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Mean-Field Transmission Power Control in
Dense Networks

Yuchi Wu, Junfeng Wu, Minyi Huang, and Ling Shi

Abstract— We consider uplink power control in wireless
communication when a large number of users compete
over the channel resources. The CDMA protocol, as a sup-
porting technology of 3G networks accommodating signal
from different sources over the code domain, represents
the orthogonal multiple access (OMA) techniques. With the
development of 5G wireless networks, non-orthogonal mul-
tiple access (NOMA) is introduced to improve the efficiency
of channel allocation. Our goal is to investigate whether the
power-domain NOMA protocol can introduce performance
improvement when the users interact with each other in
a non-cooperative manner. It is compared with the CDMA
protocol, where the fierce competition among users jeop-
ardizes the efficiency of channel usage. In this work, we
conduct analysis with an aggregative game model, and
show the existence and uniqueness of an equilibrium strat-
egy. Next, we adopt the social welfare of the population
as the performance metric, which is the average utility
achieved by the user population. It is shown that under the
corresponding equilibrium strategies, NOMA outperforms
CDMA by higher efficiency of channel access for uplink
communications.

Index Terms— aggregative game, successive interfer-
ence cancellation, CDMA, NOMA, 5G.

I. INTRODUCTION

Power allocation has been conducted in wireless communi-
cations, wireless sensor networks as well as networked control
systems. As a variant of resource allocation, it mainly deals
with the tradeoff between the performance achieved and the
power consumption. Moreover, recent advances in the fifth-
generation (5G) communication network [1] have led to a
resurgence of interest in transmission power control.

Earlier works in wireless communications optimize the
performance through appropriate energy allocation. Decen-
tralized approaches are frequently investigated, among which
game-theoretic methods are powerful tools for modeling non-
cooperative channel access behaviors, especially for uplink
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users. Alpcan et al. [2] and Huang et al. [3] considered a
channel access game where each user strives for a better
quality of service (QoS), and mechanism design is employed
to improve the social effect. Moreover, centralized power
allocation for maximizing the sum data rate is considered
by Fischione et al. [4]. Later on, to accommodate multiple
users in uplink transmission more efficiently with successive
interference cancellation, optimal power allocation has been
investigated by Xu et al. [5].

Recent studies address transmission power allocation for
a large number of users at the mean-field limits. Huang et
al. [6], [7] investigated uplink power control of a large number
of players with a mean-field model. Moreover, Semasinghe
and Hossain [8] dealt with downlink power allocation and
compared the mean-field equilibrium performance under dif-
ferent utility functions. Typically, mean-field games consider
dynamic models with an infinite number of players, where the
impact from the opponents is modelled collectively as a mean-
field term, as illustrated by Caines et al. [9]. As an alternative
of game-theoretic model with mean-field type coupling, an
aggregative game model [10] featuring static decision with
either finite or infinite players is more appropriate for resource
allocation in a wireless communication system.

Aggregative game has been widely adopted in wireless com-
munications and networked games. For example, decentralized
channel access among secondary users in a cognitive radio
system is modelled by Pang et al. [11] as an aggregative game.
A similar model is also employed for a large-scale channel
access with incentive design at the base station, as investigated
by Zhou et al. [12]. These works adopt conventional mean-
field modelling where each agent faces the same aggregate
of the opponents’ strategy. However, in a more recent work
on networked games by Parise and Ozdaglar [13], where the
mean-field aggregate faced by different agents is dependent
on its neighbouring network topology, variational inequalities
are employed for the equilibrium analysis.

Motivated by the advances of the 5G communication net-
work, several recent works [14]–[16] investigated the optimal
power allocation problem with non-orthogonal multiple ac-
cess (NOMA) employed among users sharing the same portion
of the physical resource. The receivers under the NOMA pro-
tocol adopt successive interference cancellation (SIC), which
improves the chance of successful decoding at the receiver.
According to Vaezi et al. [17], the advance of computational
capability of user equipment has enabled the deployments of
NOMA for practical applications.

Our results are partially related to the existence and unique-
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ness of equilibrium strategy under CDMA, as investigated
by Alpcan et al. [2] as well as Aziz and Caines [18], and
we have extended the equilibrium analysis to NOMA. The
main difference between the modelling in this work and in
the literature is two-fold. First, we employed a aggregative
game model with mean-field limits for NOMA, which to the
best of our knowledge is novel. Second, we have embedded
the power control game under CDMA and NOMA in a
unified framework, which enables a qualitative performance
comparison. Following the direction of Xu and Cumanan [19]
as well as Wei et al. [20], this work further discusses the social
welfare comparison of uplink channel access between the
conventional orthogonal multiple access schemes and NOMA.
Past works [21]–[23] only investigated the performance com-
parison with centralized resource allocation, where all the
users have a common objective function and their channel
access behaviors are dictated by the base station. In this paper,
we consider a population of selfish users accessing the shared
wireless channel with a non-cooperative game model. This is
suitable when the channel users are interested in pursuing their
individual objectives and are accommodated by a micro base
station in the 5G network.

When modeling the user population behaviors under the
NOMA protocol, one faces several challenges:

(1) In the game, channel gain at each user varies. Hence,
it is crucial to tackle the complexity arising from char-
acterizing individual behaviors in presence of a large
population;

(2) Though the equilibrium strategy for power control game
under CDMA has been well analysed [2], [18], there is no
analysis on the existence and uniqueness of power control
strategy under NOMA protocol. Due to the asymmetric
pattern of the decoding algorithm under NOMA, the equi-
librium analysis for CDMA cannot be directly extended
to NOMA;

(3) The specific channel fading model for uplink users is not
always available since the physical environment where
the users are located is in general challenging to describe.
Thus, it is desirable to have general results not depending
on the specific form of channel distribution;

(4) The social welfare comparison between two commu-
nication protocols is in general challenging in a non-
cooperative game, as the trend of changes in equilib-
rium strategies under different protocols are difficult to
evaluate.

We will address these challenges through appropriate system
modeling and perturbation-based approaches. The contribu-
tions of this paper are listed below:

(1) We model the interactions among a large number of
players under CDMA and NOMA as aggregative games,
where the opponents’ action is modelled as a mean-field
effect (i.e., the interference) for a large population. The
equilibria under CDMA and NOMA are characterized
in Theorem 1 and Theorem 2. To the best of our knowl-
edge, such an aggregative game framework with mean-
field limit modelling for NOMA (with non-identical
mean-field interferences faced by different users) is new,

and the existence and uniqueness of equilibrium power
control strategy under NOMA has not been addressed
in the literature. The results we have obtained do not
depend on a specific channel fading model, i.e., the
distribution of the channel gain, and can be applied to a
wide range of physical environments;

(2) Through establishing a contraction property of the strat-
egy update at each user in the population, a dis-
tributed algorithm (Algorithm 1) is proposed for
CDMA (Theorem 1) and NOMA (Theorem 2) such that
the strategy profile of the user population is guaranteed
to converge to the unique equilibrium strategy;

(3) We compare the social welfare at the equilibria between
CDMA and NOMA. Due to the difficulties in calculating
the equilibrium strategies and directly evaluating the
corresponding values of the social welfare, we propose a
perturbation-based approach to find the trend of change
in the equilibrium performance from CDMA to NOMA.
The social welfare achieved under the equilibrium of
power control game with NOMA strictly dominates that
with CDMA (Theorem 3).

The remainder of this paper is organized as follows. The
preliminaries on wireless communications are introduced in
Section II. In Section III, we formulate the interaction be-
tween channel users as an aggregative game. Section IV
and Section V characterize the equilibrium strategies under
CDMA and NOMA protocols, respectively. In Section VI,
we compare the social welfare at the equilibria. Section VII
studies the individual behaviors at the equilibrium. To illustrate
the social welfare comparison results, we present the numerical
simulations in Section VIII. Section IX concludes the paper.

To highlight the structure and contribution of this paper,
a flow chart is displayed in Fig. 1, where the comparison
between CDMA and NOMA forms a key contribution.

Fig. 1: The logic flow and main contribution of this paper.

Notations:

We denote the set of non-negative real numbers by R+,
the set of positive real numbers by R++, and the set of
non-negative integers by N+. For any Lebesgue measurable
set A ⊂ R, denote its Lebesgue measure by λ(A). The abbre-
viation “a.e.” is adopted for “almost everywhere”. For any l ≤
u, define a truncation operator as [x]ul := min{u, max{l, x}}
for x ∈ R. The modulus of a complex number z = x+ iy ∈ C
is ‖z‖ :=

√
x2 + y2, where x, y ∈ R.
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II. PRELIMINARIES ON UPLINK WIRELESS
COMMUNICATION

In this paper, we consider a transmission power allocation
problem that emerges in wireless networks where multiple
signal sources are users of a single wireless communication
channel. Different protocols are considered at the physical
layer (PHY) of the communication channel, and the received
signals are decoded by the base station. The realized data rate,
i.e., the maximum rate of reliable communication supported
by this channel, is the performance metric. The block diagram
of the problem is presented in Fig. 2, and the details of each
component are elaborated below.

Base
Station

Source 1
Data

Source 2
Data

Source N
Data . . .

. . .. . .

Wireless
Channel

Fig. 2: Uplink channel access competitions of multiple users
over a shared wireless channel to the base station.

A. Data sources
There are N independent data sources as selfish users of

the wireless channel. The information provided by each data
source is modelled as a continuous-time waveform xi(t) (t ∈
R+), where i ∈ N := {1, 2, . . . , N}. Assume that each of the
signal source xi(t) has a unit average power level throughout

the time horizon, i.e., lim
T→∞

1
T

T∫
0

E[‖xi(t)‖2]dt = 1 holds for

any i ∈ N . This is for notational convenience in describing
the power level of the transmitted signal at the antennas.

Without loss of generality, we assume that each of the
original continuous-time signal has a bandwidth bounded
by B, which is considered as a physical limitation of the
communication channel. Based on Nyquist sampling theorem,
we can always find a common sampling period ∆t for all
the data sources such that the inequality 1

∆t > 2B holds,
and the sampled signal under this sampling rate carries full
information of the original signal sources. For transmission
through digital devices, a sampled version xi[k] (k ∈ N+)
of the original signal xi(t) (t ∈ R+) is generated. Hence,
we obtain the discrete-time signal sources xi[k] := xi(k ·∆t)
for each i ∈ N . Since each signal source contains different
amount of information, they feature different data rates. We
denote the data rate of source i as Ri bits/s (Ri > 0).

B. Gaussian channel and transmission antennas
The communication channel between the data sources and

the base station can be modelled as an additive white Gaussian
noise (AWGN) channel as follows

y[k] =
N∑
i=1

√
aihixi[k] + w[k], (1)

where xi[k] is the transmitted signal with transmission power
level is ai, w[k] ∼ CN (0, N0) is a complex Gaussian white
noise process, and y[k] is the aggregate received signal at the
base station. In addition, we assume time-invariant flat-fading
character of the channel at each data source, and denote the
uplink channel gain for each data source i as a C-valued
random variable hi. The probability density function of the
squared magnitude ‖hi‖2 ≥ 0 of the channel gain is fi(x).
Obviously, fi(x) ≥ 0 for any x ∈ R+ and

∫
R+
fi(x)dx = 1.

In this paper, we assume that the channel gains
‖h1‖2, ‖h2‖2, . . . , ‖hN‖2 are i.i.d. random variables, for
which the probability density function is simply denoted as f .
Intuitively, all the local users are located within the coverage
area of a base station, so that they share similar environments.
For more generality, we do not take a specific form of
distribution for the channel gain hi. However, we require the
following assumption to facilitate the analysis in this paper.

Assumption 1: The squared norm of the channel gain has a
finite first-order moment: E[‖hi‖2] :=

∫
R xf(x)dx <∞.

This assumption enables the adoption of the strong law of
large numbers (SLLN) when evaluating the interference from
other transmitters.

Example 1: Rayleigh fading is commonly adopted to char-
acterize the overall fading effect when a large number of
reflectors and scatters present in the path, see [24]. The
squared magnitude ‖hi‖2 of the channel gain has the following
probability density function

f(x) =

{
1
σ2 exp

(
− x
σ2

)
, x ≥ 0;

0, Otherwise,
(2)

where the parameter σ > 0. Assumption 1 is clearly satisfied
in this case.

The channel state information (CSI) hi is available at the
transmitter i. This is easily achieved by sending a pilot signal
prior to the transmission stage. At the receiver, the quality
of a certain signal source in the received waveform y[k]
is characterized by its SINR. To improve the SINR of a
signal xi[k] for a higher probability of successful decoding, a
possible method is to raise the transmission power level. For
this purpose, the antenna at each data source i will choose an
appropriate power level ai. Reliable decoding can be realized
subject to good SINR condition, see Section II-C.

Through transmitting signal from different sources at dif-
ferent power levels, a novel multiple access strategy is im-
plemented on the Gaussian channel (1). This strategy exploits
the power domain within the same physical channel resource,
i.e., time, frequency, etc. Different from the conventional
orthogonal multiple access protocols such as time-division
multiple access (TDMA) and frequency-division multiple ac-
cess (FDMA), the multiple access over the power domain is
an example of non-orthogonal multiple access (NOMA), one
of the supporting technologies in 5G networks [25].

C. Base station
A base station is located at the end of the uplink Gaussian

channel, which is capable of sensing the channel gains of
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all communication links. The received signal from each data
source i will be processed independently at the base station.
The specific physical model adopted for describing the fun-
damental limits in signal decoding as well as two different
decoding strategies is introduced below.

The data rate of source i is Ri > 0. Based on Shannon’s
theorem [26], in order to reliably decode the signal from data
source i with decoding error going to zero asymptotically as
the block length increases, it is necessary for the instantaneous
channel capacity of this link to exceed the corresponding data
rate Ri [24] as follows:

log2

(
1 + ‖hi‖2 SINRi

)
> Ri. (3)

Thus, the indicator for the successful decoding of the signal
from data source i is defined as

γ(i) :=

{
1, SINRi >

2Ri−1
‖hi‖2

;

0, Otherwise.
(4)

With the model for signal decoding as well as related no-
tations introduced, the distribution for the decoding outcomes
γ(i) relies on the distribution of ‖hi‖, and is determined by
the outage probability

p
(i)
out(Ri) := P

{
log2

(
1 + ‖hi‖2 SINRi

)
< Ri

}
. (5)

Accordingly, the probability of a packet arrival can be
expressed as

P{γ(i) = 1} = 1− p(i)
out(Ri). (6)

As the users i ∈ N are interested in supporting the success
in decoding their source signal at the base station, each of
them will attempt to achieve a higher instantaneous channel
capacity in order to accommodate its data waveform at the
shared wireless medium.

For a Gaussian channel, there are mainly two decod-
ing strategies when multiple signal sources are transmitting
through their uplink channels: single user decoding (SUD) in
CDMA and multi-packet reception (MPR) in NOMA. More
details for the two methods can be found in Zhang and
Haenggi [27]. The power allocation for the data sources will
differ when different decoding strategies are employed. Now
we briefly explain the ideas of SUD in CDMA and MPR
in NOMA. Details of these protocols and the corresponding
decoding algorithms at the receiver will be elaborated in
Sections IV and V.

1) Single user decoding (SUD) in CDMA: For multiple data
sources, a communication system employing CDMA deals
with each communication link separately. While decoding
the signal xi[k] from data source i, the signals from all
the other sources j 6= i are considered as interference. One
typical application of this decoding strategy is the direct-
sequence code division multiple access (DS-CDMA) system,
where multiple users share a single channel. In order to
mitigate the interference between different users, they adopt
a group of signature sequences {si}Ni=1 such that they have
high auto-correlation and low cross-correlation among them-
selves. Therefore, by selecting appropriate pseudo-noise (PN)

sequences, it is possible to significantly reduce the interference
of the received signal at the base station. Hence, the SINR of
each user can maintain a certain level while being decoded.

Similar to FDMA and TDMA, the CDMA protocol belongs
to the category of orthogonal multiple access (OMA), where
different users are allocated different portions of the same type
of physical resources, such as frequency bands, time slots,
code chips, etc. On the other hand, when multiple users can
share the same portion of physical resources, the protocol
belongs to the category of non-orthogonal multiple access
(NOMA), as introduced below.

2) Multi-packet reception (MPR) in NOMA: NOMA features
resource sharing among different users such that a tradeoff
between efficiency of the communication channel and the fair-
ness among users is maintained. Multi-packet reception (MPR)
decoding scheme is performed when NOMA is employed
at the communication channel. In order to improve spectral
efficiency and the user fairness [17], NOMA is widely adopted
in the fifth-generation (5G) communication network. In this
paper, we analyse the effectiveness of power-domain NOMA.
To facilitate the comparison of the two decoding methods, the
same group of signature sequence {sj}Nj=1 as in the CDMA
case is assigned to each user for implementation of the spread
spectrum technique.

In NOMA, one of the key techniques is successive interfer-
ence cancellation (SIC) [5], which is a recursive decoding al-
gorithm. While the receiver is decoding the data from different
signal sources following a certain order, the SIC algorithm will
cancel the successfully decoded signals from the waveform
before performing the subsequent decoding procedures, so that
the overall probability of successful decoding is improved.

An example of SIC is the network-assisted interference
cancellation and suppression (NAICS) user terminals adopted
by 3GPP LTE-A standard [17]. The deployment of SIC at the
receivers increases the time and space complexity. Fortunately,
as shown by experiments, the complexity induced by adopting
NOMA can be well accommodated by the capability of current
user equipment [28], which provided empirical evidence for
the feasibility of the implementation of NOMA.

III. PROBLEM FORMULATION: AN AGGREGATIVE GAME
MODEL FOR UPLINK POWER CONTROL

Each data source i aims at uploading its local information
to the base station, which can be considered as different users
sharing a common computer network attempting to transmit
its data to a distant server, such as cloud storage or cloud
computing services.

Due to the selfish nature, each data source aims only at
improving the chance of successfully decoding its own signal
source at the base station while consuming less power.

The channel sharing behavior among these data sources can
be modelled in a game-theoretic framework where different
data sources are non-cooperative over the channel usage. To
reduce the computational complexity for equilibrium analysis
when a large number of players are involved, we adopt the idea
of aggregative games [10], where the impact of opponents’
actions on each player is modelled as a collective effect.
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Then, each player is choosing its action as a response to this
collective effect.

Now, we present the aggregative game model in detail.

A. An aggregative game model
In dense networks, a large number of users will attempt

to access the Internet through a single access point (AP). We
employ a non-atomic game [29] model in this work, where the
effect to the overall performance caused by a single player is
negligible as the number of players N →∞. Some notations
are introduced below to adapt an aggregative game model to
a large number of players, similar to Nekouei et al. [30].

In this paper, the interactive behavior among different users
when competing over the uplink wireless channel is modelled
as an aggregative game G = (M,A, u), of which each
component is elaborated as follows.

1) The set of players M: We adopt symbolic representations
for each type of users. With slight abuse of notations, the
realization of the random variable hi is denoted as hi ∈ C as
well, which is the channel gain of user i. Then, the identifier
of this user is defined as θi = ‖hi‖2 ∈ R+. We define the set
of all possible identifiers as M ⊂ R+ such that any possible
identifiers θi belong to M . To avoid triviality, we assume M 6=
∅ and 0 /∈M . Thus, the set of all possible identifiers is a subset
of positive real numbers, i.e., M ⊂ R++. Also, a Borel σ-
algebra is generated for the set M and is denoted as B(M).

In practice, for players with different identifiers in a game
with a large population, they will take up a certain ratio of
presence in the population. We define a probability measure P
over the measurable space (M,B(M)) to model the population
of players, where the probability measure P is induced by the
probability density function f(x) given in Assumption 1. To
be specific, we have P : B(M)→ [0, 1] such that for any A ∈
B(M), we have P (A) :=

∫
x∈A

f(x)dλ(x) and P (M) = 1.

Hence, we choose M ⊂ R++ as the set of players.
Assumption 2: f(x) > 0 for any x ∈ M , i.e., the proba-

bility density function f has positive value on the set of all
possible identifiers M ⊂ R++.

There is no loss of generality to consider f(x) > 0 for x ∈
M . When this assumption is not satisfied, we can restrict the
set of players to M̃ = {θi ∈ M : f(θi) > 0} ⊂ M . All the
subsequent analysis are performed with M̃ . By definition of
the probability measure P , it holds that P (M̃) = P (M) = 1.

Remark 1: The identifiers of different users can be inter-
preted as sampled independently from the same distribution f .
Then, by the i.i.d. assumption on {θi, i ≥ 1}, the empirical
distribution of different types of players will converge to f if
the number of players N →∞. Hence, characterizing the ratio
of players with different identities with a probability density
function f(x) is feasible and theoretically sound.

2) The strategy space A: Now we define the strategy space
of all players in the game.

Since the transmission antennas are controlled by analog
circuits, the maximum transmission power is bounded. We
define the feasible set of transmission power levels as a
compact and convex set E := [Emin, Emax] (0 ≤ Emin <
Emax <∞) without loss of generality.

As the number of players approaches infinity, and all the
players with the same identifier are considered to be homo-
geneous, we denote the strategy of all the players in M as a
mapping p : M → E such that the action chosen by the player
θi ∈M is ai := p(θi) ∈ E .

Before the formal definition of the feasible strategy space
of the players in M is given, we introduce a new measure
with which the aggregate effect of the players’ strategies can
be evaluated. For M ⊂ R++, a measure space is defined as
(M,B(M), λ) based on the Lebesgue measure λ. We define
a new measure ν as follows.

ν(A) :=

∫
A

w(x)dλ(x), ∀A ∈ B(M), (7)

where the weight function w : M → [0,∞) is

w(x) := xf(x), x ∈M. (8)

Consequently, a new measure space (M,B(M), ν) is gen-
erated, based on which we define the feasible strategy space
as the set of functions

A := {p : (p : M → R) & (p is ν − a.e. E-valued)}, (9)

where p is a Lebesgue measurable function. We adopt the
convention that two functions are identified as the same
element of A if they are equal ν-a.e.

Definition 1: For any Lebesgue measurable function g :
M → R, we introduce the norm

‖g‖ν1 :=

∫
x∈M

|g(x)|dν(x) =

∫
x∈M

|g(x)|w(x)dλ(x). (10)

Definition 2: For a bounded Lebesgue measurable function
f : M → R, we define its essential supremum norm based on
the measure ν as ‖f‖ν∞ := inf{C > 0 : |f(x)| ≤ C ν-a.e.}.

3) The utility function u: The utility function of a player with
identifier θi ∈ M is denoted as u(ai, p, θi), where it chooses
an action ai ∈ E in response to p ∈ A, which is adopted by
the opponents. Its utility function takes a tradeoff between the
achieved data rate and energy consumptions, which has the
form

u(ai, p, θi) = log2 (1 + θi · SINR(p, θi))− βiai, ∀θi ∈M,
(11)

where βi > 0 is the power penalty parameter at player i.
As CDMA and NOMA adopt different decoding algorithms,
for a fixed strategy profile p ∈ A, the resulting SINR at
the receiver’s side will have different values under these two
protocols.

Assumption 3: The power penalty parameter is identical for
each uplink user i ∈ N , i.e., β1 = β2 = · · · = βN = β > 0.

We will adopt this common power penalty parameter β for
all the users in the following analysis.

Remark 2: The assumption for identical power penalty pa-
rameter βi in the utility function indicates the cost for unit
power consumption is the same for every uplink channel user.
Intuitively, this adapts to the case where the power budget
available to each user is obtained from the same type of power
source, e.g., batteries. It should be noted that with the utility
function given in its current form (11), nonidentical power
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penalty parameter βi for different type θi ∈ M of users will
not affect the main results as the existence of equilibrium
strategies and the social welfare comparison results do not
depend on the specific value of βi associated with a certain
user type θi ∈M , though the monotonicity of the equilibrium
strategy under CDMA as indicated by Corollary 1 may not
hold anymore.

4) The information set I: Though the realization of the
channel gain hi is only disclosed to the user itself, the prob-
ability density function (PDF) f(x) of the user identity θi =
‖hi‖2 in the population is common knowledge. The realized
value of the channel gain for each user can be interpreted
as sampled independently from this distribution f(x). This
knowledge sharing is achieved as the base station collects
statistics of the realized channel magnitude θi = ‖hi‖2, and
then informs each participating player of this distribution (e.g.,
through a quantized version of the PDF).

For user θi ∈M , the available information set is

I(θi) = {θi, N0}, θi ∈M, (12)

where N0 is the power spectrum density of the Gaussian noise
in the channel, and f(θ) is the probability density function
of the user identity. Thus, user θi will choose a power level
from E based on the locally available information set I(θi).

Remark 3: To facilitate the analysis of the collective effects
of an infinite number of users, it is also of interest to explain
the almost sure convergence of the aggregative effects when a
large number of users are considered. For a group of countable
number of players {θ1, θ2, . . .}, if the power control strategy
profile p(·) is fixed, the interference when CDMA is employed
can be expressed by a new random variable aiθi = p(θi)θi.
Its first-order moment is finite, i.e., E[p(θi)θi] ≤ E[‖p‖∞ ·
‖hi‖2] = Emax · E[‖hi‖2] = Emax · h

2

i < ∞, hence Kol-
mogorov’s strong law of large numbers (SLLN) [31] applies
when analyzing the aggregative effects. The applicability of
SLLN to NOMA can be justified in a similar manner.

B. Solution concept for a game
Assume all players are rational in the sense that each of

them will seek to optimize its own utility function (i.e., self-
interested). In addition, the rationality of the players’ behaviors
is common knowledge among all players participating in the
game G, as illustrated by Gibbons [32]. Then, each player
i will choose a power level from E to optimize its utility
based on its own information set. We call it a decision-making
process if a player θi ∈ M predicts the strategies of other
players based on the information available and chooses an
action in response to the predicted actions.

Different from an optimization problem, in a game-theoretic
setup, the decision-making process of each player i is in the
form of a “best response” to the action profile of its opponents.
Under this decision pattern, it is of interest to find an action
profile of all players on which they agree. Thus, we proceed
to introduce the concept of ε-Nash equilibrium [33] for an
aggregative game with a finite number of players.

Definition 3 (ε-Nash equilibrium): A strategy profile p∗ ∈
A is an ε-Nash equilibrium of a game among N ∈ N+ players,

if for the identity θi ∈M of all the N players, we have

u(p∗(θi), p
∗, θi) ≥ u(ai, p

∗, θi)− ε, ∀ ai ∈ E , (13)

where ε > 0.
When the number of users N → ∞, the positive real

number ε→ 0 according to Theorem 5.7 in Nourian et al. [34].
Hence, as the population size tends to infinity, the ε-Nash
equilibrium converges to a mean-field equilibrium defined as
follows.

Definition 4 (Mean-field equilibrium): A strategy profile
p∗ ∈ A is a mean-field equilibrium of a game with an infinite
number of players if for any θi ∈M , we have

u(p∗(θi), p
∗, θi) ≥ u(ai, p

∗, θi), ∀ ai ∈ E . (14)

For the aggregative game G, we define the best response of
user θi ∈M to the opponents’ strategy p ∈ A as a set-valued
mapping BR : M ×A → 2E . For each θi ∈M ,

BR(θi, p) :=

{
a∗i ∈ E : u(a∗i , p, θi) ≥ u(ai, p, θi), ∀ai ∈ E

}
.

(15)
Therefore, a strategy p∗ ∈ A is a mean-field equilibrium if

and only if for any θi ∈M , p∗(θi) ∈ BR(θi, p
∗). Thus, it is

a strategy profile p∗ ∈ A that every user θi ∈ M adopts, and
has no incentive to unilaterally deviate from. Next, the details
are shown below for analyzing the existence and uniqueness of
mean-field equilibrium strategies under CDMA and NOMA.

IV. CDMA TRANSMISSION POWER GAME

A. Single user decoding (SUD) in CDMA
1) Descriptions of CDMA protocol and SUD decoding algo-

rithm: As mentioned in the preliminaries, with the CDMA
communication protocol, each user is allocated a unique
signature sequence so that its transmitted signal can be spread
over different sub-carriers (i.e., code chips) in order to mitigate
the interference between different users.

As mentioned by [35], [36], through appropriate selection of
signature sequences of length ns, the squared cross-correlation
between the signature sequences sk and sj of users k and j
(k 6= j) can be expressed as ρk,j = (s′ksj)

2 ≈ 1
ns

= α
N , which

is the gain of the interference induced by user k to the received
signal from user j. Since each user in CDMA is assigned a
distinct signature sequence, the length ns satisfies ns ≥ N ,
i.e., 0 < α ≤ 1. In practice, as ρk,j = 1

ns
, it is preferred

to have a larger length ns in order to reduce the cross-
correlation between signature sequences assigned to different
users, and then limit the interference introduced. Therefore,
the parameter α is often chosen to satisfy 0 < α� 1.

The SINR of the signal from data source i is expressed as

SINRi =
ai∑

j 6=i
ρj,iaj‖hj‖2 +N0

=
ai∑

j 6=i

α
N aj‖hj‖

2
+N0

,

(16)
for any i ∈ {1, 2, . . . , N}. The receiver will attempt to decode
the signal from each communication link independently. By
Shannon’s theorem and (3), the outcome of decoding signal
from source i is only dependent on SINRi.
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2) The utility functions of the aggregative game using SUD:
When the population size N → ∞, if the user θi ∈ M
chooses ai ∈ E as its transmission power, its received SINR
is given as

SINR(p, θi) = lim
N→∞

ai
α
N

∑
j 6=i

ajθj +N0

= lim
N→∞

ai
α·(N−1)

N · 1
N−1

∑
j 6=i

p(θj)θj +N0

a.s.−−−→
SLLN

ai
αE[p(θj)θj ] +N0

, θi ∈M,

where almost sure convergence holds by Assumption 1 and
Kolmogorov’s strong law of large numbers.

Then the utility function of any user θi ∈M in the case of
CDMA can be expressed as

u(ai, p, θi) = log2 (1 + θi · SINR(p, θi))− βai

= log2

(
1 +

θiai
αE[p(θj)θj ] +N0

)
− βai. (17)

B. Analysis of the CDMA transmission power equilibrium

Before we attempt to find the best response of player θi, we
first define a projection operator on R according to Bertsekas
and Tsitsiklis [37].

Definition 5: For any given closed interval X ⊂ R, define
an orthogonal projection operator PX : R→ X such that

PX(x) := arg min
z∈X

|z − x|, ∀x ∈ R. (18)

Given the utility function (17) and a fixed strategy p ∈ A
of the opponents M \ {θi}, we can obtain the optimal action
a∗i ∈ E of the player θi based on the best response operator
in (15),

a∗i ∈ BR(θi, p)

=

{
PE

(
1

β ln 2
− αE[p(θj)θj ] +N0

θi

)}
, θi ∈M.

(19)

As the utility function u(ai, p, θi) of the player with fixed
identifier θi and fixed opponents’ strategy p is strictly concave
with respect to the power control action ai ∈ E , there is a
unique maximizer a∗i of the utility function, as indicated in
Theorem 9.17 in Sundaram [38]. Accordingly, the set of the
best response of any player αi ∈M is a singleton.

Then the space of all strategy profiles that induced a
bounded interference term αE[p(θj)θj ] under the CDMA
protocol is a vector space defined as

L1(M,R, ν) := {p : (p : M → R) & (‖p‖ν1 <∞)}. (20)

Remark 4: It is well known that Lq space is a Banach
space for any 1 ≤ q ≤ ∞ [39]. The case of weighted norm
under a change of measure has been shown in Fischer-Riesz
theorem (Theorem 7.18 of [40]), which applies to our scenario,
i.e.,

(
L1(M,R, ν), ‖·‖ν1

)
is a Banach space. Details of the

proof are omitted.

The operator to be defined below will perform the truncation
of any strategies in the space

(
L1(M,R, ν), ‖·‖ν1

)
to the set

of feasible strategies A, due to the power limitations of the
circuits of the transmitter.

Definition 6: Given the set of feasible strate-
gies A ⊂ L1(M,R, ν), the truncation operator is the
mapping T : L1(M,R, ν) → A such that for an arbitrary
p ∈ L1(M,R, ν), we have that the resulting strategy profile

p̃ := T (p), (21)

which satisfies p̃(x) = PE(p(x)), ∀x ∈M .
A property of the operator T is given in the lemma below.
Lemma 1: The operator T : L1(M,R, ν) → L1(M,R, ν)

is non-expansive, i.e., for two arbitrarily picked elements
p(1), p(2) ∈ L1(M,R, ν), we have∥∥∥T (p(1)

)
− T

(
p(2)
)∥∥∥ν

1
≤
∥∥∥p(1) − p(2)

∥∥∥ν
1
. (22)

Proof: This lemma is a direct extension of the projec-
tion theorem in Euclidean space [37]. For any p(1), p(2) ∈
L1(M,R, ν), we can obtain∥∥∥T (p(1)

)
− T

(
p(2)
)∥∥∥ν

1

=

∫
x∈M

∣∣∣T (p(1)
)

(x)− T
(
p(2)
)

(x)
∣∣∣w(x)dλ(x).

Moreover, based on Definition 6 as well as the non-expansive
property of the projection operator PE as given in the projec-
tion theorem (i.e., Proposition 3.2 by Bertsekas and Tsitsik-
lis [37]), for any fixed x ∈M , we have∣∣∣T (p(1)

)
(x)− T

(
p(2)
)

(x)
∣∣∣

=
∣∣∣PE(p(1)(x))− PE(p(2)(x))

∣∣∣ ≤ ∣∣∣p(1)(x)− p(2)(x)
∣∣∣.

Hence, based on the definition of the weighted L1 norm,
we can directly obtain∫

x∈M

∣∣∣T (p(1)
)

(x)− T
(
p(2)
)

(x)
∣∣∣w(x)dλ(x)

≤
∫

x∈M

∣∣∣p(1)(x)− p(2)(x)
∣∣∣w(x)dλ(x),

which is equivalent to (22).
Now we establish the existence and uniqueness of mean-

field equilibrium in the case of CDMA communication proto-
col.

Theorem 1: Assume α < 1. Then for CDMA, there exists
a unique mean-field equilibrium p∗ ∈ A ⊂ L1(M,R, ν)
with single user detection and utility function (17). Moreover,
starting from any initial strategy p0 ∈ A, the unique mean-
field equilibrium p∗ can be obtained through a recursive update
based on the best response operator, i.e., lim

k→∞
pk = p∗ ∈

L1(M,R, ν), where pk+1(θi) ∈ BR(θi, pk) for any θi ∈ M
and k ≥ 0.

Proof: See Appendix I.
Remark 5: Note that the assumption α < 1 can be inter-

preted as requiring the length of the signature sequence ns
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to be greater than the number of users N . In other words,
there is some redundancy in the number of sub-carries (i.e.,
code chips) in the implementation of spread spectrum tech-
nique. This assumption is commonly satisfied in the practical
implementation of CDMA protocol, as it is often required that
ns � N to enhance robustness of orthogonality against time
offsets among signal waveforms from different users or to
accommodate possible incoming users.

Moreover, we also obtain the result on the continuity and
monotonicity of the equilibrium strategy profile under the
CDMA protocol.

Corollary 1: The mean-field equilibrium strategy p∗ :
M → E for CDMA is continuous and monotonically increas-
ing with respect to the identifier θi ∈M .

Proof: See Appendix II.
Remark 6: Since our model uses an infinite number of

users to approximate the behavior of a large but finite user
population, it is natural to raise the question on how ac-
curate this approximation is. We take CDMA for a finite
population with N users as an instance. Then we define the
mean-field interference as the average receiving power level
of the user population over the shared Gaussian channel,
i.e., z := (1/N)

∑N
j=1 p(θj)θj , which is identical for all

channel users. On the other hand, each user θi chooses its
optimal action in response to the interference z, i.e., p(θi) =
a∗i = arg maxai∈E u(ai, p, θi) = 1

β ln 2 −
αz+N0

θi
, where we

assume the set of feasible power levels E is sufficiently
large such that no truncation is performed. Hence, by cal-
culating the fixed point of the mean-field term z, a closed-
form expression of the equilibrium strategy can be obtained
as p∗(θi) := 1

β ln 2 −
1
θi

[ N0

1+α + α
(1+α)β ln 2 ( 1

N

∑N
i=1 ‖hi‖

2
)]

for i = 1, 2, . . . , N . As N → ∞, based on the strong
law of large number, we have 1

N

∑N
i=1 ‖hi‖

2 a.s.−−→ E[‖hi‖2].
According to Theorem 2.5.7 in [31], the speed of almost sure
convergence is faster than N−0.5(logN)0.5+ε for any ε > 0.

V. NOMA TRANSMISSION POWER GAME

A. Multi-packet reception (MPR) in NOMA

1) Power-domain NOMA and SIC decoding: For power-
domain NOMA, we still adopt the spread-spectrum technique.
For convenience and fairness of social welfare comparison
between CDMA and NOMA, the same set of signature se-
quences {sj}Nj=1 is allocated to the users, hence 0 < α ≤ 1.
The main difference between CDMA and NOMA is reflected
in the specific decoding algorithm adopted by the receiver.

Now we explicitly give the procedures of SIC decoding
algorithm for power-domain NOMA. This requires a proper
determination of the decoding order of signals from different
sources. Typically, the order of decoding is affected by the
realization of the channel gains ‖hi‖2, as indicated in Vaezi
et al. [17] and Xia et al. [41]. The outcome of decoding is
based on the SINR and is determined by Shannon’s theorem
as given in (3). The SINR level of each data source in the
received signal is presented below.

Consider the decoding order of the signals as
a vector v := (v1, v2, . . . , vN ), where each
index vj ∈ {1, 2, . . . , N} is distinct. For conventional

SIC schemes, the recursive decoding continues if and only
if all the previous decoding procedures are successful. From
the perspective of the signal source vi which is currently
being decoded, the set of signal sources which has been
successfully decoded and canceled from received waveform
y[k] is Id(vi) = {v1, v2, . . . , vi−1}. Then the SINR of each
signal source upon the decoding procedure can be expressed
as

SINRvi =
pvi∑

j∈{1,2,...,N}/{vi}/Id(vi)

ρj,viaj‖hj‖
2

+N0

=
pvi∑

j∈{1,2,...,N}/{vi}/Id(vi)

α
N aj‖hj‖

2
+N0

. (23)

If the signal from source mi is decoded successfully from
the received waveform y[k], i.e., γ(mi) = 1, the SIC decoding
will proceed to the one with the largest channel gain

∥∥hmi+1

∥∥2

among remaining signal sources; otherwise, SIC terminates
and all the signals from the remaining sources in the received
waveform are dropped.

In order to extract information more effectively from the
received waveform y[k], an improved version of SIC is
proposed by Xia et al. [41] for uplink transmission such
that the base station attempts to decode the remaining users’
information even when failures have happened. In other words,
the signal that was not successfully decoded will be treated
as interference in the subsequent decoding procedures. In this
case, the successful decoding set from the perspective of user
vi is expressed as

Ĩd(vi) = {vj : 1 ≤ j ≤ i− 1 and γ(j) = 1} (24)

and the decoding procedure terminates after all data
sources i ∈ {1, 2, . . . , N} have been attempted for decoding.
We base our analysis on this improved version of SIC [41].

The implementation issues of the SIC decoding algorithm
is also of concern. Though the complexity introduced by
SIC cannot be ignored [17], the online implementation of
SIC under the power-domain NOMA considered in this pa-
per is feasible due to the following reasons. First, recent
improvements in the computational capability have enabled
the implementations of SIC at user equipments [17], such as
the network-assisted interference cancellation and suppression
(NAICS) terminals investigated by Zhou et al. [42]. Second,
the non-cooperative channel access model corresponds to the
scenario of a micro base station serving a moderate user
population size, typically around a hundred users. For such
a user population, it is feasible to adopt SIC decoding during
online implementation.

In practice, the base station senses the channel gain of
the communication link from each user in advance, and it
is relatively static since the users lack mobility. Hence, the
base station can determine the decoding order of each user
in advance and broadcast the channel gains as well as the
decoding order to all potential users during initialization.
This fixed decoding order assumption for SIC has also been
employed by Wei et al. [21].

Remark 7: For convenience of analysis, we have assumed
that a fixed decoding order (i.e., the descending order of the
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channel gain) is employed at the base station. However, from
the perspective of a practical implementation, as the channel
users are non-cooperative decision makers, it is in general
difficult to regulate different users to choose their actions
based on the predetermined SIC decoding order broadcasted
by the base station. The requirement that each channel user
will automatically adopt the decoding order broadcasted by the
base station can be interpreted as a communication protocol
programmed into the user equipments.

On the other hand, NOMA with a fixed SIC decoding order
can be considered as a benchmark for possible performance
achievable by NOMA. Specifically, if an optimal decoding
order for NOMA exists, it will perform no worse than the
benchmark. Hence, we can without loss of generality analyse
NOMA with a fixed decoding order.

2) The utility functions for the aggregative game using SIC:
To determine the utility function of each uplink user, we need
to obtain the expression of SINR of each received signal
sources at the base station. Due to the recursive nature of
SIC, it is necessary to determine the decoding order before
giving the expressions of SINR. In this paper, we restrict our
consideration to the case where the SIC algorithm at the base
station follows the descending order of the squared norm of
the channel gain.

For simplicity of analysis, we assume that at each step of
SIC, the interference caused by users decoded prior to this step
is perfectly canceled regardless of their decoding outcomes,
which is similar to the model in Chen et al. [22]. Thus the
SINR is approximated by

SINRi =
ai

α
N

∑
j 6=i

aj‖hj‖2 · 1{‖hj‖2<‖hi‖2} +N0

. (25)

Remark 8: Though we have assumed that each user enjoys
a perfect cancellation of interference from previously decoded
users during SIC, this does not hold true in general as
the receiving SINR of a portion of users can fail to meet
condition (3) for successful decoding. The model we consider
here is an approximation, which provides a straightforward
characterization of the features of NOMA without introducing
much complexity in modelling. Fortunately, if there are more
general models where the interference faced by each user
during SIC can be characterized explicitly, the social welfare
comparison will remain valid as long as equilibrium strategies
exist.

Similar to the case of CDMA, when the number of play-
ers N → ∞ under the NOMA protocol, the SINR of the
received signal from player θi ∈M is expressed as

SINR(p, θi) = lim
N→∞

ai
α
N

∑
j 6=i

ajθj1{θj<θi} +N0

a.s.−−−→
SLLN

ai
αE[p(θ∗)θ∗1{θ∗<θi}] +N0

, θi ∈M,

where the expectation is taken with respect to the random
variable θ∗ following the distribution f(x), and Kolmogorov’s
strong law of large number holds since by Assumption 1,

E[p(θ∗)θ∗1{θ∗<θi}] ≤ E[p(θ∗)θ∗] ≤ Emaxh
2
<∞.

The utility function of any user θi ∈ M under the NOMA
protocol is

u(ai, p, θi) = log2

(
1 + θiSINR(p, θi)

)
− βai

= log2

(
1 +

θiai
αE[p(θ∗)θ∗1{θ∗<θi}] +N0

)
− βai. (26)

Remark 9: The determination of the interference
αE[p(θ∗)θ∗1{θ∗<θi}] faced by each user θi ∈ M is
equivalent to the identification of the decoding order of that
specific user, as the interference is the only term in the
utility function impacted by the decoding order. According
to the strong law of large number, the interference from an
infinite number of users will converge almost surely to the
term αE[p(θ∗)θ∗1{θ∗<θi}]. Hence, each user θi ∈ M can
determine the percentage of users that complete decoding
before its turn as long as the PDF f(θi), (θi ∈M) is known.

B. Analysis of the NOMA transmission power equilibrium

Player θi’s optimal action against opponents’ aggregate
actions is given by the best response operator (15), i.e., ∀θi ∈
M , there is

a∗i ∈ BRordered(θi, p)

=

{
PE

(
1

β ln 2
−
αE[p(θ∗)θ∗1{θ∗<θi}] +N0

θi

)}
. (27)

Again, we are going to adopt the Banach fixed point theorem
to establish the existence and uniqueness of the mean-field
equilibrium strategy p∗.

According to Definition 2, a vector space consisting of all
strategies with bounded power allocation is defined as

L∞(M,R, ν) := {p : (p : M → R) & (‖p‖ν∞ <∞)}. (28)

As explained in Remark 4, the space (L∞(M,R, ν), ‖·‖ν∞)
is a Banach space. The set of feasible strategies A is a subset
of L∞(M,R, ν).

Now we give the main result concerning the equilibrium
strategy for NOMA, which establishes the existence and
uniqueness of equilibrium strategy.

Theorem 2: Assume α < 1. Then for the game G which
adopts utility function (26) and NOMA with SIC decoding by
descending order of the channel gains ‖hi‖2, there exists a
unique mean-field equilibrium p∗ordered ∈ A ⊂ L∞(M,R, ν),
and the utility function of each player is given by (26).
Moreover, starting from any initial strategy p0 ∈ A, the unique
mean-field equilibrium p∗ordered can be obtained through a recur-
sive update based on the best response operator, i.e., lim

k→∞
pk =

p∗ordered ∈ L∞(M,R, ν), where pk+1(θi) ∈ BRordered(θi, pk)
for any θi ∈M and k ≥ 0.

Proof: See Appendix III.
Corollary 2: For the game G adopting NOMA, the unique

equilibrium strategy p∗ordered : M → E characterized in Theo-
rem 2 is continuous with respect to θi ∈M .

Proof: See Appendix IV.
Based on Theorem 1 and Theorem 2, it is seen that the

strategy update with a best response operator is a contraction
mapping under both CDMA and NOMA protocols. According
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to Banach fixed-point theorem [37], this has directly led to
a distributed algorithm for strategy updates at each player
such that the convergence to the unique equilibrium strategy is
guaranteed. The distributed algorithm is given in Algorithm 1.

Algorithm 1: Distributed Equilibrium-Seeking Algo-
rithm
Input: Number of users N ;

Number of iterations NUMItr;
Result: The strategy profile p∗(θi) (CDMA)

or p∗ordered(θi) (NOMA), where i = 1, 2, . . . , N .
Initialization: Fix an arbitrarily chosen initial power
allocation strategy p0(θi) ∈ A for
users i = 1, 2, . . . , N ;

for k = 0 to NUMItr − 1 do
for i = 1 to N do

pk+1(θi) ∈ BR(θi, pk) (CDMA) or
pk+1(θi) ∈ BRordered(θi, pk) (NOMA);

(Parallel updates for users i = 1, 2, . . . , N .)
end

end
The strategy profile obtained is p∗(θi) ∈ A (CDMA)
or p∗ordered ∈ A (NOMA), for i = 1, 2, . . . , N .

Next, we will compare between OMA and NOMA for a
given non-cooperative user population. Since a subcarrier (e.g.,
frequency band, time slots, signature sequences, etc.) needs
to be allocated to each user before we model the channel
interference, we employ CDMA with single-user decoding as
a benchmark of OMA protocols. Due to the averaging effect
introduced by the spread spectrum techniques, the channel
interference faced by users can be described by a mean-field
term. The same spread spectrum techniques is adopted in the
subcarrier allocation of the NOMA scheme for the fairness
of comparison. In this paper, we take power-domain NOMA
with SIC as the representative of general NOMA schemes. The
results are expected to be valid for other types of subcarriers
as well.

VI. SOCIAL WELFARE COMPARISON BETWEEN CDMA
AND NOMA

Now that the game G under either CDMA or NOMA com-
munication protocol admits a unique mean-field equilibrium,
it is of interest to conduct social welfare comparison when
a large number of players reach an equilibrium under these
two protocols respectively. In this paper, we focus more on
qualitative analysis than quantitative analysis.

In general, the social welfare comparison between mean-
field equilibria of different games is not easily achievable since
it will be difficult to characterize the changes in equilibrium
strategies. In an aggregative game with a large number of
players, we define the social welfare as the average utility
achieved by all players.

In this paper, we aim at comparing the effectiveness of the
NOMA communication protocol in 5G networks against the
CDMA protocol. As introduced in the previous sections, the
intrinsic difference between NOMA and CDMA is whether

successive interference cancellation (SIC) is adopted. The so-
cial welfare comparison of the game equilibria achieved under
two different communication protocols can be formulated as
two optimization problems with a common objective function
(i.e., the social welfare metric), several different constraints
(i.e., different communication protocols) as well as a common
constraint reflecting the definition of a mean-field equilibrium,
which restricts the solution set of each optimization problem
to be within the set of mean-field equilibria. The mathematical
details are illustrated below.

First, we define the social welfare metric in terms of

J(p, z) := E[ũ(p(θi), z, θi)] =

∫
θi∈M

ũ(p(θi), z, θi)f(θi)dθi,

(29)
where p ∈ A and z : M → R is ν-measurable, with the
individual utility ũ corresponding to each player θi defined
as a function of the action p(θi) taken by player θi and the
interference effects z. The expressions of individual utilities ũ,
based on the formulation of the aggregative game, can be
expressed as

ũ(ai, z, θi) := log2

(
1 + θi

ai
αz(θi) +N0

)
− βai. (30)

Remark 10: For finite users, the social welfare can be
defined as the average utility achieved in the population [43].
When the number of users N approaches infinity, the social
welfare converges to the expectation of individual utilities with
respect to the distribution of the user identity θi ∈M .

The only differences between CDMA and NOMA is on the
interference effects z : M → R.

First, we consider the CDMA protocol. As the channel
is shared in an orthogonal manner with spread spectrum
techniques, the interference level is identical for different
channel users, i.e.,

z(θi) = E[p(θj)θj ], ∀θi ∈M. (31)

Next, we consider the NOMA protocol. Since the SIC
decoding algorithm is used by the base station, as introduced
in Section V, the interferences faced by different channel
users θi ∈M are non-identical. With slight abuse of notations,
we arbitrarily fix a user identity θi to be a constant rather than a
random variable. Due to the assumption on perfect interference
cancellation and fixed decoding order (i.e., descending order
of the channel gain), the interference faced by each user under
NOMA is

z(θi) = E[p(θj)θj1{θj<θi}], ∀θi ∈M, (32)

where the indicator function 1{θj<θi} comes from recursive
cancellation of previously decoded signal.

To compare the equilibrium social welfare under CDMA
and NOMA, it is difficult to calculate their equilibrium strate-
gies in closed form and evaluate the corresponding equilibrium
social welfare (29). Hence, it is necessary for us to propose
approaches for analyzing the trend of changes in the equilib-
rium performance as we switch the protocol from CDMA to
NOMA.
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Given an interference profile z(θi) (θi ∈ M), if we plan
to predict the outcome of power control game among channel
users and evaluate the corresponding performance, we need
to restrict the strategies to satisfy the definition of mean-field
equilibrium (Definition 4), i.e.,

ũ(p(θi), z, θi) ≥ ũ(ai, z, θi), ∀ai ∈ E , θi ∈M. (33)

With the social welfare J(p, z) as the performance criterion
of this game, our objective in this section is to theoretically
compare J(p, z) achieved under the equilibrium strategies of
CDMA and NOMA, respectively. We employ a perturbation-
based approach on the social welfare J(p, z) as a functional
with respect to (p, z) for characterizing the trend by which the
equilibrium social welfare changes when we switch the pro-
tocol from CDMA to NOMA. Details are given in Theorem 3
and illustrated in Fig. 3.

Fig. 3: Relaxed spaces of feasible function-valued variable
pairs (p, z) and strategy perturbation.

Given the unique equilibrium power allocation strate-
gies p∗ and p∗ordered in power control game G under
CDMA and NOMA, the corresponding interference profiles
are given by z∗(θi) = E[p∗(θj)θj ] and z∗ordered(θi) =
E[p∗ordered(θj)θj1{θj<θi}] for any θi ∈M , respectively.

Theorem 3 (NOMA outperforms CDMA under equilibria):
NOMA can achieve a strictly better social welfare
than CDMA at the corresponding equilibrium strategies,
i.e., J(p∗ordered, z

∗
ordered) > J(p∗, z∗).

Proof: To build up a bridge between the equi-
librium performance of the power control game under
CDMA and NOMA, we relax the conditions on interfer-
ence profile z(θi) such that only lower bounds are imposed,
i.e., z(θi) ≥ E[p(θj)θj ], ∀θi ∈ M for CDMA and z(θi) ≥
E[p(θj)θj1{θj<θi}], ∀θi ∈M for NOMA.

Under the relaxed interference profile z, given the common
best response condition (33) for both protocols, the space
of feasible variable pairs (p, z) in CDMA is a subset of
that in NOMA due to the fact that E[p(θj)θj1{θj<θi}] ≤
E[p(θj)θj ], ∀θi ∈M , as indicated in Fig. 3.

Then we show that the maximum social welfare in the
relaxed space of feasible variable pairs (p, z) under either
CDMA or NOMA can only be obtained at the boundary of
the relaxed conditions on interference z. For convenience of
presentation, given the relaxed variable space and the social
welfare criterion, we construct two auxiliary optimization
problems (Problem 1 and Problem 2) to search for the best

possible performance. Then, it is equivalent to showing that
for both protocols, the maximum social welfare we seek can
only be achieved on the boundary of the feasible sets.

Problem 1 (CDMA - relaxed):

max
p∈A, z∈MR(M)

J(p, z)

subject to z(θi) ≥ E[p(θj)θj ],

ũ(p(θi), z, θi) ≥ ũ(ai, z, θi),

∀ ai ∈ E , θi ∈M.

(34)

Problem 2 (NOMA - relaxed):

max
p∈A, z∈MR(M)

J(p, z)

subject to z(θi) ≥ E[p(θj)θj1{θj<θi}],

ũ(p(θi), z, θi) ≥ ũ(ai, z, θi),

∀ ai ∈ E , θi ∈M.

(35)

Below, we establish the necessary optimality condition for
NOMA, while a similar approach applies to CDMA.

To begin with, we focus on the constraint z(θi) ≥
E[p(θj)θj1{θj<θi}]. We aim at showing that any pair of
optimal solution (p∗, z∗) to Problem 2 satisfies z∗(θi) =
E[p∗(θj)θj1{θj<θi}] a.e. in M .

From the feasible set of Problem 2, we pick up a
pair of decision variables (p, z) such that ũ(p(θi), z, θi) ≥
ũ(ai, z, θi), ∀θi ∈M and there exists a bounded set M2 ⊂M
satisfying P (M2) > 0 and for any θi ∈M2, there is z(θi) >
E[p(θj)θj1{θj<θi}]. Assume (p, z) is an optimal solution to
Problem 2.

Define a measurable function ε : M2 → R such that
ε(θi) := z(θi)−E[p(θj)θj1{θj<θi}] > 0. Since the space M ⊂
R is a metric space, according to Lemma 4.1 (Lusin’s theorem)
in Chapter II of [44], for ε2 := 1

2P (M2) > 0, there exists
a closed set M2 ⊂ M2 such that ν(M2 \ M2) ≤ ε2 and
the restriction of the measurable function ε on the set M2,
which is denoted as εM2

: M2 → R, is continuous. Since M2

is bounded, the closed set M2 ⊂ M2 is compact. Hence,
based on Weierstrass extreme value theorem [39], there exists
a θ′ ∈M2 such that inf

θi∈M2

εM2
(θi) = εM2

(θ′) = ε(θ′) > 0.

Then, we construct a new variable z̃ such that

z̃(θi) :=

{
z(θi)− 1

K ε(θi), θi ∈M2;

z(θi), Otherwise,

where K > 1 is a scaling factor.
In order for the constructed variable z̃ to satisfy the con-

straint ũ(p(θi), z, θi) ≥ ũ(ai, z, θi), ∀θi ∈ M , we obtain
an updated version of the optimal power control variable p̃
in response to the change in the interference term from z
to z̃. Since the individual utility function ũ(ai, z, θi) in the
optimization problem is strictly concave with respect to the
variable ai, it has a unique maximizer in terms of ai when
other variables are fixed. Then, the updated version of the
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optimal power control strategy p̃(θi) is expressed as

p̃(θi) := arg max
ai∈E

ũ(ai, z̃, θi) (36)

= PE

(
1

β ln 2
− αz̃(θi) +N0

θi

)
=

{
PE

(
1

β ln 2 −
α[z(θi)− 1

K ε(θi)]+N0

θi

)
, θi ∈M2;

p(θi), Otherwise.

It remains to verify the existence of a scaling factor K >
1 such that the pair (p̃, z̃) satisfies the constraint z(θi) ≥
E[p(θj)θj1{θj<θi}] for any θi ∈M . By definition of (p̃, z̃), it
suffices to show that z̃(θi) ≥ E[p̃(θj)θj1{θj<θi}] for any θi ∈
M2.

By the derivations in (36), for any θi ∈M ,

|p(θi)− p̃(θi)|

=

∣∣∣∣arg max
ai∈E

ũ(ai, z, θi)− arg max
ai∈E

ũ(ai, z̃, θi)

∣∣∣∣
≤
∣∣∣∣α[z(θi)− z̃(θi)]

θi

∣∣∣∣ ≤ αε(θi)

Kθi
.

Hence for any θi ∈M ,∣∣E[(p(θj)− p̃(θj))θj1{θj<θi}]
∣∣

≤ E[|p(θj)− p̃(θj)|θj ] =
α

K
E[ε(θj)].

As ε(θi) > 0 for any θi ∈ M2 and 0 ≤ E[ε(θj)] < ∞ is a
constant, there exists a sufficiently large K such that

z̃(θi)− E[p̃(θj)θj1{θj<θi}]

= z(θi)−
1

K
ε(θi)− E[p(θj)θj1{θj<θi}]+

E[(p(θj)− p̃(θj))θj1{θj<θi}]

≥ K − 1

K
ε(θi)−

∣∣E[(p(θj)− p̃(θj))θj1{θj<θi}]
∣∣

≥ K − 1

K
εM2

(θ′)− α

K
E[ε(θj)] > 0, ∀θi ∈M2,

where the last inequality holds due to ε(θi) = εM2
(θi) ≥

inf
θi∈M2

εM2
(θi) = εM2

(θ′) for any θi ∈ M2 and by a fixed

choice of K >
αE[ε(θj)]
ε(θ′) + 1 ≥ 1. Thus, the feasibility of the

constructed variable pair (p̃, z̃) is successfully shown.
Now, since z̃(θi) < z(θi) by definition, we can obtain the

following inequalities

ũ(p(θi), z, θi) = log2

(
1 + θi

p(θi)

αz(θi) +N0

)
− βp(θi)

< log2

(
1 + θi

p(θi)

αz̃(θi) +N0

)
− βp(θi)

≤ log2

(
1 + θi

p̃(θi)

αz̃(θi) +N0

)
− βp̃(θi)

= ũ(p̃(θi), z̃, θi), ∀θi ∈M2,

where the last inequality is due to the fact that ai = p̃(θi) is
a maximizer of ũ(ai, z̃, θi).

Therefore, the social welfare under the new decision vari-
able satisfies

J(p̃, z̃) =

∫
θi∈M

ũ(p̃(θi), z̃, θi)f(θi)dθi >∫
θi∈M2

ũ(p(θi), z, θi)f(θi)dθi +

∫
θi∈M\M2

ũ(p̃(θi), z̃, θi)f(θi)dθi

=

∫
θi∈M2

ũ(p(θi), z, θi)f(θi)dθi+∫
θi∈M\M2

ũ(p(θi), z, θi)f(θi)dθi = J(p, z),

which indicates that it is not possible for the original pair of
decision variables (p, z) to be optimal.

Therefore, z(θi) = E[p(θj)θj1{θj<θi}] holds almost every-
where in M is a necessary optimality condition of Problem 2.
In light of the proof above, a necessary condition for optimality
can be obtained for Problem 1 such that z(θi) = E[p(θj)θj ]
holds almost everywhere in M .

Denote the optimal solution to Problem 1 as (p∗1, z
∗
1) and

the optimal solution to Problem 2 as (p∗2, z
∗
2). Take into

account the inclusive relationship between the relaxed spaces
of feasible variables (p, z) for CDMA and NOMA, we can
obtain J(p∗2, z

∗
2) ≥ J(p∗1, z

∗
1). Next, we show that the above

inequality is strict.
Assume J(p∗2, z

∗
2) = J(p∗1, z

∗
1), since the optimal variable

pair (p∗1, z
∗
1) in Problem 1 is also feasible for Problem 2.

Then the optimal social welfare for NOMA can also be
achieved at (p∗1, z

∗
1). However, since there exists a non-zero

measure set M+ ⊂ M such that z∗1(θi) = E[p∗1(θj)θj ] 6=
E[p∗1(θj)θj1{θj<θi}], ∀θi ∈ M+, this contradicts with the
necessary optimality condition for Problem 2. Thus, we
have J(p∗2, z

∗
2) > J(p∗1, z

∗
1).

Next, we show that the social welfare achieved by the
variable pairs (p∗1, z

∗
1), (p∗2, z

∗
2) equals that achieved un-

der the equilibrium of CDMA, i.e., (p∗, z∗), and NOMA,
i.e., (p∗ordered, z

∗
ordered), respectively. We show it for NOMA, as

similar arguments can be followed for CDMA.
For the variable pair (p∗2, z

∗
2) achieving the optimal value of

Problem 2, there exists a subset M0 ⊂ M with P (M0) = 0,
where z∗2(θi) = E[p∗2(θj)θj1{θj<θi}] holds for any θi ∈ M \
M0. Hence, the strict inequality z∗2(θi) > E[p∗2(θj)θj1{θj<θi}]
can only be satisfied at some points θi in M0.

Based on this variable pair, we construct an auxiliary
variable pair (p̃, z̃) as follows.

z̃(θi) :=

{
z∗2(θi), θi ∈M \M0;

E[p∗2(θj)θj1{θj<θi}], Otherwise,
(37)

and

p̃(θi) =

{
p∗2(θi), θi ∈M \M0;

PE

(
1

β ln 2 −
αz̃(θi)+N0

θi

)
, Otherwise.

(38)

As a result, we can obtain that{
z̃(θi) = E[p∗2(θj)θj1{θj<θi}], ∀θi ∈M ;

p̃(θi) = PE

(
1

β ln 2 −
αz̃(θi)+N0

θi

)
, ∀θi ∈M.

(39)
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In order to verify that the pair of auxiliary variables (p̃, z̃)
satisfies the necessary optimality condition for Problem 2, it
suffices to show E[p̃(θj)θj1{θj<θi}] = E[p∗2(θj)θj1{θj<θi}].

We derive that

E[p̃(θj)θj1{θj<θi}] =

∫
θj∈M∩(0,θi]

p̃(θj)θjf(θj)dθj

= 0 +

∫
θj∈(M/M0)∩(0,θi]

p∗2(θj)θjf(θj)dθj

= E[p∗2(θj)θj1{θj<θi}],

where the second equality holds due to the fact that the set
M0 has Lebesgue measure zero, i.e., P (M0) = 0.

As a result, the pair of auxiliary variables (p̃, z̃) satisfies{
ũ(p̃(θi), z̃, θi) ≥ ũ(ai, z̃, θi), ∀ai ∈ E , θi ∈M ;

z̃(θi) = E[p̃(θj)θj1{θj<θi}], ∀θi ∈M.
(40)

These conditions correspond to the definition of mean-
field equilibrium of the game G when NOMA is adopted,
and the mean-field equilibrium strategy for NOMA uniquely
exists according to Theorem 2. Hence, we can obtain that
(p̃, z̃) = (p∗ordered, z

∗
ordered).

Now, since P (M0) = 0, we analyse the value of the
objective function achieved, as follows.

J(p∗2, z
∗
2) =

∫
θi∈M

ũ(p(θi), z, θi)f(θi)dθi

= 0 +

∫
θi∈M\M0

ũ(p(θi), z, θi)f(θi)dθi

= 0 +

∫
θi∈M\M0

ũ(p̃(θi), z̃, θi)f(θi)dθi

= J(p̃, z̃) = J(p∗ordered, z
∗
ordered).

Therefore, the optimal solution (p∗2, z
∗
2) to Problem 2

achieves exactly the same value of the objective
function J(p, z) as the mean-field equilibrium variable
pair (p∗ordered, z

∗
ordered). With similar derivations for CDMA, we

conclude that J(p∗ordered, z
∗
ordered) > J(p∗, z∗). This completes

the proof.

VII. INDIVIDUAL BEHAVIORS AT THE EQUILIBRIUM

The collective behaviors comparison among the population
of users has been conducted in the previous section. It is of
interest to characterize individual behaviors at the equilibrium.

According to Theorem 1 and Theorem 2, denote the unique
equilibrium strategy for CDMA as p∗ ∈ A and the equilibrium
strategy for NOMA as p∗ordered ∈ A. For an unbounded set M
of user identities, we obtain an additional property such that
for users with sufficiently large uplink channel gains, their
equilibrium transmission power under CDMA and NOMA can
be arbitrarily close.

Proposition 1 (Convergence behavior for high-gain users):
Assume the player set M is unbounded from above, i.e.,
∀L > 0, ∃θi ∈M s.t. θi > L. Then

lim
θi→∞

|p∗(θi)− p∗ordered(θi)| = 0. (41)

Proof: By definition of the equilibrium strategies p∗

and p∗ordered, we obtain the following inequality based on the
best response operator (15). For any θi ∈M ,

|p∗(θi)− p∗ordered(θi)|

=
α

θi

∣∣E[p∗(θj)θj ]− E[p∗ordered(θj)θj1{θj<θi}]
∣∣

≤ α

θi
{|E[p∗(θj)θj ]|+ |E[p∗ordered(θj)θj ]|} ≤

2α

θi
EmaxE[‖hi‖2].

For any ε > 0, we choose θε >
2αEmaxE[‖hi‖2]

ε . Then we
obtain that |p∗(θi)− p∗ordered(θi)| < ε for any θ > θε, which
completes the proof.

More importantly, it can be shown that the curve of equi-
librium power allocation for different users under CDMA and
NOMA will have a crossing. We can further prove that the
curve of equilibrium data rate achieved under CDMA and
NOMA crosses as well. In other words, pointwise improve-
ment in the equilibrium data rate for different types of users
is not achievable through adopting NOMA instead of CDMA.
Intuitively, there is “no free lunch” in employing NOMA to
improve for all individual users.

Proposition 2 (Infeasibility of pointwise improvement):
Assume Emin = 0. Then the curve of equilibrium power
strategy p∗ for CDMA crosses p∗ordered for NOMA,
i.e., ∃ θcross ∈ M s.t. p∗(θcross) = p∗ordered(θcross) and
∃ θ− < θcross < θ+ with [p∗(θ−) − p∗ordered(θ−)] · [p∗(θ+) −
p∗ordered(θ+)] < 0. Consequently, it is infeasible to achieve
pointwise improvement in the equilibrium data rate achieved
by NOMA in comparison with CDMA.

Proof: First, we show that the curve of p∗ crosses p∗ordered,
which we will prove by contradiction.

Assume that the curves of p∗ and p∗ordered never cross each
other. Define the cutoff thresholds θCDMA

th , θNOMA
th ∈M such

that p∗(θi) = 0 for any θi ≤ θCDMA
th and p∗ordered(θi) = 0 for

any θi ≤ θNOMA
th .

Since an equilibrium strategy is a best response (19), (27)
to itself, if we set p∗(θCDMA

th ) = 0 and p∗ordered(θNOMA
th ) = 0,

we obtain that the cutoff thresholds satisfy 0 < θNOMA
th <

θCDMA
th . Thus, the nonexistence of crossing can be expressed

as p∗(θi) ≤ p∗ordered(θi) for any θi ∈ M . Again, according
to (19), (27),

p∗ordered(θi) = PE

(
1

β ln 2
−
αE[p∗ordered(θj)θj1{θj<θi}] +N0

θi

)
,

(42)
it can be obtained that p∗(θi) ≤ p∗ordered(θi) im-
plies E[p∗(θj)θj ] ≥ E[p∗ordered(θj)θj1{θj<θi}], which holds for
any θi ∈ M . By taking a sufficiently large θi ∈ M , we
conclude that E[p∗(θj)θj ] ≥ E[p∗ordered(θj)θj ].

On the other hand, since p∗(θi) ≤ p∗ordered(θi),
we have E[p∗(θj)θj ] ≤ E[p∗ordered(θj)θj ]. Thus we
have E[p∗(θj)θj ] = E[p∗ordered(θj)θj ] as the inequality holds
for both directions.

Given p∗(θi) ≤ p∗ordered(θi), we obtain that

E[|p∗ordered(θj)− p∗(θj)|θj ]
= E[p∗ordered(θj)θj ]− E[p∗(θj)θj ] = 0.
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The expression above can be equivalently interpreted as

0 = E[|p∗ordered(θj)− p∗(θj)|θj ]

=

∫
θj∈M

|p∗ordered(θj)− p∗(θj)|dν(θj),

i.e., p∗ = p∗ordered, ν-a.e, where ν is defined in (7).
The cutoff thresholds 0 < θNOMA

th < θCDMA
th are strictly

different for p∗ and p∗ordered, as shown above. Since both
functions p∗ : M → E and p∗ordered : M → E are shown
to be continuous with respect to θi ∈ M in Corollary 1 and
Corollary 2, it is impossible to have p∗ = p∗ordered, ν-a.e.

Therefore, contradiction emerges, which verifies that the
power allocation strategies p∗ crosses p∗ordered. Denote the type
variable at which p∗ crosses p∗ordered as θcross ∈ M , this is
equivalent to ∃ θ− < θcross < θ+ with [p∗(θ−)−p∗ordered(θ−)] ·
[p∗(θ+)− p∗ordered(θ+)] < 0.

Secondly, we show that pointwise improvement in the
curve of equilibrium data rate achieved for different users is
impossible.

The crossing behaviors cannot happen at saturation re-
gion, i.e., Emin or Emax. According to the best response
equation (19) and (27) as well as the continuity of p∗(θi)
and p∗ordered(θi) with respect to θi ∈ M , there exists a
sufficiently small δ > 0 such that for any |θ − θcross| < δ,
we have

p∗(θ) =
1

β ln 2
− αE[p∗(θj)θj ] +N0

θ

and

p∗ordered(θ) =
1

β ln 2
−
αE[p∗ordered(θj)θj1{θj<θ}] +N0

θ
.

We denote the equilibrium data rate achieved
by CDMA and NOMA at user type θi ∈ M

as d∗CDMA(θi) = log2

(
1 + θi

p∗(θi)
αE[p∗(θj)θj ]+N0

)
and d∗NOMA(θi) = log2

(
1 + θi

p∗(θi)
αE[p∗ordered(θj)θj1{θj<θi}]+N0

)
respectively. Then, based on the conditions on θcross above, it
can be obtained that for any |θ − θcross| < δ,

d∗CDMA(θ) = log2

(
1

1− β ln 2 p∗(θ)

)
(43)

and
d∗NOMA(θ) = log2

(
1

1− β ln 2 p∗ordered(θ)

)
. (44)

The function d∗CDMA(θ) and d∗NOMA(θ) have the same
monotonicity properties with respect to θ ∈ M as p∗(θ)
and p∗ordered(θ) respectively when |θ − θcross| < δ. Therefore,
the curve of equilibrium data achieved for different users under
CDMA crosses that under NOMA, i.e., pointwise improve-
ment in the equilibrium data rate is infeasible through adopting
NOMA instead of CDMA.

VIII. SIMULATIONS

In this section, we numerically illustrate the results concern-
ing the properties of the equilibrium strategy profile under both
CDMA (with fierce competition) and NOMA (with regulating
effects among the user population).

First, we introduce some parameters and setups adopted
in the simulation. We suppose that the channel gain hi
for each user follows Rayleigh fading. Specifically, for an
arbitrary user, the probability density function for the squared
magnitude of its channel gain θi = ‖hi‖2 is

f(θi) =

{
1
σ exp

(
− θi
σ2

)
, θi ≥ 0;

0, Otherwise.
(45)

For the simulation we take the parameter σ = 5, and the
probability density function is shown in the figure below.

Fig. 4: The probability density function (PDF) of the squared
magnitude of channel gain θi = ‖hi‖2.

It is intractable to evaluate the behaviors of an infinite
number of players for a numerical simulation, nor is it of
interest in practice. Hence, the results we present below are
generated with N = 1000 players. The white noise process
w[k] in the additive white Gaussian noise (AWGN) channel
features a power spectrum density N0 = 5, and the spread
spectrum parameter α = N

ns
= 0.25 applies to both the case

of CDMA and NOMA. In the aggregative game, we assume
the set of feasible power levels is E = [0, 150].

Now, we calculate the equilibrium power allocation strategy
of the game G as well as the corresponding data rates when
CDMA and NOMA are adopted respectively, as shown in
Fig. 5.

The equilibrium power allocation strategy is analysed first.
It is noticed that the gap between the equilibrium strategy
of CDMA and NOMA decreases as the value of the power
penalty parameter β > 0 increases. An intuitive interpretation
is that the parameter β, which determines the cost of unit
power consumption, will have a stronger regulating power
when it takes a larger value because it results in a more
conservative strategy for each user. Thus, through increasing
the value of β, fierce competitions in CDMA (i.e., high
transmission power always results in a high data rate) can
be relieved to a certain extent. Hence, the equilibrium power
allocation under CDMA will gradually approach a natural
fairness introduced through NOMA (i.e., signals from users
with high channel gains or receiving gains benefit from their
superiority of magnitude at the receiver, while others benefit
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from successive interference cancellation) as β increases.
Besides, it is noticeable that the power consumption is signif-
icantly reduced with increase in the value of β, for which an
intuitive interpretation is the decrease of demand as unit price
rises. The design problem of pricing in resource allocation has
been investigated in [2], [3], [45].

The improvement in user fairness achieved by NOMA can
be observed from the curves of achieved data rate in Fig. 5.
With the same power penalty parameter β > 0 for unit power
consumption, NOMA features a better fairness in achieved
data rates than CDMA, which is discussed as follows.

For a rigorous comparison, we employ Jain’s fairness in-
dex [46] to evaluate the fairness in equilibrium data rate of
the user population. In our simulation with N = 1000 users,
we denote the data rate achieved by user i (1 ≤ i ≤ N) as
di ≥ 0. The Jain’s fairness index is defined as

J(d1, d2, . . . , dN ) :=

(
N∑
i=1

di

)2

N ·
N∑
i=1

d2
i

=
d

2

d2
∈ (0, 1], (46)

where a larger value of the index implies a better fairness.
For the values of β considered in Fig. 5, the values of Jain’s
fairness for CDMA and NOMA in the simulation are listed in
TABLE I.

β 0.1 0.5 1.0 5.0
CDMA 0.8829 0.8802 0.8768 0.8518
NOMA 0.9931 0.9864 0.9766 0.9205

TABLE I: Jain’s fairness index for equilibrium data rate.

As indicated by Fig. 5, though NOMA outperforms CDMA
in terms of fairness in equilibrium data rate, the increase in β
is undesirable for NOMA due to a decreasing fairness. Aside
from that, the level of achieved data rates in general only
slightly decreases with a larger β.

Remark 11: Based on these comparisons, we summa-
rize some empirical findings concerning the applicability of
CDMA and NOMA.
(1) For the cases with a small cost for power consumption

(i.e., β > 0 takes a small value), NOMA is preferable for
its advantages in the fairness achieved;

(2) For the case of costly power resources (i.e., β > 0 takes
a large value), the performance gap between CDMA and
NOMA is negligible, while CDMA is more convenient
for implementation.

In the following, we focus on some properties theoretically
shown in the main results. It is of interest to provide some
numerical verification to them. In Fig. 5, the properties estab-
lished in Corollary 1 and Corollary 2 concerning the continuity
and monotonicity of the equilibrium strategies have already
been observed. In addition, since in Fig. 5 the equilibrium
data rate curves for CDMA and NOMA intersect, the property
stated in Proposition 2 is also demonstrated numerically.

The comparison between equilibrium social welfare under
CDMA and NOMA, as analysed in Theorem 3, is the main
results in this paper. Thus, we numerically evaluate the ex-
pected utility of all participants, i.e., the objective function

J(p, z) = E[u(p(θi), p, θi)] defined in (29). This metric of
social welfare corresponds to the average level of individual
utilities among a large number of non-cooperative uplink users.

The expected utilities under the game equilibrium are eval-
uated for different β > 0. Moreover, the two curves in Fig. 6
for CDMA and NOMA illustrate the effectiveness of NOMA
in social welfare enhancement.

It is observed from Fig. 6 that NOMA can indeed achieve a
higher social welfare than CDMA, conforming the theoretical
results in Theorem 3. In addition, we observe that when
the value of β > 0 is small, more effective performance
improvement is achieved by NOMA, which is consistent with
our intuitive analysis in Remark 11. When β > 0 takes a large
value, the regulating effects of the energy cost dominates, and
the benefits of implementing the NOMA protocol gradually
shrink.

IX. CONCLUSION

We have considered an uplink power control problem for
wireless communication when a large number of users are
competing for the channel resources. Both power-domain
CDMA and NOMA are investigated. We performed equilib-
rium analysis of the non-cooperative channel access with an
aggregative game model so that the opponents’ actions are
captured collectively. The existence and uniqueness of an equi-
librium strategy are established for both CDMA and NOMA.
Moreover, performance evaluation has been conducted under
the equilibrium strategies. It turns out that NOMA achieves a
better social welfare in the non-cooperative user population
at its equilibrium. In addition, simulation results show an
improved fairness in the equilibrium data rate under NOMA.

APPENDIX I
PROOF OF THEOREM 1

Proof: For convenience of presentation, based on (19),
we define a “strategy-wise” best response operator BR :
L1(M,R, ν) → L1(M,R, ν) which performs updates to
strategy profiles based on the utility function of all players
θi ∈ M . The operator BR is defined such that for any
given strategy profile pk ∈ L1(M,R, ν), we can obtain a new
strategy profile pk+1 through

pk+1 := BR(pk) ∈ L1(M,R, ν), (47)

which leads to

pk+1(θi) =
1

β ln 2
− αE[pk(θj)θj ] +N0

θi
, ∀θi ∈M.

Since in practice, the circuits can only transmit at the
power levels within E , we adopt the truncation operator T in
Definition 6 so that a new feasible strategy pk+1 is obtained
as

pk+1 = T (pk+1) = T ◦ BR(pk) ∈ A.

The normed space
(
L1(M,R, ν), ‖·‖ν1

)
of functions defined

on M ⊂ R++ is complete. The existence and uniqueness of
mean-field equilibrium in the game G can be given in two
steps.
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Fig. 5: The equilibrium power control strategy and data rate achieved for different values of the power penalty parameter β.

Fig. 6: The expected utility J(p∗, z∗) achieved under equilib-
rium strategies with CDMA and NOMA, respectively.

The first step is to show that the composite operator T ◦BR
defined on the space of feasible strategy profiles L1(M,R, ν)
is a contraction mapping. We pick up two arbitrary strategy
profiles p(1)

k , p
(2)
k in the space

(
L1(M,R, ν), ‖·‖ν1

)
and fol-

lowing the non-expansive results in Lemma 1, we obtain∥∥∥T ◦ BR(p
(1)
k )− T ◦ BR(p

(2)
k )
∥∥∥ν

1

≤
∥∥∥BR(p

(1)
k )− BR(p

(2)
k )
∥∥∥ν

1

=

∫
θi∈M

∣∣∣αE[p
(1)
k (θj)θj ]− αE[p

(2)
k (θj)θj ]

∣∣∣f(θi)dλ(θi)

=

∫
θi∈M

f(θi)dλ(θi) · α
∣∣∣E[p

(1)
k (θj)θj ]− E[p

(2)
k (θj)θj ]

∣∣∣
= P (M) · α

∣∣∣∣∣∣
∫

θi∈M

[p
(1)
k (θj)− p(2)

k (θj)]θjf(θj)dλ(θj)

∣∣∣∣∣∣
≤ 1 · α

∫
θi∈M

∣∣∣p(1)
k (θj)− p(2)

k (θj)
∣∣∣θjf(θj)dλ(θj)

= α
∥∥∥p(1)

k − p
(2)
k

∥∥∥ν
1
.

Since it is assumed that α < 1, we obtain that α ∈
(0, 1) based on the CDMA protocol. Therefore, the composite
operator T ◦ BR is a contraction mapping on the Banach
space

(
L1(M,R, ν), ‖·‖ν1

)
. By Banach fixed point theorem,

the operator T ◦ BR has a unique fixed point p∗ in the space
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(
L1(M,R, ν), ‖·‖ν1

)
. Moreover, in order to show that the game

G admits a feasible mean-field equilibrium, below we show
that the fixed point p∗ of the “strategy-wise” best response
operator T ◦BR lies within the space of feasible strategies A.

As T ◦ BR is a contraction mapping on the Banach
space

(
L1(M,R, ν), ‖·‖ν1

)
, a Cauchy sequence {pk}k∈N

can be constructed with any given initial element p0 ∈(
L1(M,R, ν), ‖·‖ν1

)
such that its limit point will be exactly

the unique fixed point p∗ of T ◦BR. According to Theorem 1
in Section 2.12 of [39], if the set of feasible strategies A, as
a subset of the Banach space

(
L1(M,R, ν), ‖·‖ν1

)
, is closed,

the set A is complete. Hence, the limit p∗ of the constructed
Cauchy sequence {pk}k∈N will lie within A. Now, it remains
to show that A is closed.

For any q in the closure A of A, there exists a se-
quence {qk}k≥1 such that ‖qk − q‖ν1 → 0 as k → ∞.
According to Corollary 2.32 in [47], this implies the existence
of a subsequence {qkj} such that qkj → q, ν-a.e. Hence, the
point q ∈ A is E-valued ν-a.e, so q ∈ A. Therefore, the set A
is closed.

By the definition of mean-field equilibrium (Definition 4),
the existence and uniqueness of mean-field equilibrium in
the game G adopting CDMA are shown. Banach fixed point
theorem also gives a convergent sequence to the equilibrium
point, i.e., lim

k→∞
pk = p∗, where pk+1(θi) ∈ BR(θi, pk) for

any θi ∈M and k ≥ 0. Hence, the proof is concluded.

APPENDIX II
PROOF OF COROLLARY 1

Proof: Since the existence and uniqueness of mean-
field equilibrium in the game G adopting CDMA protocol
have already been shown in Theorem 1, by the definition
of a mean-field equilibrium, we can express the equilibrium
strategy profile p∗ as a best response, i.e.,

p∗(θi) ∈ BR(θi, p
∗) = arg max

ai∈E
u(ai, p

∗, θi)

= arg max
ai∈E

log2

(
1 +

θiai
αE[p∗(θj)θj ] +N0

)
− βai.

For an arbitrarily fixed user θi ∈ M , when the opponents’
strategy is fixed to the equilibrium strategy p∗ ∈ A, it
turns out that the utility u(ai, p

∗, θi) is a strictly concave
function with respect to ai ∈ E . Hence, the best response of
player θi is a singleton, i.e., BR(θi, p) takes a unique value
for each θi ∈ M under a fixed p. According to Theorem 9.17
in [38], for a strictly concave continuous function u(ai, p, θi)
under any fixed p, the single-valued maximizer BR(θi, p) is
a continuous function with respect to the parameter θi. Due
to the existence and uniqueness of the mean-field equilibrium
strategy profile p∗, the function p∗(θi) ∈ BR(θi, p

∗), as a
best response to itself, is a continuous function.

Next, we proceed to show that the equilibrium strategy
profile p∗ : M → E is monotonically increasing with respect
to θi ∈ M . Beforehand, it is necessary to show that the
utility function u(ai, p, θi), for any fixed p, satisfies strictly
increasing difference in (ai, θi). In other words, we need to

verify that

u(a+
i , p, θ

+
i )− u(a−i , p, θ

+
i ) > u(a+

i , p, θ
−
i )− u(a−i , p, θ

−
i )
(48)

for any a+
i > a−i and θ+

i > θ−i given a fixed p.
From the expression of the utility function u, we obtain

u(a+
i , p, θ)− u(a−i , p, θ)

= log2

(
1 +

a+
i − a

−
i

αE[p∗(θj)θj ]+N0

θ + a−i

)
− β(a+

i − a
−
i ).

Thus, it is obvious that u(a+
i , p, θ)− u(a−i , p, θ) is monoton-

ically increasing with respect to θ for any given a+
i > a−i ,

which leads to (48). Besides, for any fixed p and θi, the utility
function u is a continuous function defined on a compact
interval E = [umin, umax]. According to the extreme value
theorem, the utility u must attain its maximum within E for any
given p and θi. Therefore, according to Theorem 10.6 in [38],
the mean-field equilibrium strategy p∗, as the optimal action
for maximizing u(ai, p

∗, θi), is monotonically increasing with
respect to the identifier θi ∈M .

APPENDIX III
PROOF OF THEOREM 2

Proof: Similar to the analysis in the CDMA case,
based on (27), we can define a “strategy-wise” best response
operator BRordered : L∞(M,R, ν) → L∞(M,R, ν). The
operator BRordered is defined such that for any given strategy
profile pk ∈ L∞(M,R, ν), we can obtain a new strategy
profile pk+1 as the optimal response to pk through

pk+1 := BRordered(pk) ∈ L∞(M,R, ν), (49)

which gives

pk+1(θi) =
1

β ln 2
−
αE[pk(θj)θj1{θj<θi}] +N0

θi
, ∀θi ∈M.

To take into account the power constraints, we define a
truncation operator T̃ : L∞(M,R, ν) → L∞(M,R, ν) in
analogy to Definition 6. The operator T̃ is defined such
that p̃ = T̃ (p) if and only if p̃(x) = PE(p(x)) for any
x ∈ M . Then, with similar arguments as in Lemma 1,
the operator T̃ is also non-expansive on the Banach space
(L∞(M,R, ν), ‖·‖ν∞).

We adopt the truncation operator T̃ so that a new feasible
strategy pk+1 is obtained as

pk+1 = T̃ (pk+1) = T̃ ◦ BRordered(pk) ∈ A.

Since according to Definition 4, the definition of a mean-
field equilibrium is equivalent to the fixed point of the best
response operator, the uniqueness of the fixed point solution
implies the uniqueness of a mean-field equilibrium of the
game G̃. By Banach fixed-point theorem, there is a unique
solution p∗ordered ∈ B to the fixed point equation p = T̃ ◦
BRordered(p) if T̃ ◦ BRordered is a contraction mapping on
L∞(M,R, ν).
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We pick up two arbitrary transmission power control poli-
cies pk, p′k ∈ L∞(M,R, ν) and obtain∥∥∥T̃ ◦ BRordered(pk)− T̃ ◦ BRordered(p′k)

∥∥∥ν
∞

≤
∥∥BRordered(pk)− BRordered(p′k)

∥∥ν
∞

≤

∥∥∥∥∥∥∥
α

∫
M∩(0,θi]

|pk(y)− p′k(y)|yf(y)dy

θi

∥∥∥∥∥∥∥
ν

∞

≤

∥∥∥∥∥∥∥
α

∫
M∩(0,θi]

‖pk − p′k‖
ν
∞yf(y)dy

θi

∥∥∥∥∥∥∥
ν

∞

= ‖pk − p′k‖
ν
∞ ·

∥∥∥∥∥∥∥
α

∫
M∩(0,θi]

yf(y)dy

θi

∥∥∥∥∥∥∥
ν

∞

≤ sup
θi∈M

α
∫

M∩(0,θi]

yf(y)dy

θi
· ‖pk − p′k‖

ν
∞

≤ sup
θi∈M

α
∫

M∩(0,θi]

θif(y)dy

θi
· ‖pk − p′k‖

ν
∞

= sup
θi∈M

α

∫
M∩(0,θi]

f(y)dy · ‖pk − p′k‖
ν
∞ ≤ α · ‖pk − p

′
k‖
ν
∞.

To summarize, we have shown that the inequality∥∥∥T̃ ◦ BRordered(pk)− T̃ ◦ BRordered(p′k)
∥∥∥ν
∞
≤ α‖pk − p′k‖

ν
∞

holds, where 0 < α < 1. Therefore, the composite oper-
ator T̃ ◦ BRordered is a contraction mapping on the Banach
space (L∞(M,R, ν), ‖·‖ν∞). Similar to Theorem 1, in order
to show that the fixed point p∗ordered reside in A, it remains to
show that the set of feasible strategies A is closed.

Again, we pick up a point q in the closure A of A. Then
there exists a sequence {qk}k≥1 such that ‖qk − q‖ν∞ → 0
as k → ∞. Hence, according to [47], a subsequence {qkj}
exists such that qkj → q, ν-a.e. Then q takes value in E ,
ν-a.e. In other words, we have q ∈ A.

Therefore, it follows that there is a unique mean-field
equilibrium p∗ordered when NOMA is adopted. Banach fixed
point theorem also gives a convergent sequence to the equi-
librium point, i.e., lim

k→∞
pk = p∗ordered, where pk+1(θi) ∈

BRordered(θi, pk) for any θi ∈ M and k ≥ 0. This completes
the proof.

APPENDIX IV
PROOF OF COROLLARY 2

Proof: By definition, the equilibrium strategy p∗ordered is
the best response to itself given the utility function u(ai, p, θi)
for NOMA. In Theorem 2, we have already established the
existence and uniqueness of p∗ordered : M → E . Then, we have

p∗ordered(θi) ∈ BRordered(θi, p
∗
ordered)

=: arg max
ai∈E

u(ai, p
∗
ordered, θi),

where the last term is a singleton for each given θi ∈M .

By Theorem 9.17 in [38], the best response
BRordered(θi, p

∗
ordered) is a upper semi-continuous

correspondence on M . As BRordered(θi, p
∗
ordered) is a

singleton for any θi ∈ M , it can be concluded that
p∗ordered(θi) ∈ BRordered(θi, p

∗
ordered) is continuous with respect

to θi ∈M .
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