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Abstract—We study the admissibility problem in multivariate
algebraic systems such as AC electrical networks, where the
power injection is quadratic in the state. The goal of such
systems is to ensure that the state stays in some security set (e.g.,
magnitudes of nodal voltages and branch currents are within
safety bounds). A common practice is to implicitly control the
state by controlling the injection; a difficulty is that the number
of states that correspond to a given injection can be zero or
many. Further, the injection is subject to some uncertainty. The
admissibility problem is whether it is possible to ensure that
the state stays in the security set, given that the only available
information is some uncertainty set that constrains the injection.
We extend the recently proposed V-control theory, design a
solution framework to test if a given uncertainty set is admissible,
and develop a concrete method for AC electrical networks.

Index Terms—control, multivariate quadratic algebraic sys-
tems, security constraints, uncertainty, non-singularity, polyno-
mial optimization, convex relaxation, feasibility check.

I. INTRODUCTION

In multivariate industrial systems like AC electrical net-
works and pipeline networks of incompressible flows, the
system injection is a quadratic algebraic function of the
system state. For example, in an AC electrical network, the
system injection (represented by real and imaginary parts of
all complex nodal powers) is determined by the system state
(represented by real and imaginary parts of all complex nodal
voltages) via the quadratic power-flow function.

In such systems, due to the underlying physical nature, the
state usually evolves as a continuous function of continuous
time. During the evolution, the system’s goal is to ensure that
the state stays in some predefined security set Vsecure where (i)
every state in Vsecure satisfies the system security constraints,
and (ii) the Jacobian matrix of the quadratic algebraic system
is non-singular at every state in Vsecure. For this goal, a
common practice is to implicitly control the state by explicitly
controlling the injection. For example, in electrical networks,
this is conducted by means of power-electronic devices.

Due to uncertainties, the actual implemented injection might
differ from its target value, and is often considered to reside in
some known uncertainty set, Suncertain. This makes it difficult
to ensure that the actual achieved state stays in Vsecure, and
hence may result in malfunction of the system. Motivated
by this issue, the “admissibility problem” is formulated as:
whether it is possible to guarantee that the state stays in Vsecure,
given that the only available information is that the injection
stays in Suncertain. More specifically, given an initial state
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The authors are with École Polytechnique Fédérale de Lausanne

(EPFL), CH-1015 Lausanne, Switzerland (e-mail: cong.wang@epfl.ch;
eleni.stai@epfl.ch; jean-yves.leboudec@epfl.ch).

vinitial ∈ Vsecure and given a set Suncertain that contains the
initial injection, we say that Suncertain is admissible for vinitial

if any continuous path of the state, such that the corresponding
injection remains in Suncertain, must stay in Vsecure (a formal
definition is presented in Definition 1 of Section II-A).

For this problem, the main difficulty is that every injection
in Suncertain can have zero or multiple corresponding states,
owing to the quadratic nature of the multivariate function that
maps state to injection. In [1], it has been shown that it is
not sufficient that every injection in Suncertain has at least one
corresponding state in Vsecure: In such cases, the state can
escape Vsecure (see Figure 1 in [1]). In contrast [1, Lemma
2], the problem goes away if every injection in Suncertain

has exactly one corresponding state in Vsecure (and given the
condition that Vsecure is open and non-singular). However, as
we show in Section II-D, this condition is impractical, since
there are scenarios in which it is possible to ensure that the
state stays in Vsecure, though there are injections in Suncertain

that have multiple corresponding states in Vsecure.
To solve the admissibility problem, our approach consists

in constructing an appropriate set of states V such that V
is a subset of Vsecure, and such that, for every injection in
Suncertain, there exists a unique corresponding state in V (by
Lemma 2 in [1], this ensures admissibility). To this end, we
propose two new theorems (Theorems 2 and 3 in Section
III-A) that guarantee such existence and uniqueness. Based
on the proposed theorems, we design a solution framework
in Section III-B for solving the admissibility problem, and
develop a concrete method for AC electrical networks in
Section IV. Specifically, our main contributions are as follows:

1) In Section III-B, we propose a framework that uses and
extends the results in [1], to solve the admissibility problem.
The framework is based on two new theorems in Section III-A:

• In Theorem 2, we show that if a set V of states is convex
and the Jacobian matrix of the system is non-singular
everywhere in V, then V is a domain of uniqueness.

• In Theorem 3, we provide sufficient conditions on an
arbitrary set V of states and on an arbitrary set S of
injections, so that every injection in S is guaranteed to
have a corresponding state in V; the conditions are based
on the impossibility of obtaining a state at the boundary
of V for any injection in S.

2) In Sections IV-A and IV-B, we use the proposed
framework and develop a concrete method for solving the
admissibility problem in AC electrical networks. To evaluate
the performance of our concrete method, we apply it to a few
test networks. For illustration purposes, in Section V, we show
numerical results on a meshed 15-bus CIGRE network and a
radial 34-bus IEEE network.
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II. PROBLEM FORMULATION AND STATE OF THE ART

A. Problem Formulation

We consider a system where, at any point of time, the
state is characterized by vector v and the injection is vector
s = F(v). Both v, s belong to a Euclidean space of finite
dimension M , and F is a quadratic function determined by
system parameters. Here, a Euclidean space of dimension M

can be either RM or CN with M = 2N . When the system is
represented in CN with M = 2N , F is real-quadratic instead
of complex-quadratic. We denote the Jacobian matrix of F

evaluated at v by JF(v). For this system, let us study a
situation where (i) v, s are functions of continuous time t,
expressed as v(t), s(t); (ii) the system is steered by a controller
whose goal is to maintain v(t) in a security set Vsecure that
satisfies Assumption 1, by acting on s(t).
Assumption 1. Vsecure is bounded and described as

Vsecure =
{

v : JF(v) non-singular,

f`(v) > 0, ` ∈ {1, ..., Lsecure}
}
,

where f` are continuous functions.

Suppose that, at some time t0,

• v(t0) is observed and belongs to Vsecure;
• The controller decides a new value of injection, s∗, to be

implemented during time interval (t0, t1] for some t1 > t0.

Ideally, we expect that s(t) = s∗, ∀t ∈ (t0, t1]. But in reality,

• s(t) is continuous and starts from s(t0) = F(v(t0));
• s(t) is uncertain, caused by, e.g., uncaptured dynamics,

reaction delays, and disturbances from natural resources.

In a control framework such as Commelec [2], for every
value of s∗, the controller derives a set of injections Suncertain

(using the “belief functions”), such that s(t) ∈ Suncertain,
∀t ∈ [t0, t1]. Due to the uncertainty in s(t), we cannot precisely
know the state, v(t), for t ∈ (t0, t1]. This issue leads to a
question: given that the only available information of s(t) is
that s(t) ∈ Suncertain, ∀t ∈ [t0, t1], is it possible to ensure that
v(t) ∈ Vsecure, ∀t ∈ [t0, t1] ? We formalize this question as
the admissibility problem. Specifically, we assume that v(t) is
continuous and introduce the following concept.

Definition 1. Given any initial state vinitial and uncertainty set
Suncertain of injections such that

(I1) vinitial ∈ Vsecure,
(I2) F(vinitial) ∈ Suncertain,
we say Suncertain is admissible for vinitial if, for any continuous
function v(t), t ∈ [0, 1] such that v(0) = vinitial and F(v(t)) ∈
Suncertain, ∀t ∈ [0, 1], we have that v(t) ∈ Vsecure,∀t ∈ [0, 1].

Using Definition 1, the admissibility problem is as follows.

Admissibility Problem: Given an initial state vinitial and an
uncertainty set Suncertain that satisfy conditions (I1)–(I2), is
Suncertain admissible for vinitial ?

In other words, the problem is to determine whether the
connected component of F−1(Suncertain) that contains vinitial

is included in Vsecure, where F−1 means the pre-image.

B. Application to AC Electrical Networks: Problem Formula-
tion

In this section, we illustrate the problem formulation of
Section II-A with the case of an AC electrical network. Later,
in Section IV, we will solve the admissibility problem in
AC electrical networks using our proposed framework. As we
explain in detail below, in this case:

• The state v is the collection of complex nodal voltages.
We use complex values as the formulation is more
succinct; this can naturally be mapped to real values using
real and imaginary parts (i.e. rectangular coordinates).

• The injection s is the collection of complex nodal power
injections (i.e. active and reactive powers).

• The function F defines the AC power flow equation (3);
it is real quadratic in rectangular coordinates.

• Vsecure is the set of electrical state that satisfy constraints
on the magnitudes of branch currents and nodal voltages,
(5)-(7).

• Suncertain is the set of all possible complex power in-
jections s (see Section V for a numerical example of
Suncertain). Typically, a grid controller gives operational
bounds to generators and loads; the set Suncertain quan-
tifies the bounds allowed by the controller plus the
uncertainty in the implementation of power setpoints [2].

Consider an AC network with one slack bus, N PQ buses and
a generic topology (i.e., radial or meshed). We assume that the
network topology is fixed and known. In addition, we assign
index 0 to the slack bus, and indexes 1, ..., N to the PQ buses.
For convenience of expression, we define

• N = {0, ..., N} as the index set of all buses;
• NPQ = N \ {0} as the index set of PQ buses;
• E = {jk : a branch exists between buses j, k ∈ N} as a

set of ordered index pairs.

At each bus j ∈ N , we denote the complex nodal voltage,
current and power by vj , ij and sj , respectively. Furthermore,
let v = (v1, ..., vN )T , i = (i1, ..., iN )T and s = (s1, ..., sN )T .

By [1], v, i, and s fulfill the following relation:
i = YLL(v −w), (1)

s = diag(v)i, (2)

where

• YLL ∈ CN×N is the invertible1 submatrix on the bottom-
right corner of the (N + 1) × (N + 1) nodal admittance
matrix, which is characterized by network topology as
well as the parameters of π-modeled transmission lines
and transformers [5], [6];

• w ∈ CN is the constant zero-injection state;
• diag(v) is the diagonal matrix formed by v;
• “ ¯ ” stands for complex conjugation.

Combine (1) and (2), we have
s = diag(v)YLL(v −w)

= F(v), (3)

which concretely defines the F in Section II-A.
Now, consider the following.

1Detailed proof of invertibility can be found in [3] and [4].
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• The branch current from bus j to bus k can be expressed
as a linear function of v:

ijk = ajkv0 + cTjkv, (4)

where ajk ∈ C, cjk ∈ CN are constants given by the
π-modeled transmission lines and transformers;

• The magnitude of the nodal voltage at bus j should stay
within (V min

j , V max
j ), and the magnitude of the branch

current from bus j to k should stay in [0, Imax
jk ), for some

positive real safety bounds V min
j ,V max

j ,Imax
jk .

We have the system security constraints as follows:

fV,low
j (v) = |vj |2 −

(
V min
j

)2
> 0, ∀j ∈ NPQ, (5)

fV,up
j (v) = −|vj |2 +

(
V max
j

)2
> 0, ∀j ∈ NPQ, (6)

f I,branch
jk (v) = −|ajkv0 + cTjkv|2 +

(
Imax
jk

)2
> 0, ∀jk ∈ E , (7)

which specify the details of the continuous functions
f`(v), ` ∈ {1, ..., Lsecure} in Assumption 1 that are used
to construct the set Vsecure. (Note that in the related work
[7], the branch-current constraints (7) are replaced by linear
constraints on the angles of v in polar coordinates, which is
invalid in practice.)

C. State of the Art

The admissibility problem is a control problem. Different
from many existent control problems where the goal is to
design a controller that drives the state and injection to some
prescribed values (e.g., [8]), the goal of the admissibility prob-
lem is to see whether it is possible to guarantee that the state
stays in a security set, given that the injection is constrained in
some uncertainty set. As aforementioned in Section I, the main
difficulty of the problem is that every injection in Suncertain

can have zero or multiple corresponding states. This difficulty
comes from the quadratic nature of the system.2 Although
upper bounds on the number of corresponding states are given
in [9], [10], they do not guarantee uniqueness of the state and
hence do not ensure admissibility.

In the literature, the admissibility problem is first investi-
gated in [2] for AC electrical networks. Therein, a solution
method is proposed, based on the following assumptions:

• For any injection in Suncertain, if there exists a corre-
sponding state in Vsecure, then this state is unique.

• The extreme values of the state are obtained at the
extreme values of the injection.

But these assumptions might not hold in practice. Specifically,
• For an injection, there can be more than one correspond-

ing state in Vsecure [11].
• The extreme values of the state can be obtained at non-

extreme values of the injection [1].
In [12], another method is developed for the admissibility
problem in AC electrical networks. This method assumes that
for every injection in Suncertain, there exists a corresponding
state in Vsecure. Based on this assumption, it tests the ad-
missibility by iteratively solving a collection of optimization
problems. This method has the following shortcomings:

• An injection may have zero corresponding state in Vsecure.

2Note that in control problems like [8], only linear system is considered.

• The iterative scheme is heuristic and does not have a
guaranteed convergence.

For every injection in Suncertain to have at least one corre-
sponding state in Vsecure, sufficient conditions are proposed
in [7], [13]. These conditions are obtained by exploiting
properties (e.g., topology, convexity) in both the space of states
and the space of injections. Despite the theoretical merits,
these works do not solve the admissibility problem, as the
existence of a state in Vsecure for every injection in Suncertain

is only a necessary condition for the admissibility.
Finally, the works in [14] and [15] propose an approach

for repairing convex and polynomial infeasible problems,
respectively, by adapting their parameters so that they become
solvable. Their focus is to achieve the feasibility of an opti-
mization problem by actually changing it. This is, however,
not the target of the admissibility problem, which is a control
problem seeking to ensure that the state lies in the security set
while injections change over time.

D. Theory of V-Control

In this section, we recall some definitions and results from
[1] that are originally proposed for AC electrical networks.
These results will be enriched in the subsequent sections, in
order to solve the admissibility problem.
Definition 2. For a set V of states and a set S of injections: S
is a domain of V-control if, for any continuous path v(t), t ∈
[0, 1] such that v(0) ∈ V and F(v(t)) ∈ S, ∀t ∈ [0, 1], we have
v(t) ∈ V,∀t ∈ [0, 1].

In Definition 2, the concept of V-control can be interpreted
as follows: Ensure the continuous path v(t) in V by keeping
the continuous path s(t) in S.

In [1], a number of sufficient conditions are given to
guarantee that some set of injections S is a domain of V-
control for some set V. This could be used to address the
admissibility problem, if we could show that Suncertain is a
domain of Vsecure-control. However, as we show below, such
a direct application might be unsuitable in practice.

Specifically, let us recall the following result from [1], which
gives sufficient conditions for S to be a domain of V-control.
Definition 3. For a set V of states:

• V is a domain of uniqueness if F(v) = F(v′) ⇒ v =

v′, ∀v,v′ ∈ V;
• V is non-singular if ∀v ∈ V, the Jacobian matrix JF(v)

is non-singular.
Theorem 1 (Lemma 2 of [1]). Let V be a set of states and S
be a set of injections. Assume that

1) V is open and non-singular;
2) ∀s ∈ S, there is a unique v ∈ V such that F(v) = s.

Then there exists a continuous mapping G : S → V such that
F(G(s)) = s, ∀s ∈ S, and S is a domain of V-control.

As mentioned above, a direct application of Theorem 1 to
the admissibility problem would be showing that Suncertain is
a domain of Vsecure-control. By Assumption 1, a sufficient
condition for this Vsecure-control to hold would be that every
injection in Suncertain has exactly one corresponding state in
Vsecure. However, this could be impractical and unnecessary,
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as there might be some injection in Suncertain that corresponds
to multiple states in Vsecure. To illustrate, let us consider the
AC electrical network in Figure 1.

210
Slack Bus PQ Bus 1 PQ Bus 2

1.02− 3.585 1.02− 3.585
v0 = 1

Fig. 1. Network topology with slack-bus voltage and admittances in p.u.
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Fig. 2. (i) Candidate initial states (vinitial,A1 , vinitial,A2 )T and
(vinitial,B1 , vinitial,B2 )T , which are presented by cyan “diamond” and
“square”; (ii) All states (marked by scattered blue “+”) in Vsecure that
correspond to the injections in Suncertain; (iii) Open and non-singular sets
VA
1 × VA

2 ⊆ Vsecure and VB
1 × VB

2 ⊆ Vsecure.

For ease of exposition, let the complex nodal voltage and
the complex nodal power at PQ bus j ∈ {1, 2} be vj , sj ,
respectively. As a result, the state is v = (v1, v2)T and the
injection is s = (s1, s2)T . Now, suppose that

• A state satisfies the security constraints if the nodal
voltage magnitudes at PQ buses are between 0.9–1.1 p.u.;

• The initial injection is set to sinitial1 = −1.105 + 1 p.u.,
sinitial2 = −1 + 1.105 p.u.;

• Suncertain = {(s1, s2)T : |sj − sinitialj | ≤ 10−5, j ∈ {1, 2}}.
For the given initial injection, the two corresponding

states in Vsecure are denoted by (vinitial,A1 , vinitial,A2 )T and
(vinitial,B1 , vinitial,B2 )T . Additionally, every injection in Suncertain

has two corresponding states in Vsecure, marked by scattered
“+” in Figure 2. In this example, Suncertain is admissible for

(vinitial,A1 , vinitial,A2 )T . To see why, construct the open and non-
singular set VA = VA

1 × VA
2 as in Figure 2(a) with

• VA
1 = {v1 : (

Re(v1−v
initial,A
1 )

0.0004
)2 + (

Im(v1−v
initial,A
1 )

0.0001
)2 < 1};

• VA
2 = {v2 : (

Re(v2−v
initial,A
2 )

0.0006
)2 + (

Im(v2−v
initial,A
2 )

0.0002
)2 < 1}.

Here, Re() (resp. Im()) is the real (resp. imaginary) part of a
complex value, and “×” means the Cartesian product. Clearly,
for each injection in Suncertain, the corresponding state around
(vinitial,A1 , vinitial,A2 )T is in VA. Moreover, for each injection in
Suncertain, there is exactly one corresponding state in VA. Next,
by Theorem 1, Suncertain is a domain of VA-control and is thus
admissible for (vinitial,A1 , vinitial,A2 )T . Note that the same logic
can be employed to prove that Suncertain is also admissible for
(vinitial,B1 , vinitial,B2 )T , using VB = VB

1 × VB
2 in Figure 2(b).

This example illustrates that, in order to apply the theory of
V-control in [1] to the admissibility problem, we need to build
an appropriate domain V that is typically smaller than Vsecure.
We explain how to perform this in the rest of the paper.

III. THEORETICAL FOUNDATIONS AND SOLUTION
FRAMEWORK

A. Theoretical Foundations

To solve the admissibility problem, we need new theoretical
results that go beyond Theorem 1. In detail, this is because the
2nd condition in Theorem 1 is difficult to verify in practice.
To address this issue, we propose two new theorems that
give sufficient conditions for the 2nd condition in Theorem
1 to hold. Specifically, ∀s ∈ S, Theorem 2 gives sufficient
conditions for the uniqueness of v ∈ V such that F(v) = s;
Theorem 3 gives sufficient conditions for the existence of
v ∈ V such that F(v) = s.

Theorem 2. If the set V of states is non-singular and convex,
then it is a domain of uniqueness.

Proof. We prove by contradiction. Let set V be non-singular
and convex. In addition, suppose that there exist v,v′ ∈ V
such that (i) F(v) = F(v′), and (ii) v 6= v′. Owing to
convexity, there is v+v′

2
∈ V. Furthermore, according to the

non-singularity in V, JF(v+v′

2
) is non-singular. However, by

Lemma 1 in Appendix-A, JF(v+v′

2
) should be singular since

F is quadratic. This creates a contradiction.

Theorem 3. Let V be a set of states, S be a set of injections,
and ∂V denote the topological boundary of V. Assume that

1) V is bounded, open and non-singular;
2) S is connected;
3) F(V)

⋂
S is non-empty;

4) F(∂V)
⋂
S is empty.

Then, for any s ∈ S, there exists a v ∈ V such that F(v) = s.

In the above, the topological boundary ∂V of V is the closed
set defined as ∂V = cl(V)\int(V), where cl(V) is the closure of
V (i.e., the smallest closed set containing V) and int(V) is the
interior of V (i.e., the largest open set contained in V) [16]. It
is also the set of points that can be expressed both as the limit
of a sequence of points in V and as the limit of a sequence
of points not in V . Furthermore, S is connected if S itself
and the empty set are the only subsets that are both closed
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and open in S. For S to be connected, a sufficient condition
is that S is path-connected.

Proof. We need to show that S ⊆ F(V), i.e., F(V)
⋂
S = S.

Since S is connected by condition 2), its closed and open
subsets are S and the empty set. Based on this, consider that
(i) F(V)

⋂
S ⊆ S, and (ii) F(V)

⋂
S is not empty by condition

3), we can prove F(V)
⋂
S = S by showing F(V)

⋂
S is both

closed and open in S, which we do next.
First, the openness of V implies ∂V = cl(V) \ V. As V is

bounded, cl(V) is compact. By continuity of F, F(cl(V)) is
compact and hence closed; thus F(cl(V))

⋂
S is closed in S.

By condition 4), F(cl(V) \ V)
⋂
S is empty. Thus, we have

F(cl(V))
⋂
S = F(V)

⋂
S. So, F(V)

⋂
S is closed in S.

Second, V is open and non-singular by condition 1). By the
Inverse Function Theorem [17], F(V) is open and therefore
F(V)

⋂
S is open in S. Thus, F(V)

⋂
S is a non-empty, closed

and open subset in S, which means that F(V)
⋂
S = S and

completes the proof.

In essence, Theorem 3 asserts that every s ∈ S has a
corresponding state in V, provided that

• At least one s? ∈ S has a corresponding state in V,
• It is impossible for any s ∈ S to have a corresponding

state at the boundary of V.
Intuitively, this is because: If there would be an s?? ∈ S that
has no corresponding state in V, then in order to continuously
move from s? to s??, the path in the state space must either hit
a singular point in V or exit V by crossing the boundary ∂V;
but this is made impossible by the 1st and the 4th conditions
in Theorem 3.

B. Solution Framework

Based on the theoretical foundations in Section III-A, we
develop a solution framework for the admissibility problem.

Observe that, through Definitions 1 and 2, Suncertain is
admissible for vinitial if there exists a set V such that

(O1) V ⊆ Vsecure;
(O2) vinitial ∈ V;
(O3) Suncertain is a domain of V-control.
By this observation, our framework consists in constructing a
set V, as large as possible, such that (O1)–(O3) are satisfied.
In the first step, we find a large open set Ṽ such that its
closure cl(Ṽ) is non-singular and convex, using some explicit
conditions on non-singularity (e.g., the ones given in [1], [18],
[19]). Then, let V be the intersection of Ṽ and Vsecure, which
fulfills (O1). Note, the obtained V is open and non-singular.
Moreover, by Theorem 2, it is also a domain of uniqueness.

In the second step, we first verify (O2) by inspection.
Then, for (O3), we test whether ∀s ∈ Suncertain, there is
no corresponding state at the boundary ∂V. This is done
by solving a number of feasibility problems (see Step 2
below). By Theorem 3, this will guarantee that there exists
a corresponding state v ∈ V for every s ∈ Suncertain. Further,
by Theorem 1, this will guarantee that (O3) is satisfied.

Specifically, the framework is described below.

Framework Given an initial state vinitial and a connected
uncertainty set Suncertain such that vinitial ∈ Vsecure and
F(vinitial) ∈ Suncertain (i.e., (I1)–(I2) are satisfied).

(Step 1) Construct V as follows:
• Find some appropriate continuous functions f`,
` ∈ {Lsecure + 1, ..., L} such that
Ṽ = {v : f`(v) > 0, ` = Lsecure + 1, ..., L} is large
and its closure is non-singular and convex;3

• Then, let V = {v : f`(v) > 0, ` = 1, ..., L} (i.e.,
let V = Ṽ

⋂
Vsecure).

(Step 2) Test whether
• vinitial ∈ V;
• The following problems are infeasible for all `.

[P0(`)] Find v such that :

f`′(v) ≥ 0, ∀`′ ∈ {1, ..., L} \ {`},
f`(v) = 0,

F(v) ∈ Suncertain.

If both tests succeed, then declare that Suncertain is
admissible for vinitial. Otherwise, we are unsure of
the admissibility.

Remark 1. In the related work [7], a convex set V is con-
structed such that (i) it satisfies a special form of inequalities
f`(v) > 0, and (ii) for any s in an analytically specified
neighborhood of sinitial, there exists at least one corresponding
state in V. Compared to the V obtained by our framework, the
one obtained in [7] cannot handle general forms of f`(v) > 0

and might be neither non-singular nor a domain of uniqueness.

Set V secure

Step 1

Step 2

vinitial &
Suncertain Set V

Declare that Suncertain is admissible for vinitial

OR
We are unsure of the admissibility

System Parameters

Fig. 3. Flow chart of the framework.

For the proposed framework, we highlight its structure in
Figure 3 and propose the following theorem on its validity.
Note that the theorem is formulated from a theoretical perspec-
tive and does not account for the finite numerical precision in
practical implementation.

Theorem 4. The above framework is correct in the sense that,
whenever it declares Suncertain admissible for vinitial, it is so.

Proof. We need to show that Suncertain is a domain of V-
control. By Theorem 1, as V is already open and non-singular,

3Note that cl(Ṽ) = {v : f`(v) ≥ 0, ` = Lsecure + 1, ..., L}.
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we only need to prove that ∀s ∈ Suncertain, there is a unique
v ∈ V such that F(v) = s.

According to Theorem 2, V is a domain of uniqueness,
because it is included in a non-singular and convex set. In
this way, it suffices to show that, for any s ∈ Suncertain, there
exists a v ∈ V such that F(v) = s. For this purpose, we check
the four conditions in Theorem 3.

In Theorem 3, the 1st and the 2nd conditions are automati-
cally satisfied due to Assumption 1. The 3rd condition follows
from F(vinitial) ∈ Suncertain.

Now, let us focus on the 4th condition. Since P0(`) is
infeasible for all `, we have that the set

F

(
L⋃
`=1

{
v : f`(v) = 0 and f`′(v) ≥ 0, `′ ∈ {1, ..., L} \ {`}

})
has an empty intersection with Suncertain. Therefore, we

can complete the proof by showing that the boundary ∂V is
contained in the set

L⋃
`=1

{
v : f`(v) = 0 and f`′(v) ≥ 0, `′ ∈ {1, ..., L} \ {`}

}
.

Consider that all f` are continuous and the topological
boundary of V is the set of points that are both limit points of
V and limit points of the complement of V. If v ∈ ∂V, then v is
the limit of some infinite sequence v(n) ∈ V, thus f`(v(n)) > 0

and f`(v) ≥ 0 for all `. Also, v is the limit of some infinite
sequence v′(n) outside V. Since there are only finitely many
inequalities, there must be at least one inequality, say with
index `?, such that f`?(v′(n)) ≤ 0 for an infinite number of
indexes n. It follows that f`?(v) ≤ 0 and thus f`?(v) = 0.

Observe that, in Step 1 of the framework, we attempt to
find a set V that is as large as possible. This contrasts with
what happened when we applied the theory of V-control in
Section II-D; there, V should be large enough, but not too
large. Indeed, the fact that Suncertain is a domain of V-control
might not automatically extend to a superset of V. On the
contrary, when using Theorems 2 and 3 as we do here, it is
always beneficial to have V as large as possible. This follows
from the theorem given below.

Theorem 5. Assume that we are given two implementations,
A and A′, of the framework, where, in Step 1, A constructs
V and A′ constructs V ′ ⊇ V. Also assume that the ground
truth is that Suncertain is admissible for vinitial. If A declares
Suncertain admissible for vinitial, then so does A′.

Proof. By hypothesis, we have that Suncertain and V satisfy the
four conditions in Theorem 3. In addition, in Step 1 of A′,
we have an open set Ṽ ′ such that (i) its closure cl(Ṽ ′) is non-
singular and convex, and (ii) V ′ = Ṽ ′

⋂
Vsecure. All we need

to show is that Suncertain and V ′ satisfy the four conditions in
Theorem 3, which we do next.

First, the open set Ṽ ′ is non-singular, since its closure cl(Ṽ ′)
is non-singular. Therefore, by Assumption 1, V ′ = Ṽ ′

⋂
Vsecure

is bounded, open and non-singular, which means that condition
1) in Theorem 3 holds.

Next, condition 2) in Theorem 3 holds by hypothesis, and
condition 3) in Theorem 3 holds because (i) F(V)

⋂
S is non-

empty; (ii)
(
F(V)

⋂
S
)
⊆
(
F(V ′)

⋂
S
)

.

Then, we show condition 4) in Theorem 3 by contradiction.
Suppose that there exists v ∈ ∂V ′ such that F(v) ∈ Suncertain.
Let F(v) = s and consider: (i) Suncertain and V satisfy all
the conditions in Theorem 3; (ii) V ⊆ V ′, both of which are
open and have empty intersection with ∂V ′. We have that there
exists v∗ ∈ V such that F(v∗) = s and v∗ 6= v. In this way, we
obtain two distinct elements in cl(Ṽ ′) that both correspond to
s ∈ Suncertain. However, this creates a contradiction, as cl(Ṽ ′)
is a domain of uniqueness according to Theorem 2. As a result,
we have that condition 4) in Theorem 3 holds.

IV. APPLICATION TO AC ELECTRICAL NETWORKS:
SOLUTION

In this section, we apply the proposed framework in Section
III-B to solve the admissibility problem in AC electrical
networks that is formulated in Section II-B. Specifically, we
develop a method in Sections IV-A and IV-B, which uses
the framework and correspondingly has two steps. Next, in
Section IV-C, we describe the computational complexity and
the implementation issues of this method.

A. Step 1 of the Method

As in the first step of our framework, we need to find an
open set Ṽ such that its closure cl(Ṽ) is non-singular and
convex. First, take into account the following (Chap. 5 of [20]):

• The singularity of Jacobian matrix JF usually occurs due
to high power generation and consumption;

• High power generation and consumption are linked to
large magnitudes of the branch and nodal currents.

Therefore, for cl(Ṽ) to be non-singular, we need to ensure that
no state in cl(Ṽ) has very large branch and nodal currents.
Based on this consideration, we let Ṽ be

Ṽ =
{

v : f̃ I,branch
jk (v) > 0, ∀jk ∈ E ,

f̃ I,node
j (v) > 0, ∀j ∈ NPQ

}
(8)

with
f̃ I,branch
jk (v) = −|ajkv0 + cTjkv|2 +

(
Ibranchjk

)2
, (9)

f̃ I,node
j (v) = −|Rowj(YLL)(v −w)|2 +

(
Inodej

)2
. (10)

Here, Rowj() means the j-th row of a matrix, and Ibranchjk ,
Inodej are some positive auxiliary constants. As can be seen,

• The set Ṽ defined in (8) is open and its closure is convex;
• (9)–(10) together specify the functions f`(v), ` ∈
{Lsecure + 1, ..., L} in Step 1 of the framework.

In what follows, our task is to find appropriate values for
constants Ibranchjk , jk ∈ E and Inodej , j ∈ NPQ such that the
set cl(Ṽ) is non-singular. To this end, recall that a necessary
condition for JF(v) to be singular is given by (8) in [19] as:

∃m ∈ NPQ such that
N∑
n=1

|(Y−1
LL)m,nin| ≥ |vm|, (11)

where (·)m,n is the entry of the m-th row, n-th column in a
matrix. By contraposition, a sufficient condition on the non-
singularity of JF(v) is obtained as follows:

N∑
n=1

|(Y−1
LL)m,nin| < |vm|, ∀m ∈ NPQ . (12)
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If this sufficient condition is satisfied ∀v ∈ cl(Ṽ), then cl(Ṽ) is
non-singular. Thus, we have the following proposition, where
‖ · ‖1 is the `1 norm. The corresponding proof can be found
in Appendix-B.
Proposition 1. The closure of the set Ṽ defined in (8) is non-
singular if the following problems are infeasible for all m,n ∈
NPQ and ψ, φ ∈ {1,−1}.
[P1(m,n, ψ, φ)] Find v such that :

f̃ I,branch
jk (v) ≥ 0, ∀jk ∈ E ,
f̃ I,node
j (v) ≥ 0, ∀j ∈ NPQ,

‖Rowm(Y−1
LL)‖1

(
ψRe

(
Rown(YLL)(v −w)

)
+ φIm

(
Rown(YLL)(v −w)

))
≥ |vm|,

ψRe
(
Rown(YLL)(v −w)

)
≥ 0,

φIm
(
Rown(YLL)(v −w)

)
≥ 0.

By above reasoning, we develop the first step of the
method as follows. Specifically, we fix some large values for
Ibranchjk , ∀jk ∈ E and attempt to find as large as possible
Inodej , ∀j ∈ NPQ such that P1(m,n, ψ, φ) are all infeasible.

Method (Step 1)
(1-a) First, fix Ibranchjk = Imax

jk , ∀jk ∈ E . 4

(1-b) Then, choose some positive reference values for Inodej

and denote them by Înodej , j ∈ NPQ. We could let
Înodej be the peak nodal current magnitude at bus j in
real-world operation, or just let all Înodej be the same.

(1-c) Next, let Inodej = λÎnodej , ∀j ∈ NPQ, where λ is a
positive scaling factor that will vary in the subsequent
step. In addition, for every j, specify some positive
threshold Ithresholdj , which should be an upper bound
on the largest possible nodal current magnitude at bus
j. These thresholds are used as stopping criteria of the
subsequent step.

(1-d) We start with a sufficiently small λ ∈
(0,minj I

threshold
j /Înodej ) (such that the problems

P1(m,n, ψ, φ) are all infeasible) and gradually increase
it by a fixed step size ∆λ, until (i) P1(m,n, ψ, φ) is no
longer simultaneously infeasible for all m,n ∈ NPQ,
ψ, φ ∈ {1,−1}; or (ii) λ ≥ minj I

threshold
j /Înodej .

(1-e) With the penultimate value of λ, we obtain Inodej , ∀j ∈
NPQ and the set Ṽ that is defined in (8).

(1-f) Last, we let V = Ṽ
⋂
Vsecure.

B. Step 2 of the Method

According to the second step of the proposed framework,
our main task amounts to checking the infeasibility of P0(`)

for every ` ∈ {1, ..., L} as explained in Section III-B.
Observe that, for each problem P0(`), we have
• f`(v), ` ∈ {1, ..., L} are all polynomial in Re(v), Im(v);
• F(v) is a system of polynomials in Re(v) and Im(v).

Therefore, the constraints in P0(`) are all polynomial equalities
/ inequalities if we add the following assumption.

4We choose these values because they reduce the complexity in the second
step of our method. For details, see Sections IV-B and IV-C.

Assumption 2. Suncertain is the Cartesian product of
Suncertain
j , ∀j ∈ NPQ, and each Suncertain

j is either a convex
polygon or a singleton.

Indeed, under this assumption, the constraints F(v) ∈
Suncertain can be equivalently written as a collection of in-
equalities that are polynomial in Re(v) and Im(v), with the
following form:

µre
l Re

((
F(v)

)
l

)
+ µim

l Im
((

F(v)
)
l

)
+ µconst

l ≥ 0 , (13)

where µre
l , µim

l , µconst
l ∈ R.

Note that the polynomial problems P0(`) are not convex.
For this reason, we could apply convex relaxation to them and
check whether the relaxed problems are infeasible. Indeed, the
infeasibility of the relaxed problem implies the infeasibility
of the original problem. As proposed in [21], these non-
convex polynomial problems can be effectively approximated
by a hierarchy of semi-definite relaxations. This hierarchy is
arranged by a positive integer called relaxation order. As the
relaxation order increases, the relaxed problem becomes closer
to the original problem, in terms of the feasibility. Despite the
theoretical beauty of this hierarchy of relaxations, as the num-
ber of variables and the relaxation order increase, it gradually
becomes computationally intractable. To cope with this issue,
a sparsity-exploiting counterpart of this hierarchy is developed
later in [22], [23], where the level of sparsity depends mainly
on the cross terms in the polynomial constraints. In [24]–[26],
very nice examples can be found concerning the application
of these hierarchies to electrical networks.

Taking the above into consideration, we develop the second
step of the method below.

Method (Step 2)
(2-a) Given the set V obtained in Method (Step 1), check

whether vinitial ∈ V.
(2-b) With the same V and the sparsity-exploiting hierar-

chy of semi-definite relaxations in [22], [23], check
whether the relaxed P0(`) are all infeasible for some
relaxation order. (Note, under Assumption 2, an em-
pirically good choice of the relaxation order is 2.)

(2-c) If both (2-a) and (2-b) are true, then we declare that
Suncertain is admissible for vinitial. Otherwise, we are
unsure of the admissibility.

Remark 2. For the sparsity-exploiting hierarchy of semi-
definite relaxations, a concise tutorial can be found in [27]
and a thorough description can be found in [28].

C. Computational Complexity and Implementation Issues

We give below a proposition on the computational com-
plexity of the method. It is proved in Appendix-C and uses
the following notations (card(·) means cardinality):

• Cr, r = 1, ..., R are the maximal cliques of a chordal
extension [29] of the graph (N poly, Epoly), where R is the
total number of maximal cliques and
– N poly = {1, ..., 2N},
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– Epoly collects {j, h} ⊆ N poly such that the j-th and h-th
entries of vector

(
Re(v)T , Im(v)T

)T are coupled by at
least one polynomial constraint in P0,

• K = {1, ..., 3N + card(E) + Υ}, where Υ represents the
number of polynomial inequalities in F(v) ∈ Suncertain,

• θ(k) is an index mapping from K to {1, ..., R} such that
Ik ⊆ Cθ(k), where Ik collects j ∈ N poly such that the j-th
entry of vector

(
Re(v)T , Im(v)T

)T explicitly shows up in
the k-th polynomial constraint of P0,

• ω is the relaxation order and ACrω = {α ∈ N2N : αj =

0, ∀j 6∈ Cr,
∑2N
j=1 αj ≤ ω}.

Proposition 2. For the proposed method in Sections IV-A and
IV-B, we have:

• The complexity of Step 1 is equal to that of at most
4N2dminj I

threshold
j /(Înodej ∆λ)e second-order cone feasi-

bility problems, where d·e means ceiling. Each feasibility
problem has 2N real variables and 3 + N + card(E)

inequality constraints.
• Under Assumption 2, the complexity of Step 2 is equal

to that of 3N + card(E) semi-definite feasibility prob-
lems. Each feasibility problem has card(

⋃R
r=1A

Cr
2ω) real

variables and an LMI constraint with matrices of size∑card(K)
k=1 card(ACθ(k)ω−1 ) +

∑R
r=1 card(ACrω ).

Furthermore, we present some implementation issues as
follows, which are useful for online applications.

1) For a given network configuration (i.e., topology, line
parameters, etc.), the first step of the proposed method
needs to be implemented only once.

2) In the first step of the proposed method, the infeasibility
of each P1(m,n, ψ, φ) can be checked independently.
Thus, the first step of the method can be implemented in
parallel through a multi-core CPU/GPU or a networked
computing infrastructure; this is of significance for rel-
atively large N . Similarly, in the second step of our
method, the infeasibility of each relaxed P0(`) can also
be checked independently. Therefore, the second step of
the method can be implemented in parallel as well.

From the theoretical perspective, the complexity of a second-
order cone feasibility problem and the complexity of a semi-
definite feasibility problem remain as open research topics
[30]–[32]. Despite this fact, in the numerical evaluations of
the following section, the corresponding feasibility problems
take at most around a minute cumulatively for both steps of
the proposed method, as it is shown in Table I.

V. NUMERICAL EXAMPLES IN AC ELECTRICAL
NETWORKS

In this section, we evaluate the performance of the proposed
method in Sections IV-A and IV-B via two examples. The first
example has a size that is typical for practical applications
in electrical microgrids; the second example has a size that
is typical for practical applications in electrical distribution
networks. In both examples, we assume that (i) the slack-
bus voltage is 1 p.u.; (ii) the relaxation order in the second
step of our method is 2. Here, we note that the results are
generated using 3.0 GHz Intel Core i7 CPU and 32 GB 1867

MHz memory. In particular, we implement the method using
MATLAB tools YALMIP, Mosek and SparsePOP.

A. Example 1

We consider the residential part of the CIGRE North Amer-
ican LV Distribution Network [33] and make it meshed by
adding several transmission lines. In Figure 4, we show the
topology of the modified network, where (i) the black lines
represent the transmission lines in the unmodified network;
(ii) the blue lines represent the added transmission lines.

4

3

2

1

0

7
6

5

8 10
9

11

13

12

14

Fig. 4. Topology of the modified CIGRE North American LV Distribution
Network (residential part).

The impedances of the added transmission lines are the same
as that of the transmission line between buses 2 and 9.

For this network, we assume that each of the buses 1–4 has
an extra energy source. Moreover,

• Each of these sources is balanced across the neutral line;
• Each of these sources has a real-valued power in [20(1−
κ), 20(1 + κ)] kW, where scalar κ ∈ [0, 1);

• These sources are independent of each other.
By fixing the peak powers given in [33] for the other buses,
we construct a set Suncertain. Now, let (i) sinitial be the central
point in Suncertain, and (ii) vinitial be its corresponding state
that is guaranteed to be unique around w by conditions in [3].
To ensure that vinitial satisfies the security constraints, let

• V min
j = 0.95 p.u. ∀j ∈ NPQ;

• V max
j = 1.05 p.u. ∀j ∈ NPQ;

• Imax
jk = 0.4 p.u. ∀jk ∈ E .

Our goal is to find the maximum value of κ such that Suncertain

is admissible for vinitial.
In the first step of our method, we take Ibranchjk = Imax

jk , jk ∈
E . With these Ibranchjk , jk ∈ E , one valid choice of Inodej , j ∈
NPQ is: Inodej = 0.7 p.u. ∀j ∈ NPQ. In this way, we have
obtained a set V. To show that V captures a non-trivial portion
of Vsecure, we provide a visualization in Figure 5. Each plot
in this figure contains a cross section of V and a cross section
of Vsecure; they are drawn by varying one complex nodal
voltage (at bus 1 or 14) and fixing all the other complex nodal
voltages to their initial values. In each plot, the cross section
of V is represented by filled squares, and the cross section
of Vsecure is represented by all squares (filled and unfilled).
As can be seen, (i) in the top plot, the cross section of V
captures a large portion of its counterpart of Vsecure; (ii) in
the bottom plot, the cross section of V is the same as its
counterpart of Vsecure. Next, using the second step of our
method, we find that vinitial ∈ V and the maximum value for κ
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Fig. 5. (Top) Cross sections of V and Vsecure, obtained by varying v1 and
fixing vj = vinitialj , j 6= 1. (Bottom) Cross sections of V and Vsecure,
obtained by varying v14 and fixing vj = vinitialj , j 6= 14. In each plot, the
cross section of V is represented by filled squares, and the cross section of
Vsecure is represented by all squares (filled and unfilled).

to preserve admissibility is 0.48 (i.e., solvers declare numerical
infeasibility for all relaxed P0(`) when κ < 0.48).

In this example, the measured execution time of parallel
implementation is reported in Table I. Apart from this, for
each tested κ that does not preserve admissibility, the DIMACS
errors [34] are typically between 10−7 and 10−4, which means
an acceptable level of numerical accuracy.

For evaluating the tightness of the method, we apply grid
searching to numerically compute the true maximum value of
κ that preserves admissibility. Specifically, we first discretize
the set Suncertain with an appropriate resolution (e.g., each
of the 4 real-valued uncertain dimensions divided into 25
intervals), which gives us a large number of candidate values
for the uncertain injection. Then for each candidate value
of the injection, we compute the corresponding state that is
guaranteed to be unique around vinitial by conditions in [3].
Finally, we check whether there exists a computed state that
does not belong to Vsecure. Via this grid searching, we obtain
that the true maximum value for κ to preserve admissibility
is 0.52, which is close to 0.48 and means that our proposed
method is tight. It should be noticed that the grid searching is
computationally much heavier than the proposed method.

TABLE I
MEASURED TIME FOR EXAMPLES 1 AND 2 (IN SECONDS)

Step 1 Step 2
Example 1 1–2 11–19
Example 2 4–5 49–57

B. Example 2

We consider the IEEE 34-Bus Test Feeder [35] and make it
balanced by taking line type 602 in [35] for all transmission
lines. We assume that each of the buses 812, 850, 852 has a
device that can both generate and consume power. Moreover,

• Each of these devices is balanced across the phases;
• Each of these devices has a complex-valued power in

[−100κ, 100κ]×[−60κ, 60κ] kVA, where scalar κ ∈ [0,∞);
• These devices are independent of each other.

By fixing the powers of the other buses to their phase-average
values given in [35], we construct a set Suncertain. Again, let
(i) sinitial be the central point in Suncertain, and (ii) vinitial be its
corresponding state that is guaranteed to be unique around w

by conditions in [3]. To ensure that vinitial satisfies the security
constraints, let

• V min
j = 0.9 p.u. ∀j ∈ NPQ;

• V max
j = 1.1 p.u. ∀j ∈ NPQ;

• Imax
jk = 0.4 p.u. ∀jk ∈ E .

Similarly to the previous example, we want to find the maxi-
mum value of κ such that Suncertain is admissible for vinitial.

In the first step of our method, we take Ibranchjk = Imax
jk , jk ∈

E . With these Ibranchjk , jk ∈ E , one valid choice of Inodej , j ∈
NPQ is: Inodej = 0.3 p.u. ∀j ∈ NPQ. In this way, we have
obtained a set V. Next, using the second step of our method,
we find that vinitial ∈ V and the maximum value for κ to
preserve admissibility is 1.42 (i.e., solvers declare numerical
infeasibility for all relaxed P0(`) when κ < 1.42).

In this example, the measured execution time of parallel
implementation is reported in Table I. Besides, for each tested
κ that does not preserve admissibility, the DIMACS errors
are typically between 10−6 and 10−4, which indicates an
acceptable level of numerical accuracy.

For evaluating the tightness of the method, we apply again
the grid searching to numerically compute the true maximum
value of κ that preserves admissibility (note that there are
6 real-valued uncertain dimensions). Via the grid searching,
we obtain that the true maximum value for κ to preserve
admissibility is 1.5, which is close to 1.42 and means that
our proposed method is tight.

VI. CONCLUSIONS

We have studied the admissibility problem in quadratic al-
gebraic systems. In order to test the admissibility, we have es-
tablished a framework, using the recently proposed V-control.
For the theoretical foundation of the framework, we show that
if a set V of system states is non-singular and convex, then it is
a domain of uniqueness. In addition, given any set S of system
injections, we have presented topological conditions on V and
S to guarantee that every injection in S has a corresponding
state in V. Using the framework, we have developed a concrete
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method for solving the admissibility problem in AC electrical
networks, which mainly involves solving feasibility problems.
The method has been then evaluated on CIGRE and IEEE
networks. There exist several alternative optimization methods,
such as alpha-beta theory [36], which could be used to develop
other concrete methods, using the same framework.

APPENDIX

A. Lemma 1 and Its Proof

Lemma 1 (Property 1 in [37]). Given a quadratic function
F(v), denote its Jacobian matrix by JF(v). If F(v) = F(v′)

and v 6= v′, then JF

(
v+v′

2

)
is singular.

Proof. Let Φ(t) = F
(

(1 − t)v + tv′
)

, t ∈ [0, 1]. Clearly, Φ is
quadratic in t and can be written as Φ(t) = t2a+ tb+c, where
a, b, c are constant vectors. Consider that

Φ(0) = F(v) = F(v′) = Φ(1) , (14)
we have c = a + b + c. This implies that a = −b.

Consequently,
Φ(t) = t2a− ta + c , (15)

dΦ(t)

dt
= (2t− 1)a . (16)

By chain rule,
dΦ(t)

dt
= JF

(
(1− t)v + tv′

)
· (v′ − v) . (17)

Combining (16)–(17) and taking t = 1
2
, we have

JF

(v + v′

2

)
· (v′ − v) = 0 . (18)

As v 6= v′, it follows that JF

(
v+v′

2

)
has a non-zero eigen-

vector corresponding to the zero eigenvalue. Thus, JF

(
v+v′

2

)
is singular.

B. Proof of Proposition 1
Proof. First, let us construct in (19) a collection of sets:

Vm,n =
{

v ∈ cl(Ṽ) : ‖Rowm(Y−1
LL)‖1

(∣∣Re
(
Rown(YLL)(v −w)

)∣∣
+
∣∣Im(Rown(YLL)(v −w)

)∣∣) ≥ |vm|}, (19)

where m,n ∈ NPQ. By inspection, we have that Vm,n is
empty when P1(m,n, ψ, φ) is infeasible ∀ψ, φ ∈ {1,−1}.

Next, we show that when Vm,n is empty for all m,n ∈ NPQ,
the condition in (12) holds everywhere in cl(Ṽ). Specifically,

• By triangle inequality, the emptiness of Vm,n implies that
the following inequality holds ∀v ∈ cl(Ṽ).
‖Rowm(Y−1

LL)‖1
∣∣Rown(YLL)(v −w)

∣∣ < |vm|. (20)

• Consequently for each m ∈ NPQ, the following inequal-
ity holds ∀v ∈ cl(Ṽ), where ‖ · ‖∞ is the `∞ norm.

‖Rowm(Y−1
LL)‖1‖YLL(v −w)‖∞

=‖Rowm(Y−1
LL)‖1‖i‖∞ < |vm|. (21)

• Furthermore, for each m ∈ NPQ, the following inequality
holds ∀v ∈ cl(Ṽ).

N∑
n=1

|(Y−1
LL)m,nin| ≤ ‖Rowm(Y−1

LL)‖1‖i‖∞ < |vm|. (22)

Thus, the closure of the set Ṽ defined in (8) is non-singular if
the problems P1(m,n, ψ, φ) are all infeasible.

C. Proof of Proposition 2

Proof. In Step 1, Ibranchjk , ∀jk ∈ E are fixed at the begin-
ning. We have at most dminj I

threshold
j /(Înodej ∆λ)e choices of

λ, which correspond to at most dminj I
threshold
j /(Înodej ∆λ)e

choices of Inodej , ∀j ∈ NPQ. For each λ, we need to solve 4N2

second-order cone feasibility problems. Therefore, in total,
we solve at most 4N2dminj I

threshold
j /(Înodej ∆λ)e second-order

cone feasibility problems. In each of these problems, there are
2N real variables and 3 +N + card(E) inequality constraints.

In Step 2, we have that the total number of continuous func-
tions in equations (5)–(7) and (9)–(10) is L = 3N + card(E).
This is because we fix Ibranchjk = Imax

jk , ∀jk ∈ E in Step 1, which
renders the card(E) continuous functions in (9) redundant. As a
result, we have 3N+card(E) semi-definite feasibility problems
to solve (namely, one feasibility problem per ` ∈ {1, ..., L}).
For the number of real variables and the size of matrices in the
LMI constraint, explicit formulas can be found in [27].
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