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An Unknown Input Multi-Observer Approach for

Estimation and Control under Adversarial Attacks
Tianci Yang, Carlos Murguia, Margreta Kuijper, and Dragan Nešić

Abstract—We address the problem of state estimation, attack
isolation, and control of discrete-time linear time-invariant sys-
tems under (potentially unbounded) actuator and sensor false
data injection attacks. Using a bank of unknown input observers,
each observer leading to an exponentially stable estimation
error (in the attack-free case), we propose an observer-based
estimator that provides exponential estimates of the system state
in spite of actuator and sensor attacks. Exploiting sensor and
actuator redundancy, the estimation scheme is guaranteed to
work if a sufficiently small subset of sensors and actuators are
under attack. Using the proposed estimator, we provide tools for
reconstructing and isolating actuator and sensor attacks; and a
control scheme capable of stabilizing the closed-loop dynamics by
switching off isolated actuators. Simulation results are presented
to illustrate the performance of our tools.

Index Terms—Unknown input observers, cyber-physical sys-
tems, sensor and actuator attacks, linear systems, control.

I. INTRODUCTION

Networked Control Systems (NCSs) have received consider-

able attention in recent years due to their numerous advantages

(e.g., reduced weight, volume and installation costs, and

better maintainability) when compared with traditional control

systems where sensors and actuators communicate through

point-to-point (wired) links. Networked Control Systems are

being used in many engineering applications, e.g., energy,

transportation, military, health care, and manufacturing. With

the growth of NCSs, new security challenges have become

an important issue as wireless communication networks in-

creasingly serve as new access points for adversaries trying

to disrupt the process. Cyber-physical attacks on NCSs have

caused substantial damage to a number of engineering systems.

A well-known example is the StuxNet virus that targeted

Siemens’ supervisory control and data acquisition systems.

Another example is the false data injection attacks on power

systems [1]. A more recent incident happend in 2014, where

the computers of a German steel mill were hacked and a

destruction of a blast furnace was caused. These and many

other recent incidents show that tools to identify and deal with

attacks on NCSs are needed.

In [2]-[12], various security and privacy problems for linear

control systems have been addressed and solved. In general,

analysis (synthesis) tools are proposed to quantify (minimize)

the performance degradation induced by different classes of

attacks, e.g., false-data-injection, replay, zero dynamics, and
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denial-of-service. There are also some results addressing the

nonlinear case. The problem of state estimation for nonlinear

power systems under sensor attacks is solved in [13] by using

compressed sensing technique. In [14], the authors address

the problem of sensor attack detection and state estimation

for uniformly observable continuous-time nonlinear systems.

In [15], Satisfiability Modulo Theory (SMT) solvers are used

for state estimation for nonlinear differentially flat systems

with corrupted sensors. In our previous work [16], [17],

the problem of state estimation and attack isolation for a

class of nonlinear systems with positive-slope nonlinearities

is considered. Similar to the ideas given in [18], we provided

an observer-based estimation/isolation strategy, using a bank

of circle-criterion observers, which provides a robust estimate

of the system state in spite of sensor attacks and effectively

pinpoints attacked sensors. Most of the existing work assume

actuators to be healthy and only consider sensor attacks. There

are only a few results dealing with attacked actuators. For

instance, in [19], the authors study the effect of actuator attacks

on the performance of linear quadratic regulators. In [20] and

[21], the problem of state estimation under sensor and actuator

attacks is addressed using compressed sensing ideas and SMT-

based techniques, respectively. An adaptive control scheme

that guarantees uniform ultimate boundedness of the closed-

loop dynamics despite of sensor and actuator attacks is given

in [22].

The core of our estimation scheme is inspired by the work in

[11], where the problem of state estimation for continuous-time

LTI systems is addressed. The authors propose a multi-observer

estimator, using a bank of Luenberger observers, that provides

a robust estimate of the system state in spite of sensor attacks.

In this manuscript, using banks of Unknown Input Observers

(UIOs), we address the problem of robust state estimation, at-

tack isolation, and control for discrete-time LTI systems (with

matrices (A,B,C)) under (potentially unbounded) actuator

and sensor attacks. Unknown input observers are dynamical

systems capable of estimating the state of the plant without

using any input signals. If such an observer exists for the

matrices (A,B, C̃i), where C̃i denotes a submatrix of C with

fewer rows and the same number of columns, then, using

a bank of observers, we can perform state estimation and

attack isolation when a sufficiently small subset of sensors

is attacked (even if all inputs are under attack). The main

idea behind our multi-observer estimator is the following. Each

UIO in the bank is constructed using a triple (A,B, C̃i), i.e.,

the i-th observer is driven by the output signals associated

with C̃i only. If the outputs corresponding to C̃i are attack-

http://arxiv.org/abs/1904.04237v1
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free, this UIO produces an exponentially stable estimation

error. For every pair of UIOs in the bank, we compute the

largest difference between their estimates. Then, we select the

pair leading to the smallest difference and prove that these

observers reconstruct the state of the system exponentially. If

a UIO does not exist for (A,B, C̃i), but it does for (A, B̃i, C̃i),
where B̃i is a submatrix of B with fewer columns and the same

number of rows, i.e., the i-th observer does not use the input

signals associated with B̃i, but it does use the remaining input

signals and the output signals corresponding to C̃i, then using

a bank of these UIOs, we can use similar ideas to perform state

estimation and attack isolation at the price of only being able

to isolate when a sufficiently small subset of actuators and

sensors are under attack. If the inputs corresponding to B̃i

include all the attacked ones and the outputs corresponding

to C̃i are attack-free, this UIO produces exponentially stable

estimation error. For every pair of UIOs in the bank, we

compute the largest difference between their estimates and

select the pair leading to the smallest difference. We prove

that these observers provide exponential estimate of the system

state. Once we have an estimate of the state, we provide

tools for reconstructing attack signals using model matching

techniques. Attacked actuators and sensors are isolated by

simply checking the sparsity of the estimated attack signals.

Finally, after obtaining state estimates and isolation has been

performed, we provide a control scheme for stabilizing the

closed-loop dynamics. In the case with sensor attacks only

(no actuators attacks), we show that a separation principle

between estimation and control holds and the system can be

stabilized by closing the loop with the multi-observer estimator

and a static output feedback controller. When both sensors

and actuator are attacks, we propose an effective technique to

stabilize the system by switching off the isolated actuators,

and closing the loop with a multi-observer based output time-

varying feedback controller. Because attack signals might be

zero for some time instants, actuators isolated as attack-

free might arbitrarily switch among all the supersets of the

set of attack-free actuators. Therefore, we need a controller

able to stabilize the closed-loop dynamics under the arbitrary

switching induced by turning off the isolated actuators. To

achieve this, we assume that a state feedback controller that

stabilizes the switching closed-loop system exists, and use

this controller together with the multi-observer estimator to

stabilize the system. We use Input-to-State Stability (ISS) [23]

of the closed-loop system with respect to the exponentially

stable estimation error to conclude on stability of the closed-

loop dynamics. Compared to the adaptive controller proposed

in [22], where a particular class of attacks is considered and

ultimate boundedness of the closed-loop system is guaranteed

only, our controller is able drive the system state asymptoti-

cally to the origin under arbitrary and potentially unbounded

attack signals.

The paper is organized as follows. In Section 2, we present

some preliminary results needed for the subsequent sections.

In Section 3, we introduce the proposed UIO-based estimation

schemes. In Section 4, a method for isolating actuator attacks

is described. The proposed control scheme is given in Section

V. Finally, in Section 6, we give concluding remarks.

II. PRELIMINARIES

A. Notation

We denote the set of real numbers by R, the set of natural

numbers by N , the set of integers by Z, and R
n×m the set

of n×m matrices for any m,n ∈ N. For any vector v ∈ R
n,

we denote vJ the stacking of all vi, i ∈ J , J ⊂ {1, . . . , n},

|v| =
√
v⊤v, and supp(v) = {i ∈ {1, . . . , n} |vi 6= 0}. For

matrices C ∈ R
p×n, C⊤ = (c⊤1 , . . . , c

⊤
p ), we denote CJ the

stacking of all rows ci ∈ R
1×n, i ∈ J , J ⊂ {1, . . . , n}. Set

J is called a superset of set S if S ⊆ J . We denote the

cardinality of a set S as card(S). The binomial coefficient is

denoted as
(

a
b

)

, where a, b are nonnegative integers. We denote

a variable m uniformly distributed in the interval (z1, z2) as

m ∼ U(z1, z2) and normally distributed with mean µ and

variance σ2 as m ∼ N (µ, σ2). The notation 0n and In denote

the zero matrix and the identity matrix of dimension n × n,

respectively. We simply write 0 and I when their dimensions

are evident. A continuous function α : [0, a) → [0,∞) is said

to belong to class K, if it is strictly increasing and α(0) = 0,

[24]. Similarity, a continuous function β : [0, a) × [0,∞) →
[0,∞) is said to belong to class KL if, for fixed s, the mapping

β(r, s) belongs to class K with respect to r and, for fixed

r, the mapping β(r, s) is decreasing with respect to s and

β(r, s) → 0 as s → ∞, [24].

III. ESTIMATION

In [18], the problem of state estimation for continuous-time

LTI system under sensor attacks is solved using a bank of

Luenberger observers. Inspired by these results, we use a bank

of UIOs to estimate the state of the system when sensor and

actuator attacks both occur. Consider a discrete-time linear

system under sensor and actuator attacks:

{

x+ =Ax+B(u+ au)

y =Cx+ ay
(1)

with state x ∈ R
n, output y ∈ R

ny , known input u ∈ R
nu ,

vector of actuator attacks au ∈ R
nu , au = (au1, . . . , aunu

)⊤,

i.e., aui(k) = 0 for all k ≥ 0 if the i-th actuator is attack-

free; otherwise, aui(ki) 6= 0 for some ki ≥ 0 and can be

arbitrarily large, and vector of sensor attacks ay ∈ R
ny , ay =

(ay1, . . . , ayny
)⊤, i.e., ayi(k) = 0 for all k ≥ 0 if the i-

th sensor is attack-free; otherwise, ayi(ki) 6= 0 for some

ki ≥ 0 and can be arbitrarily large. Matrices A,B,C are

of appropriate dimensions, and we assume that (A,B) is

stabilizable, (A,C) is detectable, and B has full column rank.

Let Wu ⊂ {1, . . . , nu} denotes the unknown set of attacked

actuators, and Wy ⊂ {1, . . . , ny} denotes the unknown set of

attacked sensors.

Assumption 1 The sets of attacked actuators and sensors

do not change over time, i.e., Wu ⊂ {1, . . . , nu} ,Wy ⊂
{1, . . . , ny} are constant (time-invariant) and supp(au(k)) ⊆
Wu, supp(ay(k)) ⊆ Wy , for all k ≥ 0.
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A. Complete Unknown Input Observers

We first treat (u + au) as an unknown input to system (1)

and consider a UIO with the following structure:
{

z+Js
=NJs

zJs
+ LJs

yJs ,

x̂Js
=zJs

+ EJs
yJs ,

(2)

where zJs
∈ R

n is the state of the observer, x̂Js
∈ R

n denotes

the estimate of the system state, (NJs
, LJs

, EJs
) are observer

matrices of appropriate dimensions to be designed. It is easy to

verify that if (NJs
, LJs

, EJs
) satisfy the following equations:

{

NJs
(I − EJs

CJs) + LJs
CJs + (EJs

CJs − I)A =0,

(EJs
CJs − I)B =0;

(3)

then, the estimation error eJs
= x̂Js

− x satisfies:

e+Js
= NJs

eJs
. (4)

If NJs
is Schur, system (2) is called a UIO for (1). In [25], it

is proved that such observer exists if and only if the following

two conditions are satisfied:

(c1) rank(CJsB) = rank(B) = nu.

(c2) The pair (CJs , A− EJs
CJsA) is detectable.

Let q be the largest integer such that for all Js ⊂
{1, . . . , ny} with card(Js) ≥ ny − 2q > 0, conditions (c1)
and (c2) are satisfied; then, observer (2) can be constructed

for any CJs with card(Js) ≥ ny − 2q by solving (3) for a

Schur matrix NJs
. Hence, for such an observer, if aJs

y (k) = 0
for all k ≥ 0, there exist cJs

> 0, λJs
∈ (0, 1) satisfying:

|eJs
(k)| ≤ cJs

λk
Js
|eJs

(0)|, (5)

for all k ≥ 0 [25], where eJs
= x̂Js

− x.

Assumption 2 There are at most q sensors attacked by an

adversary, i.e.,

card(Wy) ≤ q <
ny

2
, (6)

where q is the largest positive integer satisfying conditions

(c1) and (c2).

Lemma 1 Under Assumption 2, among each set of ny − q

sensors, at least ny − 2q > 0 of them are attack-free.

Proof: Lemma 1 follows trivially from Assumption 2. �

Let Assumption 2 be satisfied. Inspired by the ideas in [11],

we use a UIO for each subset Js ⊂ {1, . . . , ny} of sensors

with card(Js) = ny−q and for each subset Ss ⊂ {1, . . . , ny}
of sensors with card(Ss) = ny − 2q. Under Assumption 2,

there exists at least one set J̄s ⊂ {1, . . . , ny} with card(J̄s) =
ny − q such that aJs

y (k) = 0 for all k ≥ 0. Then, the estimate

given by the UIO for J̄s is a correct estimate, and the estimate

given by the UIO for any Ss ⊂ J̄s with card(Ss) = ny−2q is

consistent with that given by J̄s. This motivates the following

estimation strategy.

For each set Js with card(Js) = ny − q, we define πJs
(k)

as the largest deviation between x̂Js
and x̂Ss

that is given by

any Ss ⊂ Js with card(Ss) = ny − 2q, i.e.,

πJs
(k) := max

Ss⊂Js:card(Ss)=ny−2q
|x̂Js

(k)− x̂Ss
(k)|, (7)

for all k ≥ 0, and the sequence σs(k) as

σs(k) := argmin
Js⊂{1,...,ny}:card(Js)=ny−q

πJs
(k). (8)

Then, as proved below, the estimate indexed by σs(k):

x̂(k) := x̂σs(k)(k), (9)

is an exponential attack-free estimate of the system state. For

simplicity and without generality, for all Js and Ss, zJs
(0)

and zSs
(0) are chosen such that x̂Js

(0) = x̂Ss
(0) = x̂(0).

The following result summarizes the ideas presented above.

Theorem 1 Consider system (1), observer (2), and the com-

plete multi-observer estimator (7)-(9). Define the estimation

error e(k) := x̂σs(k)(k) − x(k), and let conditions (c1)-(c2)
and Assumptions 1-2 be satisfied; then, there exist constants

c̄ > 0, λ̄ ∈ (0, 1) satisfying:

|e(k)| ≤ c̄λ̄k|e(0)|, (10)

for all e(0) ∈ R
n, k ≥ 0.

Proof: Under Assumption 2, there exists at least one set J̄s
with card(J̄s) = ny − q such that aJ̄s

y (k) = 0 for all k ≥ 0.

Then, there exist cJ̄s
> 0 and λJ̄s

∈ (0, 1) such that

|eJ̄s
(k)| ≤ cJ̄s

λk
J̄s

|e(0)|, (11)

for all e(0) ∈ R
n and k ≥ 0. Moreover, for any set Ss ⊂ J̄s

with card(Ss) = ny−2q, we have aSs

y (k) = 0 ∀k ≥ 0; hence,

there exist cSs
> 0 and λSs

∈ (0, 1) such that

|eSs
(k)| ≤ cSs

λk
Ss
|e(0)|, (12)

for all e(0) ∈ R
n and k ≥ 0. Consider πJs

in (7). Combining

the above inequalities, we have

πJ̄s
(k) = max

Ss⊂J̄s

|x̂J̄s
(k)− x̂Ss

(k)|

=max
Ss⊂J̄s

|x̂J̄s
(k)− x(k) + x(k) − x̂Ss

(k)|

≤|eJ̄s
(k)|+ max

Ss⊂J̄s

|eSs
(k)|

≤2c′
J̄s

λ
′k
J̄s

|e(0)|,

(13)

for all e(0) ∈ R
n and k ≥ 0, where

c′
J̄s

:= max
Ss⊂J̄s

{

cJ̄s
, cSs

}

,

λ′
J̄s

:= max
Ss⊂J̄s

{

λJ̄s
, λSs

}

.

Note that Ss ⊂ J̄s, card(Ss) = ny − 2q2. Then, from (8), we

have πσs(k)(k) ≤ πJ̄s
(k). From Lemma 1, we know that there

exist at least one set S̄s ⊂ σs(k) with card(S̄s) = ny − 2q,

such that aS̄s

y (k) = 0 for all k ≥ 0, and there exist cS̄s
> 0

and λS̄s
∈ (0, 1) such that

|eS̄s
(k)| ≤ cS̄s

λk
S̄s

|e(0)|, (14)

for all e(0) ∈ R
n and k ≥ 0. From (7), we have

πσs(k)(k) = max
Ss⊂σs(k)

|x̂σs(k)(k)− x̂Ss
(k)|

≥|x̂σs(k)(k)− x̂S̄s
(k)|.
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Fig. 1. Estimated states x̂ converges to the true states x when au, ay3 ∼

U(−10, 10). Legend: x̂ (blue), true states (black)

Using this lower bound on πσs(k)(k) and the triangle inequal-

ity we have that

|eσs(k)(k)| =|x̂σs(k)(k)− x(k)|
=|x̂σs(k)(k)− x̂S̄s

(k) + x̂S̄s
(k)− x(k)|

≤|x̂σs(k)(k)− x̂S̄s
(k)|+ |eS̄s

(k)|
≤πσs(k)(k) + |eS̄s

(k)|
≤πJ̄s

(k) + |eS̄s
(k)|,

(15)

for all k ≥ 0. Hence, from (13) and (14), we have

|eσs(k)(k)| ≤ c̄λ̄k|e(0)|, (16)

for all e(0) ∈ R
n and k ≥ 0, where c̄ = 3max{cS̄s

, c′
J̄s

} and

λ̄ = max{λS̄s
, λ′

J̄s

}. Inequality (16) is of the form (10) and

the result follows. �

Example 1: Consider the following system subject to actuator

and sensor attacks:






























x+ =

[

0.2 0.5
0.2 0.7

]

x+

[

1
2

]

(u+ au),

y =









1 3
1 1
3 2
2 1









x+ ay.

(17)

It can be verified that a UIO of the form (2) exists for each

CJs with Js ⊂ {1, 2, 3, 4} and card(Js) ≥ 2; then, 4−2q = 2,

i.e., q = 1 and at most one sensor is attacked. We attack the

actuator and let Wy = {3}, i.e., the third sensor is attacked.

We let u ∼ U(−1, 1), au, ay3 ∼ U(−10, 10). We design a

UIO for each Js with card(Js) = 3, and for each Ss with

card(Ss) = 2. Therefore, totally
(

4
3

)

+
(

4
2

)

= 10 UIOs are

designed and they are all initialized at x̂(0) = [0, 0]
⊤

. For

k ∈ [0, 19], the estimator (2), (26)-(28) is used to construct

x̂(k). The performance of the estimator is shown in Figure 1.

B. Partial Unknown Input Observers

Here, we are implicitly assuming that either condition

(c1) or (c2) (or both) cannot be satisfied for any CJs with

card(Js) = ny − 2q with q ≥ 1. Let B be partitioned as

B = [b1, . . . , bi, . . . , bnu
] where bi ∈ R

n×1 is the i-th column

of B. Then, the attacked system (1) can be written as
{

x+ =Ax +Bu+ bWu
aWu ,

y =Cx + ay,
(18)

where the attack input aWu can be regarded as an unknown

input and the columns of bWu
are bi, i ∈ Wu. Denote by bJu

the matrix whose columns are bi for i ∈ Ju. Let q1 and q2 be

the largest integers such that for all Ju ⊂ {1, . . . , nu} with

card(Ju) ≤ 2q1 < nu and Js ⊂ {1, . . . , ny} with card(Js) ≥
ny − 2q2 > 0, the following is satisfied:

(c3) rank(CJsbJu
) = rank(bJu

) = card(Ju).

(c4) There exists (NJus
, LJus

, EJus
, TJus

) satisfying:










NJus
(I − EJus

CJs) + LJus
CJs + (EJus

CJs − I)A =0,

(TJus
+ EJus

CJs − I)B =0,

(EJus
CJs − I)bJu

=0,
(19)

with detectable pair (CJus , A−EJus
CJusA) and Schur NJus

.

If conditions (c3) and (c4) are satisfied, a UIO with the

following structure exists for each bJu
with Ju ⊂ {1, . . . , nu},

card(Ju) ≤ 2q1 < nu and each CJs with Js ⊂ {1, . . . , ny},

card(Js) ≥ ny − 2q2 > 0:
{

z+Jus
=NJus

zJus
+ TJus

Bu+ LJus
yJs ,

x̂Jus
=zJus

+ EJus
yJs ,

(20)

where zJus
∈ R

n is the observer state, x̂Jus
denotes the

state estimate, and (NJus
, LJus

, TJus
, EJus

) are the observer

matrices satisfying (19), see [25] for further details. That is,

system (20) is a UIO for the system:
{

x+ =Ax+Bu+ bJu
aJu

u ,

yJs =CJsx+ aJs

y ,
(21)

with unknown input bJu
aJu and known input Bu. It follows

that the estimation error eJus
= x̂Jus

− x satisfies:

e+Jus
= NJus

eJus
, (22)

for some Schur matrix NJus
. We refer to UIOs of the form

(21) as partial UIOs for the pair (Ju, Js).

Assumption 3 There are at most q1 actuators and at most q2
sensors attacked by an adversary, i.e.,

card(Wu) ≤ q1 <
nu

2
(23)

card(Wy) ≤ q2 <
ny

2
, (24)

where q1 and q2 are the largest positive integers satisfying

(c3) and (c4).

Remark 1 Note that if conditions (c3) and (c4) are satisfied

for bJu
with card(Ju) = 2q1 = nu, then conditions (c1) and

(c2) are satisfied, and (20) is a complete UIO for (1) for

TJus
= 0. Since we are considering partial UIOs, we assume

2q1 < nu to exclude this case.
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Lemma 2 Under Assumption 3, for each set of q1 actuators,

among all its supersets with 2q1 actuators, at least one set is

a superset of Wu.

Lemma 3 Under Assumption 3, among each set of ny − q2
sensors, at least ny − 2q2 > 0 sensors are attack-free.

Proof: Lemmas 2 and 3 follow trivially from Assumption 3.

�

Note that the existence of a UIO for each pair (Ju, Js)
with card(Ju) ≤ 2q1 and card(Js) ≥ ny − 2q2 means that if

Wu ⊆ Ju and aJs

y (k) = 0 for all k ≥ 0, the estimation error

eJus
= x̂Jus

− x satisfies

|eJus
| ≤ cJus

λk
Jus

|eJus
(0)|, (25)

for some cJus
> 0 and λJus

∈ (0, 1), all eJus
(0) ∈ R

n,

and k ≥ 0. Let Assumption 3 be satisfied. We use a UIO

for each pair (Ju, Js) with card(Ju) = q1 and card(Js) =
ny − q2. Then, we use a UIO for each pair (Su, Ss) with

Su ⊂ {1, . . . , nu}, card(Su) = 2q1 and Ss ⊂ {1, . . . , ny},

card(Ss) = ny − 2q2. Under Assumption 3 , there exists at

least one set J̄u with card(J̄u) = q1 such that Wu ⊆ J̄u
and at least one set J̄s with card(J̄s) = ny − q2 such that

aJ̄s

y (k) = 0 for all k ≥ 0. Then, the estimate given by the UIO

for (J̄u, J̄s) is a correct estimate, and the estimates given by

the UIOs for any (Su, Ss) (denoted as x̂Sus
), where Su ⊃ J̄u,

card(Su) = 2q1 and Ss ⊂ J̄s, card(Js) = ny − 2q2, are

consistent with x̂Jus
. This motivates the following estimation

strategy.

For each pair (Ju, Js) with card(Ju) = q1 and card(Js) =
ny − q2, define πJus

(k) as the largest deviation between

x̂Jus
(k) and x̂Sus

(k) that is given by any pair (Su, Ss),
where Su ⊃ Ju with card(Su) = 2q1 and Ss ⊂ Js with

card(Ss) = ny − 2q2. That is,

πJus
(k) := max

Su⊃Ju,Ss⊂Js

|x̂Jus
(k)− x̂Sus

(k)|, (26)

for all k ≥ 0. Define the sequences σu(k) and σs(k) as

(σu(k), σs(k)) := argmin
Ju,Js

πJus
(k). (27)

Then, as proven below, the estimate indexed by (σu(k), σs(k)):

x̂(k) = x̂σus(k)(k), (28)

is an exponential attack-free estimate of the system state. For

simplicity and without generality, for all J and S, zJus
(0) and

zSus
(0) are chosen such that x̂Jus

(0) = x̂Sus
(0) = x̂(0). The

following result summarizes the ideas presented above.

Theorem 2 Consider system (1), observer (20), and the par-

tial multi-observer estimator (26)-(28). Define the estimation

error e(k) := x̂σus(k)(k) − x(k) and let (c3)-(c4) and As-

sumptions 1,3 be satisfied; then, there exist positive constants

c̄ > 0 and λ̄ ∈ (0, 1) satisfying:

|e(k)| ≤ c̄λ̄k|e(0)|, (29)

for all e(0) ∈ R
n, k ≥ 0.

Proof: Under Assumption 3, there exists at least one set J̄u
with card(J̄) = q1 such that J̄u ⊃ Wu, and at least one set J̄s

with card(J̄s) = ny − q2 such that aJ̄s

y (k) = 0 for all k ≥ 0;

then, there exist cJ̄us
> 0 and λJ̄us

∈ (0, 1) satisfying

|eJ̄us
(k)| ≤ cJ̄us

λk
J̄us

|e(0)|, (30)

for all e(0) ∈ R
n and k ≥ 0. Moreover, for any set Su ⊃ J̄u

with card(Su) = 2q1 and Ss ⊂ J̄s with card(Ss) = ny−2q2,

we have Su ⊃ Wu and aSs

y (k) = 0 for all k ≥ 0; hence, there

exist cSus
> 0 and λSus

∈ (0, 1) such that

|eSus
(k)| ≤ cSus

λk
Sus

|e(0)|, (31)

for all e(0) ∈ R
n and k ≥ 0. Consider πJ̄us

in (26).

Combining the above results, we have that

πJ̄us
(k) = max

Su⊃J̄u,Ss⊂J̄s

|x̂J̄us
(k)− x̂Sus

(k)|

= max
Su⊃J̄u,Ss⊂J̄s

|x̂J̄us
(k)− x(k) + x(k)− x̂Sus

(k)|

≤ |eJ̄us
(k)|+ max

Su⊃J̄u,Ss⊂J̄s

|eSus
(k)|,

for all k ≥ 0. From (30) and (31), we obtain

πJ̄us
(k) ≤ 2c′

J̄us

λ
′k
J̄us

|e(0)|, (32)

for all e(0) ∈ R
n and k ≥ 0, where

c′
J̄us

:= max
Su⊃J̄u,Ss⊂J̄s

{

cJ̄us
, cSus

}

,

λ′
J̄us

:= max
Su⊃J̄u,Ss⊂J̄s

{

λJ̄us
, λSus

}

.

Note that Su ⊃ J̄u, card(Ju) = 2q1, and Ss ⊂ J̄s, card(Ss) =
ny − 2q2. Then, from (27), we have πσus(k)(k) ≤ πJ̄us

(k).
By Lemmas 2 and 3, we know that there exists at least one

set S̄u ⊃ σu(k) with card(S̄u) = 2q1 and at least one set

S̄s ⊂ σs(k) with card(S̄s) = ny − 2q1 such that S̄u ⊃ Wu

and aS̄s

y (k) = 0 for all k ≥ 0. Hence, there exist cS̄us
> 0

and λS̄us
∈ (0, 1) satisfying

|eS̄us
(k)| ≤ cS̄us

λk
S̄us

|e(0)|, (33)

for all e(0) ∈ R
n and k ≥ 0. From (26), by construction

πσus(k)(k) = max
Su⊃σu(k),Ss⊂σs(k)

|x̂σus(k)(k)− x̂Sus
(k)|

≥|x̂σus(k)(k)− x̂S̄us
(k)|.

Using the above lower bound on πσus(k)(k) and the triangle

inequality, we have that

|eσus(k)(k)| =|x̂σus(k)(k)− x(k)|
=|x̂σus(k)(k)− x̂S̄us

(k) + x̂S̄us
(k)− x(k)|

≤|x̂σus(k)(k)− x̂S̄us
(k)|+ |eS̄us

(k)|
≤πσus(k)(k) + |eS̄us

(k)|
≤πJ̄us

(k) + |eS̄us
(k)|,

(34)

for all k ≥ 0. Hence, from (32) and (33), we have

|eσus(k)(k)| ≤ c̄λ̄k|e(0)|, (35)

for all e(0) ∈ R
n and k ≥ 0, where c̄ = 3max{cS̄us

, c′
J̄us

},

λ̄ = max{λS̄us
, λ′

J̄us

}. Inequality (35) is of the form (29), and

the result follows. �
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Fig. 2. Estimated states x̂ converges to the true states x when au3, ay2 ∼

U(−10, 10). Legend: x̂ (blue), true states (black)

Example 2: Consider a linear system subject to actuator and

sensor attacks:







































x+ =





0.5 0 0.1
0.2 0.7 0
1 0 0.3



x+





0.5 0 0.5
1 1 0.1
0 0 0.5



 (u+ au),

y =









1 2 0
0 1 1
0 1 2
1 1 1









x+ ay.

(36)

It can be verified that complete UIOs do not exist for any

CJs with card(Js) ≤ 2. However, a partial UIO exists for

each pair (Ju, Js) with card(Ju) ≤ 2 and card(Js) ≥ 2;

then, 2q1 = 2 and 4 − 2q2 = 2, i.e., q1 = q2 = 1. We

let Wu = {3}, Wy = {2}, i.e., the third actuator and the

second sensor are attacked, u ∼ U(−1, 1), and au3, ay2 ∼
U(−10, 10). We construct a partial UIO for each pair (Ju, Js)
with card(Ju) = 1, card(Js) = 3 and each set (Su, Ss) with

card(Su) = 2, card(Ss) = 2. Therefore, totally
(

3
1

)

×
(

4
3

)

+
(

3
2

)

×
(

4
2

)

= 30 partial UIOs are designed. We initiate the

observers at x̂(0) = [0, 0, 0]⊤. Estimator (20), (26)-(28) is

used to construct x̂(k). The performance of the estimator is

shown in Figure 2.

IV. ATTACK ISOLATION AND RECONSTRUCTION

Once we have an estimate x̂(k) of x(k), either using

the complete multi-observer estimator in Section III-A or

the partial multi-observer estimator in Section III-B, we can

use these estimates, the system model (1), and the known

inputs to exponentially reconstruct the attack signals. Note that

e = x̂− x ⇒ x = x̂− e ⇒ x+ = x̂+ − e+. Then, the system

dynamics (1) can be written in terms of e and x̂ as follows:











x̂+ = e+ +A(x̂ − e) +B(u + au),

⇓
au = B−1

left(x̂
+ −Ax̂)− u−B−1

left(e
+ −Ae),

(37)

because B has full column rank (as introduced in the system

description), where B−1
left denotes the Moore-Penrose pseu-

doinverse of B. Similarly, we have










y = Cx+ ay = Cx̂− Ce + ay,

⇓
ay = y − Cx̂ + Ce.

(38)

First, consider the complete multi-observer in Section III-A.

Let the estimation error dynamics characterized by (7)-(9) be

given by

e+ = f1(e, x, ay, au), (39)

where f1 : R
n × R

n × R
ny × R

nu → R
n denotes some

nonlinear function. That is, the estimation error is given by

some nonlinear function of the state and the attack signals.

However, in Theorem 1, we have proved that e converges to

the origin exponentially. Hence, the terms depending on e and

e+ in the expression for au and ay in (37) and (38) vanishes

exponentially and therefore, the following attack estimate:

âu(k) = B−1
left(x̂(k)−Ax̂(k − 1))− u(k − 1), (40)

and

ây(k) = y(k)− Cx̂(k), (41)

exponentially reconstruct the attack signals au(k − 1) and

ay(k), i.e.,

lim
k→∞

(âu(k)− au(k − 1)) = 0, (42)

and

lim
k→∞

(ây(k)− ay(k)) = 0. (43)

Then, for sufficiently large k, the sparsity pattern of âu(k) and

ây(k) can be used to isolate attacks, i.e.,

Ŵu(k) = supp(âu(k)), (44)

and

Ŵy(k) = supp(ây(k)), (45)

where Ŵu(k) denotes the set of isolated attacked actuators,

and Ŵy(k) denotes the set of isolated attacked sensors. Note

that we can only estimate au from x̂+ and e+, which implies

that we always have, at least, one-step delay for actuator

attacks isolation.

Next, consider the partial multi-observer estimator given in

Section III-B. In this case, the attack vector au and ay can also

be written as (37) and (38), and the estimation error dynamics

is given by some nonlinear difference equation characterized

by the estimator structure in (26)-(28). Let the estimation error

dynamics be given by

e+ = f2(e, x, ay, au), (46)

for some nonlinear function f2 : Rn×R
n×R

ny ×R
nu → R

n.

In Theorem 2, we have proved that e converges to the

origin exponentially. Hence, the attack estimate in (40) and

(41) exponentially reconstructs the attack signals. Again, the

sparsity pattern of âu(k) and ây(k) can be used to isolate

actuator and sensor attacks using (44) and (45).
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Fig. 4. Estimated sensor attacks ây converges to ay when au, ay3 ∼

U(−10, 10). Legend: ây (blue), ay (black).

Example 3: Consider system (17) and the complete multi-

observer estimator in Example 1. Let Wu = {1}, Wy = {3},

u ∼ U(−1, 1), au, ay2 ∼ U(−10, 10), and (x1(0), x2(0)) ∼
N (0, 12). We obtain âu(k) and ây(k) from (40) and (41).

The reconstructed attack signals are depicted in Figures 3-4.

By checking the sparsity of these signals, actuator and sensor

3 are isolated as attacked.

Example 4: Here we consider system (36) and the partial

multi-observer estimator in Example 2. Let Wu = {3},

Wy = {2}, (u1, u2, u3) ∼ U(−1, 1), au3, ay2 ∼ U(−10, 10),
and (x1(0), x2(0), x3(0)) ∼ N (0, 12). We obtain âu(k) and

ây(k) from (40) and (41). The reconstructed attacks are shown

in Figures 5-6. In this case, using sparsity of the estimated

attacks, actuator 3 and sensor 2 are correctly isolated.

V. CONTROL

In this section, we introduce a method to use the proposed

multi-observer estimators to asymptotically stabilize the sys-

tem dynamics.

A. Sensor attacks only

We first consider the case when only sensors are attacked

and actuators are attack-free. Then, the system is given by
{

x+ =Ax+Bu,

y =Cx+ ay.
(47)

Let u = Kx̂, where x̂ is the estimate given by the complete

multi-observer estimator in Section III-A or the partial multi-
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-10
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Fig. 5. Estimated actuator attacks â
+
u converges to au when au3, ay2 ∼

U(−10, 10). Legend: â+u (blue), au (black).
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Fig. 6. Estimated sensor attacks ây converges to ay when au3, ay2 ∼

U(−10, 10). ây (blue), ay (black).

observer estimator in Section III-B, and K is chosen such that

A+BK is Schur. Then, the closed-loop system is given by

x+ = Ax+BKx̂, (48)

or in terms of the estimation error as

x+ =Ax+B(K(x̂− x+ x)),

=(A+BK)x+BKe.
(49)

For the complete multi-observer estimator, let the estimation

error dynamics be given by

e+ =f1(e, x, ay), (50)

for some nonlinear function f1 : Rn × R
n × R

ny → R
n. For

the partial multi-observer estimator, let the estimation error

dynamics be given by

e+ =f2(e, x, ay), (51)

for some nonlinear function f2 : Rn×R
n×R

ny → R
n. Since

A+BK is Schur, the closed-loop dynamics (49) is Input-to-

State Stable (ISS) with respect to input e(k) and some linear
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Fig. 7. Controlled states when ay2 ∼ U(−10, 10).

gain, see [26]. Moreover, in Theorems 1 and 2, we have proved

that (50) and (51) are exponentially stable uniformly in x(k)
and ay(k). The latter and ISS of the system dynamics imply

that limk→∞ x(k) = 0 [26].

Example 5: Consider the open-loop unstable system


















x+ =

[

1.2 0.5
0.2 0.7

]

x+

[

1 0
0 1

]

Kx̂,

y =

[

1 1 3 2
3 1 2 1

]⊤

x+ ay.

(52)

It can be verified that a UIO of the form (2) exists for each

Js ⊂ {1, 2, 3, 4} with card(J2) ≥ 2; then, 4 − 2q = 2 and

q = 1. We let Wy = {2} and ay2 ∼ U(−10, 10). We construct
(

4
3

)

+
(

4
2

)

= 10 UIOs initialized at x̂(0) = [0, 0]
⊤

and let

K =

[

−1.2 0.7
−0.2 −0.7

]

.

We use the complete multi-observer in Section III-A to esti-

mate the state. The state of the closed-loop system is shown

in Figure 7.

B. Sensor and actuator attacks

Here, we consider sensor and actuator attacks. We propose

a simple yet effective technique to stabilize the system by

switching off the isolated actuators, i.e., by removing the

columns of B that correspond to the isolated actuators, and

closing the loop with a multi-observer based output dynamic

feedback controller, see Figure 8. We introduce a switching

signal ρ(k) ⊆ {1, . . . nu}, containing the isolated attack-free

actuators, i.e., ρ(k) := {1, . . . , nu}\Ŵu(k). This ρ(k) is used

to denote actuators that are switched on. That is, ρ(k) = J if

the subset J ⊆ {1, . . . , nu} of actuators are switched on and

the remaining actuators are switched off at time k. Again, let

B be partitioned as B = [b1, . . . , bi, . . . , bnu
]. After switching

off the subset {1, . . . , nu} \ ρ(k) of actuators, system (1) is

written as follows
{

x+ =Ax+ bρ(k)(u
ρ(k) + aρ(k)u ),

y =Cx+ ay,
(53)

Fig. 8. Estimation, isolation, and control diagram

where bρ(k) is the matrix whose columns are bi, i ∈ ρ(k), vec-

tors uρ(k) and a
ρ(k)
u are the inputs and attacks corresponding to

the switched-on actuators, respectively. We first consider the

case when the complete multi-observer estimator in Section

III-A exists, i.e., x̂ is generated by (7)-(9). We estimate âu(k)
using (40) and obtain Ŵu(k) from (44). Then, we switch

off the set Ŵu of actuators by letting ρ(k) = J̄(k) =
{1, . . . , nu} \ Ŵu(k). Since ai(k) = 0, i ∈ J̄(k), system (53)

has the following form:

x+ = Ax + bJ̄(k)u
J̄(k) (54)

where uJ̄(k) ∈ R
card(J̄(k)) is the set of isolated attack-free

inputs. Let 0 < q⋆ < nu be the largest integer such that (A, bJ )
is stabilizable for each set J ⊂ {1, . . . , nu} with card(J) ≥
nu − q⋆ where bJ denotes a matrix whose columns are bi for

i ∈ J . We assume that at most q⋆ actuators are attacked. It

follows that nu − q⋆ ≤ card(J̄(k)) ≤ nu. We assume the

following.

Assumption 4 For any subset J with cardinality card(J) =
nu − q⋆, there exists a linear switching state feedback con-

troller uJ̄(k) = KJ̄(k)x such that the closed-loop dynamics:

x+ = (A+ bJ̄(k)KJ̄(k))x+ bJ̄(k)KJ̄(k)e, (55)

is ISS with input e for bJ̄(k) arbitrarily switching among all

bJ′ with J ⊂ J ′ ⊂ {1, . . . , nu} and nu−q⋆ ≤ card(J ′) ≤ nu.

Remark 2 We do not give a method for designing the linear

switching state feedback controller uJ̄(k) = KJ̄(k)x. Standard

results for designing switching controllers, for instance re-

sults in [27] and references therein, can be used to design

controllers satisfying Assumption 4.

By switching off the set Ŵu(k) of actuators at time k,

using the controller designed for the set J̄(k), and letting

uJ̄(k) = KJ̄(k)x̂, the closed-loop system can be written as

(55) with estimation error e = x̂ − x generated by some

nonlinear difference equation (39). Because in Theorem 1,

we have proved that e(k) converges to zero exponentially

uniformly in x(k), ay(k) and au(k), the error e(k) in (55)

is a vanishing perturbation. Hence, under Assumption 4, it

follows that limk→∞ x(k) = 0.

Next, assume that a complete multi-observer estimator does

not exist but a partial multi-observer estimator exists (Section
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III-B), i.e., x̂ is generated from (26)-(28) and q1 ≤ q⋆. We as-

sume that at most q1 actuators are attacked. We construct x̂(k)
from (26)-(28), estimate âu(k) using (40), and obtain Ŵu(k)
from (44). After switching off the set Ŵu(k) of actuators, the

system has the form (54) with nu − q1 ≤ card(J̄(k)) ≤ nu.

We assume the following.

Assumption 5 For any subset J with cardinality card(J) =
nu−q1, there exists a linear switching state feedback controller

uJ̄(k) = KJ̄(k)x such that the closed-loop dynamics (55) is

ISS with respect to e for bJ̄(k) arbitrarily switching among all

bJ′ with J ⊂ J ′ ⊂ {1, . . . , nu} and nu−q1 ≤ card(J ′) ≤ nu.

Using the controller designed for the set J̄(k), and letting

uJ̄(k) = KJ̄(k)x̂, the closed-loop dynamics can be written

in the form (55). Then, in this case, e(k) is generated by

some nonlinear difference equation of the form (46). Under

Assumption 5, the closed-loop dynamics (55) is ISS with input

e(k), see [26]. Moreover, in Theorem 2, we have proved that

e(k) converges to the origin exponentially uniformly in x(k),
au(k) and ay(k). The latter and ISS of the system dynamics

imply that limk→∞ x(k) = 0 [26].

Example 6: Consider the following system:







































x+ =





0.5 0 0.1
0.2 1.7 0
1 0 0.3



x+





0.5 0 1
1 1 1
0 0 1



 (u+ au),

y =









1 2 0
0 1 1
0 1 2
1 1 1









x+ ay.

(56)

Since (A, bi) is stabilizable for i ∈ {1, 2, 3}, we have q⋆ = 2.

It can be verified that there does not exist a complete UIO

for any Ss ⊂ {1, 2, 3, 4} with card(Ss) = 2, but partial

UIOs exists for each pair (Ju, Js) with card(Ju) ≤ 2 and

card(Js) ≥ 2; then, we have q1 = q2 = 1 and q1 < q⋆.

We let Wu = {3}, Wy = {2}, and au3, ay2 ∼ U(−10, 10).
We construct

(

3
1

)

×
(

4
3

)

+
(

3
2

)

×
(

4
2

)

= 30 UIOs and use the

design method given in [27] to build controllers for actuators

{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}. Then, we use the partial

multi-observer approach in Section III-B to estimate the state,

reconstruct the attack signals and control the system. The state

of the system is shown in Figure 9.

VI. CONCLUSION

We have addressed the problem of state estimation, attack

isolation, and control for discrete-time linear time-invariant

(LTI) systems under (potentially unbounded) actuator and

sensor false data injection attacks. Using a bank of Unknown

Input Observers (UIOs), we have proposed an estimator that

reconstructs the system states and the attack signals. We use

these estimates to isolate attacks and control the system. We

propose an effective technique to stabilize the system by

switching off the isolated actuators. Simulation results are

provided to illustrate our results.
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Fig. 9. State trjectories when au3, ay2 ∼ U(−10, 10).
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