length of
time interval t or the network density, both algorithms lead to
better estimates. However, we recommend to use DPPA for a
fixed graph as it involves simpler iterations and is a distributed
version.

1

2
3

4

5

6

7

8

9

10

11

12 13

14

1516

1718

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

4647

48
49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65
66

67 68

69

70

71
72

73

74

75

76

77

78 79

80

81

82

83

84

85

86

87
88

8990

91 92

93

94
95

96

97

98 99

100

101

102

103

104

105

106

107
108

109

110

111

112

113

114

(a) Position estimation of target nodes at t = 5

1

2

3

4

5

6

7

8

910

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32
33

34

35
36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

5152

53
54

55

56

57

58

59

60

61

62

63

64

6566

67

6869

70

71

72

73

74

75

76

77

78

79

80

81

82

83 84

85

86

87

88

89

90

91
92

93

94

95

96

97

98

99

100

101

102

103

104

105
106

107

108109

110

111

112

113

114

(b) Position estimation of target nodes at t = 25

Fig. 5. Localization results by Algorithm 3. Red and black circles denote
true positions of anchor nodes and target nodes. Gray circles are the estimated
positions of target nodes. Gray edges represent the association between true
positions and their estimated positions of target nodes.

5 10 15 20 25
Length of time interval

10−1

M
ea

n
re

la
ti

ve
er

ro
r

of
R

(Deg=7.80, Alg.3)

(Deg=7.80, Alg.4)

(Deg=15.1, Alg.3)

(Deg=15.1, Alg.4)

(a) Mean relative error for SNR=10

5 10 15 20 25
Length of time interval

10−1

M
ea

n
re

la
ti

ve
er

ro
r

of
R

(Deg=7.80, Alg.3)

(Deg=7.80, Alg.4)

(Deg=15.1, Alg.3)

(Deg=15.1, Alg.4)

(b) Mean relative error for SNR=15

5 10 15 20 25
Length of time interval

10−1

M
ea

n
re

la
ti

ve
er

ro
r

of
R

(Deg=7.80, Alg.3)

(Deg=7.80, Alg.4)

(Deg=15.1, Alg.3)

(Deg=15.1, Alg.4)

(c) Mean relative error for SNR=20

5 10 15 20 25
Length of time interval

10−2

10−1

M
ea

n
re

la
ti

ve
er

ro
r

of
R

(Deg=7.80, Alg.3)

(Deg=7.80, Alg.4)

(Deg=15.1, Alg.3)

(Deg=15.1, Alg.4)

(d) Mean relative error for SNR=35

Fig. 6. Relative errors by using Algorithm 3 and Algorithm 4.

10

VI. CONCLUSION

This work considers the cooperative localization as a co-
ordinate alignment problem using range measurements. To
align the coordinate of a target node with an anchor node,
we present PPA and RPA respectively. Then, the algorithms
are generalized to the case of multiple target nodes in a
sensor network. The effectiveness of all algorithms have been
validated by numerical experiments. The state-of-the-art works
such as the SDP and the SDP+GD are also compared with
our work, which confirms the advantages of the proposed
algorithms.

REFERENCES

[1] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, R. L. Moses, and
N. S. Correal, “Locating the nodes: cooperative localization in wireless
sensor networks,” IEEE Signal Processing Magazine, vol. 22, no. 4, pp.
54–69, 2005.

[2] H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative localization in
wireless networks,” Proceedings of the IEEE, vol. 97, no. 2, pp. 427–
450, 2009.

[3] S. S. Kia, S. Rounds, and S. Martinez, “Cooperative localization for
mobile agents: a recursive decentralized algorithm based on kalman-
filter decoupling,” IEEE Control Systems, vol. 36, no. 2, pp. 86–101,
2016.

[4] R. M. Buehrer, H. Wymeersch, and R. M. Vaghefi, “Collaborative sensor
network localization: Algorithms and practical issues,” Proceedings of
the IEEE, vol. 106, no. 6, pp. 1089–1114, 2018.

[5] Z. Wang, S. Zheng, S. Boyd, and Y. Ye, “Further relaxations of the SDP
approach to sensor network localization,” Stanford University, Tech.
Rep, Tech. Rep., 2006.

[6] P. Tseng, “Second-order cone programming relaxation of sensor network
localization,” SIAM Journal on Optimization, vol. 18, no. 1, pp. 156–
185, 2007.

[7] J. Nie, “Sum of squares method for sensor network localization,”
Computational Optimization and Applications, vol. 43, no. 2, pp. 151–
179, 2009.

[8] Y. Shang, W. Rumi, Y. Zhang, and M. Fromherz, “Localization from
connectivity in sensor networks,” IEEE Transactions on Parallel and
Distributed Systems, vol. 15, no. 11, pp. 961–974, 2004.

[9] C. Soares, J. Xavier, and J. Gomes, “Simple and fast convex relaxation
method for cooperative localization in sensor networks using range
measurements,” IEEE Transactions on Signal Processing, vol. 63, no. 17,
pp. 4532–4543, 2015.

[10] M. R. Gholami, L. Tetruashvili, E. G. Ström, and Y. Censor, “Coopera-
tive wireless sensor network positioning via implicit convex feasibility,”
IEEE Transactions on Signal Processing, vol. 61, no. 23, pp. 5830–5840,
2013.

[11] T. Jia and R. M. Buehrer, “A set-theoretic approach to collaborative
position location for wireless networks,” IEEE Transactions on Mobile
Computing, vol. 10, no. 9, pp. 1264–1275, 2011.

[12] Q. Chen, K. You, and S. Song, “Cooperative localization for autonomous
underwater vehicles using parallel projection,” in 13th IEEE Interna-
tional Conference on Control & Automation. IEEE, 2017, pp. 788–793.

[13] B. Jiang, B. D. Anderson, and H. Hmam, “3D relative localization
of mobile systems using distance-only measurements via semidefinite
optimization,” Transactions on Aerospace and Electronic Systems, in
press, 2019.

[14] A. Bahr, J. J. Leonard, and M. F. Fallon, “Cooperative localization for
autonomous underwater vehicles,” The International Journal of Robotics
Research, vol. 28, no. 6, pp. 714–728, 2009.

[15] G. Papadopoulos, M. F. Fallon, J. J. Leonard, and N. M. Patrikalakis,
“Cooperative localization of marine vehicles using nonlinear state es-
timation,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, 2010, pp. 4874–4879.

[16] S. E. Webster, R. M. Eustice, H. Singh, and L. L. Whitcomb, “Advances
in single-beacon one-way-travel-time acoustic navigation for underwater
vehicles,” The International Journal of Robotics Research, vol. 31, no. 8,
pp. 935–950, 2012.

[17] S. Wang, L. Chen, D. Gu, and H. Hu, “An optimization based moving
horizon estimation with application to localization of autonomous un-
derwater vehicles,” Robotics and Autonomous Systems, vol. 62, no. 10,
pp. 1581–1596, 2014.

[18] B. Allotta, A. Caiti, R. Costanzi, F. Fanelli, E. Meli, and A. Ridolfi, “De-
velopment and online validation of an ukf-based navigation algorithm
for auvs,” IFAC-PapersOnLine, vol. 49, no. 15, pp. 69–74, 2016.

[19] Y. Huang, Y. Zhang, B. Xu, Z. Wu, and J. A. Chambers, “A new adaptive
extended kalman filter for cooperative localization,” IEEE Transactions
on Aerospace and Electronic Systems, vol. 54, no. 1, pp. 353–368, 2018.

[20] D. P. Bertsekas, Nonlinear Programming, 3rd edition. Athena Scientific,
2016.

[21] C. Yu, B. Fidan, and B. D. Anderson, “Principles to control autonomous
formation merging,” in American Control Conference. IEEE, 2006, pp.
762–768.

[22] H. Naseri and V. Koivunen, “Cooperative simultaneous localization and
mapping by exploiting multipath propagation,” IEEE Transactions on
Signal Processing, vol. 65, no. 1, pp. 200–211, 2017.

[23] S. Umeyama, “Least-squares estimation of transformation parameters
between two point patterns,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 13, no. 4, pp. 376–380, 1991.

[24] L. Andersson and T. Elfving, “A constrained procrustes problem,” SIAM
Journal on Matrix Analysis and Applications, vol. 18, no. 124–139,
1997.

[25] “Procrustes analysis,” https://www.mathworks.com/help/stats/procrustes.
html, accessed Feb 17, 2020.

[26] B. D. Anderson and J. B. Moore, Optimal Filtering. Courier Corpora-
tion, 2012.

[27] D. C.-L. Fong and M. Saunders, “Lsmr: An iterative algorithm for sparse
least-squares problems,” SIAM Journal on Scientific Computing, vol. 33,
no. 5, pp. 2950–2971, 2011.

Keyou You (SM’17) received the B.S. degree in
Statistical Science from Sun Yat-sen University,
Guangzhou, China, in 2007 and the Ph.D. de-
gree in Electrical and Electronic Engineering from
Nanyang Technological University (NTU), Singa-
pore, in 2012. Currently, he is a tenured Associate
Professor in the Department of Automation, Ts-
inghua University, Beijing, China. His research inter-
ests include networked control systems, distributed
optimization and learning, and their applications. Dr.
You received the Guan Zhaozhi award in 2010 and

the Asian Control Association Temasek Young Educator Award in 2019. He
was selected to the National 1000-Youth Talent Program of China in 2014 and
received the National Science Fund for Excellent Young Scholars in 2017.

Qizhu Chen received the B.E. degree in System
Science and Engineering from Nanjing University,
Nanjing, China, in 2015 and received the M.E degree
in Control Science and Engineering from Tsinghua
University, Beijing, China, in 2018. Currently, he
is engaged in algorithm research and data mining
in Beijing Science and Technology Co, three fast
online. His research interests include distributed op-
timizations, machine learning, and their applications.

Pei Xie received the B.E. degree and Ph.D degree
in Control Science and Engineering from Tsinghua
University, Beijing, China, in 2013 and 2019 respec-
tively. Currently, he is engaged in algorithm research
and data mining in JD.COM. His research interests
include distributed optimizations, machine learning,
operation research, and their applications.

https://www.mathworks.com/help/stats/procrustes.html
https://www.mathworks.com/help/stats/procrustes.html

11

Shiji Song received the Ph.D. degree in the Depart-
ment of Mathematics from Harbin Institute of Tech-
nology in 1996. He is a professor in the Department
of Automation, Tsinghua University. His research
interests include system modeling, control and op-
timization, computational intelligence and pattern
recognition.

APPENDIX

A. Proof of Proposition 1

Proof: We first prove that f(R, T) is coercive [20] with
respect to T , i.e.,

lim
‖T‖→∞

f(R, T) =∞ (35)

where ‖T‖ = (
∑n

i=1 ‖Ti‖2)1/2. Suppose that ‖T‖ → ∞, then
there must exist some target node i such that ‖Ti‖ → ∞. We
have two exclusive scenarios.

If
⋃t

t=1Ai(t) is nonempty, e.g., there exists an anchor node
a such that a ∈ Ai(t) for some t, i.e., the component fAia(t)
exists in the objective function. Then, one can easily verify
that fAia(t) tends to infinity as ‖Ti‖ → ∞. This implies that
lim‖Ti‖→∞ f(R, T) =∞.

If
⋃t

t=1Ai(t) is empty, the target node i must connect
to an anchor node via some target node j with a nonempty⋃t

t=1Aj(t) in the union graph
⋃t

t=1 G(t) since otherwise, the
target node i is disconnected to anchor nodes. Particularly, let
(j0, j1), . . . , (jk−1, jk) ∈ ⋃t

t=1 E(t) be the consecutive edges
from node i = j0 to node j = jk. Suppose

lim
‖Ti‖→∞

t∑
t=1

k−1∑
v=0

fTjvjv+1
(t, R, T) <∞,

it follows from (2) that ‖Tj0‖ = . . . = ‖Tjk‖ = ∞.
Since

⋃t
t=1Aj(t) is nonempty, it immediately implies that

lim‖Tj‖→∞ f(R, T) =∞.
Overall, (35) is proved. Since the rotation group SO(3) is

compact and f(R, T) is continuous, the rest of proof follows
from the Weierstrass’ theorem [20, Proposition A.8].

B. Proof of Proposition 2

Proof: For any fixed R ∈ SO(3), it is obvious that T =
yk−Rpl minimizes the objective function of (14) with respect
to T . Let T = yk−Rpl in the objective function of (14). Then,
it follows that∑t

t=1
‖Rpl(t) + (yk −Rpl)− yk(t)‖2

=
∑t

t=1
−2 (yk(t)− yk)′R(pl(t)− pl) + c

= −2 trace
(
R′P k

)
+ c

where c is independent of R and is not explicitly given here.
Then, Rk+1 is obtained via the minimization problem

Rk+1 = argminR∈SO(3) − 2 · trace
(
R′P k

)
= argminR∈SO(3)‖R− P k‖2F
= PSO(3)(P

k),

where the second equality follows from the fact that ‖R −
P k‖2F = trace((R − P k)′(R − P k)) = −2trace(R′P k) +
(P k)′P k + I for any R ∈ SO(3).

C. Proof of Proposition 3

Proof: By (13) and yk−1(t) ∈ S(t),∀t ∈ [1 : t̄], it follows
‖Rkpl(t) + T k − yk(t)‖ ≤ ‖Rkpl(t) + T k − yk−1(t)‖, which
implies that

g(qk) ≤ g(Rk, T k, yk−1
1 , . . . , yk−1

t̄).

By (14), we obtain that
∑t

t=1 ‖Rkpl(t) + T k − yk−1(t)‖2 ≤∑t
t=1 ‖Rpl(t) + T − yk−1(t)‖2 for all R ∈ SO(3) and T ∈

R3. Since Rk−1 ∈ SO(3) and T k−1 ∈ R3, this implies that

g(Rk, T k, yk−1
1 , . . . , yk−1

t̄) ≤ g(qk−1).

Thus, it holds that g(qk) ≤ g(qk−1). Since SO(3) and S(t) are
compact, it follows from (15) that {qk} is a bounded sequence.
Thus, it contains a convergent subsequence.

D. Proof of Proposition 4

Proof: Clearly, both ȳ(t) and p̄l(t) compute the time
average of their associated vectors and can be expressed as

ȳ(t) =
1

t

t∑
i=1

y(i) and p̄l(t) =
1

t

t∑
i=1

pl(i).

Moreover, it holds that

P (t) =

t∑
i=1

(y(i)− ȳ(t))(pl(i)− p̄l(t))′.

In fact, let ỹ(t) = y(t)−ȳ(t−1) and p̃l(t) = pl(t)−p̄l(t−1).
Then, it follows from (19) that

P (t) =

t∑
i=1

(y(i)− ȳ(t− 1)− 1

t
ỹ(t))

× (pl(i)− p̄l(t− 1)− 1

t
p̃l(t))′

= P (t− 1) +
t− 1

t2
ỹ(t)p̃l(t)′ + (1− 1

t
)2ỹ(t)p̃l(t)′

= P (t− 1) + (1− 1

t
)ỹ(t)p̃l(t)′.

The rest of proof follows directly from that of Proposition
2 and is omitted.

	I Introduction
	II Problem Statement
	II-A The mobile sensor network
	II-B Coordinate alignment for cooperative localization

	III Localizing a Target Node with an Anchor Node
	III-A Optimization problem reformulation using projection
	III-B Parallel projection algorithm
	III-C The recursive projection algorithm

	IV Localizing Multiple Target Nodes in the Sensor Network
	IV-A Optimization problem reformulation using projection
	IV-B Parallel projection algorithms
	IV-B1 Constrained least squares
	IV-B2 Jacobi iterative method

	IV-C Distributed implementation of Jacobi method for fixed graphs

	V Numerical Experiments
	V-A Experiment setup
	V-B Experimental results of the two-node localization problem
	V-C Experimental results of the multi-node localization problem

	VI Conclusion
	References
	Biographies
	Keyou You
	Qizhu Chen
	Pei Xie
	Shiji Song

	Appendix
	A Proof of Proposition 1
	B Proof of Proposition 2
	C Proof of Proposition 3
	D Proof of Proposition 4

