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Region-Based Self-Triggered Control for
Perturbed and Uncertain Nonlinear Systems

Giannis Delimpaltadakis , Student Member, IEEE, and Manuel Mazo, Jr. , Senior Member, IEEE

Abstract—In this work, we derive a region-based self-
triggered control (STC) scheme for nonlinear systems with
bounded disturbances and model uncertainties. The pro-
posed STC scheme is able to guarantee different perfor-
mance specifications (e.g., stability, boundedness, etc.),
depending on the event-triggered control (ETC) triggering
function that is chosen to be emulated. To deal with distur-
bances and uncertainties, we employ differential inclusions
(DIs). By introducing ETC/STC notions in the context of
DIs, we extend well-known results on ETC/STC to perturbed
uncertain systems. Given these results, and adapting tools
from our previous work, we derive inner approximations
of isochronous manifolds of perturbed uncertain ETC sys-
tems. These approximations dictate a partition of the state
space into regions, each of which is associated with a uni-
form intersampling time. At each sampling time instant, the
controller checks which region the measured state belongs
to and correspondingly decides the next sampling instant.

Index Terms—Digital control, networked control sys-
tems, nonlinear systems, self-triggered control.

I. INTRODUCTION

THESE DAYS, the use of shared networks and digital plat-
forms for control purposes is becoming more ubiquitous.

This has shifted the control community’s research focus from
periodic to aperiodic sampling techniques, which promish to
reduce resource utilization (e.g., bandwidth, processing power,
etc.). Arguably, event-based control is the aperiodic scheme that
has attracted wider attention, with its two sub-branches being
event-triggered control (ETC, e.g., [1]–[5]) and self-triggered
control (STC, e.g., [4], [6]–[13]). For an introduction to the topic,
the reader is referred to [14].

ETC and STC are sample-and-hold implementations of digital
control. In ETC, intelligent sensors monitor continuously the
system’s state, and transmit data only when a state-dependent
triggering condition is satisfied. On the other hand, to tackle
the necessity of dedicated intelligent hardware, STC has been
proposed, in which the controller at each sampling time instant
decides the next one based solely on present measurements.
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The most common way to decide the next sampling time in
STC is the emulation approach: predicting conservatively when
the triggering condition of a corresponding ETC scheme would
be satisfied. In this way, STC provides the same performance
guarantees as the underlying ETC scheme, although it generally
leads to faster sampling.

Unfortunately, published work regarding STC for perturbed
uncertain nonlinear systems remains very scarce. In [4], ETC
and STC schemes are designed for input-to-state stable (ISS)
systems subject to disturbances, by employing a small-gain
approach. To address model uncertainties, the authors con-
sider nonlinear systems in strict-feedback form and propose
a control-design procedure that compensates for the uncertain
dynamics, in a way such that the previously derived STC scheme
would still guarantee stability. In [10], a self-triggered sam-
pler is derived, which guarantees that the system remains in a
safe set, by employing Taylor approximations of the Lyapunov
function’s derivative. Finally, Tiberi and Johansson [11] design
ETC and STC that guarantee uniform ultimate boundedness for
perturbed uncertain systems, whereas Tolic et al. [12] employ the
small-gain approach to design STC that guarantees Lp-stability.
Alternative approaches relying on a stochastic framework and
learning techniques have also been proposed, see, e.g., [15],
[16]. In contrast to the robust approaches listed earlier, they can
cope with potentially unbounded disturbances, but they relax the
performance guarantees to probabilistic assurances.

Here, we extend the region-based STC framework of
Delimpaltadakis and Mazo [13] and propose an STC
scheme for general nonlinear systems with bounded distur-
bances/uncertainties, providing deterministic guarantees. This
framework is able to emulate a wide range of triggering condi-
tions and corresponding ETC schemes in a unified generic way.
Hence, compared to the deterministic approaches listed earlier,
which focus on emulating one class of triggering conditions
and provide one specific performance specification, it is more
versatile, as it can provide different robust performance guaran-
tees (stability, safety, boundedness, etc.), depending on the ETC
scheme that is emulated.

Particularly, in [13], a region-based STC scheme for smooth
nonlinear systems has been proposed, which provides intersam-
pling times that lower bound the ideal intersampling times of
an a priori given ETC scheme. The state space is partitioned
into regions Ri, each of which is associated with a uniform
intersampling time τi. The regions Ri are sets delimited by
inner approximations of isochronous manifolds (sets composed
of points in the state space that correspond to the same ETC
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intersampling time). In a real-time implementation, the con-
troller checks which region the measured state belongs to, and
correspondingly decides the next sampling time.

Here, we extend the aforementioned framework to systems
with disturbances and uncertainties, which greatly facilitates
the applicability of region-based STC in practice. To deal with
disturbances and uncertainties in a unified way, we abstract
perturbed uncertain systems by differential inclusions (DIs).
Moreover, we introduce ETC notions, such as the intersampling
time, to the DI framework. Within the DI framework, by employ-
ing the notion of homogeneous DIs (see [17]), we are able to
extend well-known significant results on ETC/STC, namely, the
scaling law of intersampling times [7] and the homogenization
procedure [18], to perturbed uncertain systems. Based on these
renewed results, we construct approximations of isochronous
manifolds of perturbed uncertain ETC systems, thus extending
region-based STC to perturbed uncertain systems. We showcase
our theoretical results via simulations and comparisons with
other deterministic approaches, which indicate that the proposed
STC scheme shows competitive performance while simultane-
ously achieving greater generality.

Apart from the above, let us emphasize that the merits of ob-
taining approximations of isochronous manifolds extend beyond
the context of STC design, as it enables discovering relations
between regions in the state space of an ETC system and inter-
sampling times. In fact, such approximations have already been
used to construct advanced timing models, which capture the
sampling behavior of unperturbed homogeneous ETC systems,
and are then used for traffic scheduling in networks of ETC
loops (see [19]). More generally, as noted in [13], isochronous
manifolds are an inherent characteristic of any system with
an output. Thus, implications of the theoretical contribution
of approximating them, especially under the effect of distur-
bances and uncertainties, might even exceed the mere context
of ETC/STC.

To summarize our contributions, in this work, we implement
the following.

1) Construct a framework based on DIs that allows reasoning
about perturbed uncertain ETC systems.

2) Extend important results on ETC/STC to perturbed un-
certain systems by employing the DI framework.

3) Obtain approximations of isochronous manifolds of per-
turbed uncertain ETC systems.

4) Design a robust STC scheme for perturbed uncertain non-
linear systems, which simultaneously achieves greater
versatility and competitive performance, compared to the
existing literature.

II. NOTATION AND PRELIMINARIES

A. Notation

We denote points in Rn as x and their Euclidean norm as
|x|. For vectors, we also use the notation (x1, x2) = [x�1 x

�
2 ]�.

Consider a set I ⊆ Rn. Then, I denotes its closure, int(I) its
interior, and conv(I) its convex hull. Moreover, for any λ ∈ R,
we denote: λI = {λx ∈ Rn : x ∈ I}.

Consider a system of ordinary differential equations (ODE)

ζ̇(t) = f(ζ(t)) (1)

where ζ : R → Rn. We denote by ζ(t; t0, ζ0) the solution of (1)
with initial condition ζ0 and initial time t0. When t0 (or ζ0) is
clear from the context, then it is omitted, i.e., we write ζ(t; ζ0)
(or ζ(t)).

Consider the DI

ζ̇(t) ∈ F (ζ(t)) (2)

where ζ : R → Rn and F : Rn ⇒ Rn is a set-valued map. In
contrast to ODEs, which under mild assumptions obtain unique
solutions given an initial condition, DIs generally obtain multi-
ple solutions for each initial condition, which might even not be
defined for all time. We denote by ζ(t; ζ0) any solution of (2)
with initial condition ζ0. Moreover,SF ([0, T ]; I) denotes the set
of all solutions of (2) with initial conditions in I ⊆ Rn, which
are defined on [0, T ]. Thus, the reachable set from I ⊆ Rn of
(2) at time T ≥ 0 is defined as

XF
T (I) = {ξ(T ; ξ0) : ξ(·; ξ0) ∈ SF ([0, T ]; I)}.

Likewise, the reachable flowpipe from I ⊆ Rn of (2) in the
interval [τ1, τ2] is XF

[τ1,τ2]
(I) = ⋃t∈[τ1,τ2] XF

t (I).

B. Homogeneous Systems and DIs

Here, we focus on the classical notion of homogeneity, with
respect to the standard dilation. For the general definition and
more information, the reader is referred to Bernuau et al. [17]
and Kawski [20].

Definition II.1. (Homogeneous functions and set-valued
maps): Consider a function f : Rn → Rm (or a set-valued map
F : Rn ⇒ Rm). We say that f (orF ) is homogeneous of degree
α ∈ R, if for all x ∈ Rn and any λ > 0: f(λx) = λα+1f(x)
(respectively, F (λx) = λα+1F (x)).

Correspondingly, a system of ODEs (1) or a DI (2) is called
homogeneous of degree α ∈ R if the corresponding vector field
or set-valued map is homogeneous of the same degree. For
homogeneous ODEs or DIs, the following scaling property of
solutions holds.

Proposition II.2. (Scaling Property [17], [20]): Let the sys-
tem of ODEs (1) be homogeneous of degree α ∈ R. Then, for
any ζ0 ∈ Rn and any λ > 0

ζ(t; λζ0) = λζ(λαt; ζ0). (3)

Now, let DI (2) be homogeneous of degree α ∈ R. Then, for any
I ⊆ Rn and any λ > 0

XF
t (λI) = λXF

λαt(I). (4)

C. ETC Systems

Consider the control system with state feedback

ζ̇(t) = f (ζ(t), υ(ζ(t))) (5)

where ζ : R → Rn, f : Rn × Rmu → Rn, and υ : Rn → Rmu

is the control input. In any sample-and-hold scheme, the control
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input is updated on sampling time instants ti and held constant
between consecutive sampling times

ζ̇(t) = f (ζ(t), υ(ζ(ti))) , t ∈ [ti, ti+1).

If we define the measurement error as the difference between
the last measurement and the present state

εζ(t) := ζ(ti)− ζ(t), t ∈ [ti, ti+1)

then the sample-and-hold system can be written as

ζ̇(t) = f (ζ(t), υ(ζ(t) + εζ(t))) , t ∈ [ti, ti+1). (6)

Notice that the error εζ(t) resets to zero at each sampling time.
In ETC, the sampling times are determined by

ti+1 = ti + inf{t > 0 : φ(ζ(t;xi), εζ(t)) ≥ 0} (7)

and t0 = 0, where xi ∈ Rn is the previously sampled state,
φ(·, ·) is the triggering function, (7) is the triggering condition,
and ti+1 − ti is called intersampling time. Each point x ∈ Rn

corresponds to a specific intersampling time, defined as

τ(x) := inf{t > 0 : φ(ζ(t;x), εζ(t)) ≥ 0}. (8)

Finally, since ε̇ζ(t) = −ζ̇(t), we can write the dynamics of
the extended ETC closed loop in a compact form

ξ̇(t) =

[
f (ζ(t), υ(ζ(t) + εζ(t)))

−f (ζ(t), υ(ζ(t) + εζ(t)))

]

= fe(ξ(t)), t ∈ [ti, ti+1)

ξ(t+i+1) =

[
ζ(t−i+1)

0

]
(9)

where ξ = (ζ, εζ) ∈ R2n. At each sampling time ti, the state
of (9) becomes ξi = (xi, 0). Thus, since we are interested in
intervals between consecutive sampling times, instead of writing
φ(ξ(t; (xi, 0))) (or τ((xi, 0))), we abusively write φ(ξ(t;xi))
(or τ(xi)) for convenience. Between two consecutive sam-
pling times, the triggering function starts from a negative value
φ(ξ(ti;xi)) < 0, and stays negative until t−i+1, when it becomes
zero. Triggering functions are designed such that the inequality
φ(ξ(t;xi)) ≤ 0 implies certain performance guarantees (e.g.,
stability). Thus, sampling times are defined in a way [see (7)]
such that φ(ξ(t)) ≤ 0 for all t ≥ 0, which implies that the
performance specifications are met at all time.

D. STC: Emulation Approach

The emulation approach to STC entails providing conserva-
tive estimates of a corresponding ETC scheme’s intersampling
times, based solely on the present measurement xi

τ ↓(xi) ≤ τ(xi) (10)

where τ ↓(·) denotes STC intersampling times. This guaran-
tees that the triggering function of the emulated ETC remains
negative at all time, i.e., STC provides the same guarantees
as the emulated ETC. Thus, STC intersampling times should
be no larger than ETC ones, but as large as possible in order

to reduce resource utilization. Finally, infinitely fast sampling
(Zeno phenomenon) should be avoided, i.e., infx τ ↓(x) ≥ ε > 0.

III. PROBLEM STATEMENT

In [13], for a system (9), given a triggering function φ(·)
and a finite set of arbitrary user-defined times {τ1, τ2, . . . , τq}
(where τi < τi+1), which serve as STC intersampling times, the
state space of the original system (6) is partitioned into regions
Ri ⊂ Rn such that

∀x ∈ Ri : τi ≤ τ(x) (11)

where τ(x) denotes ETC intersampling times corresponding
to the given triggering function φ(·). The region-based STC
protocol operates as follows.

1) Measure the current state ξ(tk) = (xk, 0).
2) Check to which of the regions Ri the point xk belongs.
3) If xk ∈ Ri, set the next sampling time to tk+1 = tk + τi.

As mentioned in Section I, we aim at extending the STC tech-
nique of Delimpaltadakis and Mazo [13] to systems with distur-
bances and uncertainties. Thus, we consider perturbed/uncertain
ETC systems, written in the compact form

ξ̇(t) =

[
f (ζ(t), υ(ζ(t) + εζ(t)), d(t))

−f (ζ(t), υ(ζ(t) + εζ(t)), d(t))

]
= fe(ξ(t), d(t))

(12)
where d : R → Rmd is an unknown signal (e.g., disturbance,
model uncertainty, etc.), and assume that a triggering function
φ(ξ(t)) is given.

Assumption 1: For the remainder of this article, we assume
the following.

1) The function fe(·, ·) is locally bounded and continuous
with respect to all of its arguments.

2) For all t ≥ 0: d(t) ∈ Δ, where Δ ⊂ Rmd is convex,
compact, and nonempty.

3) The function φ(·) is continuously differentiable.
4) For all ξ0 = (x0, 0) ∈ R2n:φ(ξ0) < 0. Moreover, for any

compact set K ⊂ Rn there exists εK > 0 such that for
all x0 ∈ K and any d(t), with d(t) ∈ Δ for all t ≥ 0,
φ(ξ(t; ξ0)) < 0 for all t ∈ [0, εK).

The problem statement of this work is as follows.
Problem Statement: Given a system (12) and a triggering

function φ(·), which satisfy Assumption 1, and a predefined
finite set of times {τ1 . . . , τq} (with τi < τi+1), derive regions
Ri ⊂ Rn that satisfy (11).

Remark 1: In region-based STC, the Zeno phenomenon is
ruled out by construction, since region-based STC intersampling
times are lower bounded: τ ↓(x) ≥ mini τi = τ1.

Items 1) and 2) of Assumption 1 impose the satisfaction of
the standard assumptions of DIs on the DIs that we construct
later [see (17)]. These assumptions ensure existence of solutions
for all initial conditions (see [17] and [21] for more details).
Note that assuming convexity of Δ is not restrictive, since in
the case of a nonconvex Δ, we can consider the closure of its
convex hull and write d(t) ∈ conv(Δ) for all t ≥ 0. Finally,
item 3) is employed in the proof of Lemma VI.1, whereas item
4) ensures that the emulated ETC associated with the given
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triggering function does not exhibit Zeno behavior for any given
bounded state.

Remark 2: The triggering function should be chosen to
be robust to disturbances/uncertainties, such that the emulated
ETC does not exhibit Zeno behavior. Examples of such robust
triggering functions are as follows:

1) Lebesgue sampling (e.g., [1], [11]): φ(ξ(t)) =
|εζ(t)|2 − ε2, where ε > 0;

2) mixed-triggering (e.g., [4]): x φ(ξ(t)) = |εζ(t)|2 −
σ|ζ(t)|2 − ε2, where σ > 0 is appropriately chosen and
ε > 0.

Both functions satisfy Assumption 1.

IV. OVERVIEW OF DELIMPALTADAKIS AND MAZO [13]

In this section, we give a brief overview of Delimpaltadakis
and Mazo [13]. First, we focus on homogeneous ETC systems
and how, exploiting approximations of their isochronous mani-
folds, a state-space partitioning into regions Ri can be derived.
Afterward, we recall how these results can be generalized to
general nonlinear systems, by employing a homogenization
procedure.

A. Homogeneous ETC Systems, Isochronous Manifolds,
and State-Space Partitioning

An important property of homogeneous ETC systems is the
scaling of intersampling times.

Theorem IV.1. (Scaling of ETC intersampling Times [7]):
Consider an ETC system (9) and a triggering function, homoge-
neous of degree α and θ, respectively. Then, for all x ∈ Rn and
λ > 0

τ(λx) = λ−ατ(x) (13)

where τ(·) is defined in (8).
Thus, for homogeneous ETC systems with degree α > 0,

along a ray that starts from the origin (homogeneous ray),
intersampling times become larger for points closer to the origin.
Scaling law (13) is a direct consequence of the system’s and
triggering function’s homogeneity, since (3) implies that

φ(ξ(t; λx)) = φ(λξ(λαt;x)) = λθ+1φ(ξ(λαt;x)). (14)

In [13], the scaling law (13) is combined with inner approx-
imations of isochronous manifolds, a notion first introduced
in [18]. Isochronous manifolds are sets of points with the same
intersampling time.

Definition IV.2. (Isochronous Manifolds): Consider an ETC
system (9). The set Mτ� = {x ∈ Rn : τ(x) = τ�}, where τ(x)
is defined in (8), is called isochronous manifold of time τ�.

For homogeneous systems, the scaling law (13) implies that
isochronous manifolds satisfy the following properties.

Proposition IV.3. (see [13], [18]): Consider an ETC system
(9) and a triggering function, homogeneous of degree α > 0
and θ > 0, respectively, and let Assumption 1 hold. Then, the
following hold.

1) For any time τ� > 0, there exists an isochronous manifold
Mτ� .

2) Isochronous manifolds are hypersurfaces of dimension
n− 1.

3) Each homogeneous ray intersects an isochronous mani-
fold Mτ� only at one point.

4) Given two isochronous manifolds Mτ1 and Mτ2 with
τ1 < τ2, on every homogeneous ray,Mτ1 is further away
from the origin compared to Mτ2 , i.e., for all x ∈Mτ1

∃!λx ∈ (0, 1) s.t. λxx ∈Mτ2

�∃κx ≥ 1 s.t. κxx ∈Mτ2 .

Properties 2)–4) from Proposition IV.3 are illustrated in
Fig. 1(a). Now, consider the region R1 between isochronous
manifolds Mτ1 and Mτ2 in Fig. 1(a). The scaling law (13)
directly implies that for all x ∈ R1: τ1 ≤ τ(x), i.e., (11) is sat-
isfied. Thus, if isochronous manifolds could be computed, then
the state space could be partitioned into the regions delimited by
isochronous manifolds and the region-based STC scheme would
be enabled.

B. Inner Approximations of Isochronous Manifolds

Since isochronous manifolds cannot be computed analyti-
cally, in [13], inner approximations Mτi of isochronous man-
ifolds Mτi are derived in an analytic form [see Fig. 1(b)].
Again, due to the scaling law, for the region R1 between two
inner approximations Mτ1 and Mτ2 (with τ1 < τ2), it holds
that τ1 ≤ τ(x) for all x ∈ R1. Hence, given a set of times
{τ1, . . . , τq}, the state space is partitioned into regionsRi delim-
ited by these inner approximations. As noted in [13], it is crucial
that approximations Mτi have to satisfy the same properties
as isochronous manifolds, mentioned in Proposition IV.3. For
example, if approximations Mτi did not satisfy properties 3)
and 4), then Ri could potentially intersect with each other and
be ill-defined [see Fig. 1(c)].

To derive the inner approximations, the triggering function
φ(ξ(t;x)) is upper bounded by a function μ(x, t) with lin-
ear dynamics that satisfies certain conditions. Then, the sets
Mτi = {x ∈ Rn : μ(x, τi) = 0} are proven to be inner approxi-
mations of isochronous manifoldsMτi . The sufficient conditions
that μ(x, t) has to satisfy in order for its zero-level sets to be
inner approximations of isochronous manifolds and satisfy the
properties mentioned in Proposition IV.3 are summarized in the
following theorem.

Theorem IV.4. (see [13]): Consider an ETC system (9) and
a triggering function φ(·), homogeneous of degrees α > 0 and
θ > 0, respectively. Let μ : Rn × R+ → R be a function that
satisfies

μ(x, 0) < 0 ∀x ∈ Rn \ {0} (15a)

μ(x, t) ≥ φ(ξ(t;x)) ∀t ∈ [0, τ(x)] and ∀x ∈ Rn \ {0}
(15b)

μ(λx, t) = λθ+1μ(x, λαt) ∀t, λ > 0 and ∀x ∈ Rn \ {0}
(15c)

∀x ∈ Rn \ {0} : ∃!τx > 0 such that μ(x, τx) = 0. (15d)
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Fig. 1. Isochronous manifolds and inner approximations. (a) Isochronous manifolds of a homogeneous ETC system for times τ1 < τ2. (b)
Isochronous manifolds Mτi (dashed lines) and inner approximations Mτi

(solid lines). The filled region represents R1. (c) If inner approximations
of isochronous manifolds did not satisfy properties 3) and 4) from Proposition IV.3, then the regions Ri could intersect with each other.

The sets Mτ� := {x ∈ Rn : μ(x, τ�) = 0} are inner approxi-
mations of isochronous manifoldsMτ� . Moreover, the setsMτ�
satisfy the properties mentioned in Proposition IV.3.

Let us briefly explain what is the intuition behind this the-
orem. Since (15a) and (15b) hold, if we denote by τ ↓(x) :=
inf{t > 0 : μ(x, t) = 0} [from (15d) we know that it exists],
then τ ↓(x) ≤ τ(x). Note that it is important that inequality
(15b) extends at least until t = τ(x), in order for τ ↓(x) ≤
τ(x). Then, by the scaling law (13), we have that the set
Mτ� = {x ∈ Rn : τ ↓(x) = τ�} is an inner approximation of
the isochronous manifold Mτ� . Moreover, since for each x, the
equation μ(x, t) = 0 has a unique solution w.r.t. t [from (15d)],
we get thatMτ� ≡ {x ∈ Rn : μ(x, τ�) = 0}. Finally, condition
(15c) implies that τ ↓(λx) = λ−ατ ↓(x) [observe the similarity
between (15c) and (14)], which, in turn, implies that the setsM τ�
satisfy the properties of Proposition (IV.3). We do not elaborate
more on the technical details here (e.g., how is the bounding
carried out), since we address these later in the document,
where we extend the theoretical results of Delimpaltadakis and
Mazo [13] to perturbed/uncertain systems.

C. Homogenization of Nonlinear Systems and
Region-Based STC

To exploit aforementioned properties of homogeneous sys-
tems, the homogenization procedure proposed by Anta and P.
Tabuada [18] is employed. Any nonhomogeneous system (9) is
rendered homogeneous of degree α > 0, by embedding it into
R2n+1 and adding a dummy variable w[

ξ̇

ẇ

]
=

[
wα+1fe(w

−1ξ)

0

]
= f̃e(ξ, w). (16)

The same can be done for nonhomogeneous triggering functions
φ̃(ξ, w) = wθ+1φ(w−1ξ). Notice that the trajectories of the
original ETC system (9) with initial condition (x0, e0) ∈ R2n

coincide with the trajectories of the homogenized one (16)
with initial condition (x0, e0, 1) ∈ R2n+1, projected to the ξ-
variables. The same holds for a homogenized triggering func-
tion. Thus, the intersampling times τ(x0) of system (9) with
triggering function φ(·) coincide with the intersampling times
τ((x0, 1)) of (16) with triggering function φ̃(·).

Consequently, if the original system (or the triggering func-
tion) is nonhomogeneous, then first it is rendered homogeneous

Fig. 2. Inner approximations of isochronous manifolds (colored
curves) for a homogenized system (16) and the regions Ri between
them. The colored segments on the w = 1 plane represent the subsets
of the hyperplane w = 1 (i.e., the subsets of the original state space)
that are contained in the regions Ri and are associated with the corre-
sponding intersampling times τi.

via the homogenization procedure (16). Afterward, inner ap-
proximations of isochronous manifolds for the homogenized
system (16) are derived. Since trajectories of the original system
are mapped to trajectories on the w = 1 plane of the homoge-
nized one (i.e., the state space of the original system is mapped
to the w = 1 plane), to determine the intersampling time τi of a
state x0 ∈ Rn, one has to check to which regionRi ⊂ Rn+1 the
point (x0, 1) belongs. For an illustration, see Fig. 2: e.g., given a
state x0 ∈ Rn, if (x0, 1) ∈ Rn+1 lies on the cyan segment (i.e.,
it is contained in R1), then the STC intersampling time that is
assigned to x0 is τ ↓(x0) = τ1.

Note that, here, it suffices to inner-approximate the
isochronous manifolds of (16) only in the subspace w > 0,
since we only care about determining regions Ri for points
(x0, 1) ∈ R2n. Thus, the conditions of Theorem IV.4 can be
relaxed so that they hold only in the subspacew > 0, i.e., for all
(x,w) ∈ (Rn \ {0})× R+.

V. PERTURBED/UNCERTAIN ETC SYSTEMS AS DIS

In this section, we show how a general perturbed/uncertain
nonlinear system (12), satisfying Assumption 1, can be ab-
stracted by a homogeneous DI. Moreover, we extend the notion
of intersampling times in the context of DIs and show that scaling
law (13) holds for intersampling times of homogeneous DIs.
These results are used afterward in Section VI to derive inner
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approximations of isochronous manifolds of per-
turbed/uncertain systems (12), and thus enable the region-based
STC scheme.

A. Abstractions by DIs

Notice that since system (12) is a time-varying system, many
notions that we introduced before for time-invariant systems are
now ill-defined. For example, depending on the realization of the
unknown signal d(t), a sampled state x ∈ Rn can correspond
to different intersampling times, i.e., definition (8) is ill-posed.
However, employing item 2) of Assumption 1 and the notion of
DIs, we can abstract the behavior of the family of systems (12)
and remove such dependencies. In particular, system (12) can
be abstracted by the following DI:

ξ̇(t) ∈ F (ξ(t)) := {fe(ξ(t), d(t)) : d(t) ∈ Δ}. (17)

For DI (17) [i.e., for the family of systems (12)], the intersam-
pling time τ(x) of a point x ∈ Rn can now be defined as the
worst-case possible intersampling time of x, under any possible
signal d(t) satisfying Assumption 1.

Definition V.1. (Intersampling Times of DI): Consider the
family of systems (12), the DI (17) abstracting them, and a
triggering function φ : R2n → R. Let Assumption 1 hold. For
any point x ∈ Rn, we define its intersampling time as

τ(x) := inf
{
t > 0 : sup

{
φ
(XF

t ((x, 0))
)} ≥ 0

}
. �

(18)
Note that we have already emphasized that we consider

initial conditions (x, 0) ∈ R2n, since at any sampling time,
the measurement error εζ = 0. Finally, now that intersampling
times of systems (12) abstracted by DIs are well-defined, we
can accordingly redefine isochronous manifolds for families of
such systems as: Mτ� = {x ∈ Rn : τ(x) = τ�}, where τ(x) is
defined in (18).

B. Homogenization of DIs and Scaling of
Intersampling Times

As previously mentioned, the scaling law of intersampling
times (13) for homogeneous systems is of paramount importance
for the approach of Delimpaltadakis and Mazo [13]. We show
that a similar result can be derived for intersampling times (18)
of DIs. First, observe that DI (17) can be rendered homogeneous
of degree α > 0, by slightly adapting the homogenization pro-
cedure (16) as follows:[

ξ̇(t)

ẇ(t)

]
∈ F̃ (ξ(t), w(t)) (19)

where F̃ (ξ, w) := [ {w
α+1fe(w

−1ξ, d(t)) : d(t) ∈ Δ}
{0} ]. Indeed,

F̃ (·, ·) is homogeneous of degree α. Recall that the same can
be done for a nonhomogeneous triggering function

φ̃(ξ, w) = wθ+1φ(w−1ξ). (20)

Again, trajectories and flowpipes of (17) with initial condition
(x0, e0) ∈ R2n coincide with the projection to the ξ-variables
of trajectories of (19) with initial condition (x0, e0, 1) ∈ R2n+1.

This implies that the intersampling time τ(x0) for DI (17)
with triggering function φ(·), defined as in (18), is the same
as the intersampling time τ((x0, 1)) for DI (19) with triggering
function φ̃(·).

Given the above, by employing the scaling property (4) of
flowpipes of homogeneous DIs, we can prove that the scaling
law holds for intersampling times of DIs (19).

Theorem V.2: Consider DI (19), the triggering function φ̃(·)
from (20), and let Assumption 1 hold. The intersampling time
τ((x,w)), where (x,w) ∈ Rn+1, scales for any λ > 0 as

τ (λ(x,w)) = λ−ατ ((x,w)) (21)

where τ(·) is defined in (18).
Proof: See the Appendix. �
For an example of how DIs and triggering functions are

homogenized, the reader is referred to Section VII.

VI. REGION-BASED STC FOR PERTURBED/
UNCERTAIN SYSTEMS

In this section, we use the previous derivations about
DIs to inner-approximate isochronous manifolds of per-
turbed/uncertain systems, by adapting the technique of De-
limpaltadakis and Mazo [13]. Using the derived inner approx-
imations, the state-space partitioning into regions Ri is gener-
ated. Finally, we show that the applicability of region-based STC
for perturbed/uncertain systems is semiglobal.

A. Approximations of Isochronous Manifolds of
Perturbed/Uncertain ETC Systems

Similarly to Delimpaltadakis and Mazo [13], we upper-bound
the time evolution of the (homogenized) triggering function
φ̃(ξ(t;x), w(t)) along the trajectories of DI (19) with a function
μ((x,w), t) in analytic form that satisfies (15). For this purpose,
first we provide a lemma, similar to the comparison lemma [22]
and to [13, Lemma V.2], which shows how to derive upper
bounds with linear dynamics of functions evolving along flow-
pipes of DIs.

Lemma VI.1: Consider a system of ODEs

ξ̇(t) = f(ξ(t), d(t)) (22)

where ξ(t) ∈ Rn, d(t) ∈ Rmd , f : Rn × Rmd → Rn, and the
function φ : Rn → R. Let f , d, and φ satisfy Assumption 1.
Consider the DI abstracting the family of ODEs (22)

ξ̇(t) ∈ F (ξ(t)) := {f(ξ(t), d(t)) : d(t) ∈ Δ}. (23)

Consider a compact set Ξ ⊆ Rn. For coefficients δ0, δ1 ∈ R
satisfying

∂φ

∂z
(z)f(z, u) ≤ δ0φ(z) + δ1 ∀z ∈ Ξ and ∀u ∈ Δ (24)

the following inequality holds for all ξ0 ∈ Ξ:

sup
{
φ
(XF

t (ξ0)
)} ≤ ψ(y(ξ0), t) ∀t ∈ [0, te(ξ0)]

where te(ξ0) is defined as the escape time

te(ξ0) = inf{t > 0 : XF
t (ξ0) �⊆ Ξ} (25)
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and ψ(y(ξ0), t) is

ψ(y(ξ0), t) =
[
1 0

]
eAty(ξ0) (26)

where

A =

[
δ0 1

0 0

]
, y(ξ0) =

[
φ(ξ0)

δ1

]
. (27)

Proof: See the Appendix. �
Observe that in contrast to [13, Lemma V.2] where the

coefficients δi need to be positive, here δi ∈ R. This is because
here, due to lack of knowledge on the derivative (or even on
the differentiability) of the unknown signal d(t), we consider
only the first-order time derivative of φ (first-order comparison),
whereas in [13], higher order derivatives of φ are considered
(higher order comparison). For more information on the higher
order comparison lemma, the reader is referred to Delimpal-
tadakis and Mazo [13] and the references therein.

Now, we employ Lemma VI.1, in order to construct an upper
bound μ((x,w), t) of the triggering function φ̃(ξ(t;x), w(t))
that satisfies the conditions (15) (in the subspace w > 0), which
in turn implies that the zero-level sets of μ((x,w), t) are inner
approximations of isochronous manifolds of DI (19) and satisfy
the properties mentioned in Proposition IV.3. First, consider a
compact connected set Z ⊂ Rn with 0 ∈ int(Z), and the set
W = [w,w], where w > w > 0. Define the following sets:

Φ :=
⋃
x0∈Z

{x ∈ Rn : e = x0 − x,w ∈ W, φ̃ ((x, e, w)) ≤ 0}

E := {x0 − x ∈ Rn : x0 ∈ Z, x ∈ Φ}
Ξ := Φ× E×W.

(28)
For the remaining, we assume the following.

Assumption 2: The set Φ ⊂ Rn is compact.
Assumption 2 is satisfied by most triggering functions φ(·)

in the literature (e.g., Lebesgue sampling and most cases of
mixed triggering from Remark 2, the triggering functions of
Tabuada [3] and Girard [5], etc.). Moreover, since Φ is assumed
compact, then E is compact as well, which implies that Ξ is
compact.

Remark 3: As it is discussed after Theorem VI.2, the sets
Z,W,Φ,E,Ξ are constructed such that for all initial conditions
(x, 0, w) ∈ Z× E×W, the trajectories of DI (19) reach the
boundary ofΞ after (or at) the intersampling time t = τ((x,w)).
An alternative construction of such sets has been proposed in [7]
and [13] and utilizes a given Lyapunov function for system (12)
and its level sets.

The following theorem shows how the bound μ((x,w), t) is
constructed.

Theorem VI.2: Consider the family of ETC systems (12), the
DI (19) abstracting them, a homogenized triggering function
φ̃(ξ(t;x), w(t)), the sets Z,W,Φ,E,Ξ defined in (28), and let
Assumptions 1 and 2 hold. Let δ0 ≥ 0 and δ1 > 0 be such that

∀(z, w, u) ∈ Ξ×Δ :

∂φ̃

∂z
(z, w)wα+1fe(w

−1z, u) ≤ δ0φ̃(z, w) + δ1 (29a)

∀(z, w) ∈ Z× {0} ×W : δ0φ̃(z, w) + δ1 ≥ εδ > 0 (29b)

where εδ is an arbitrary positive constant. Let r > w be such that
Dr := {(x,w) ∈ Rn+1 : |(x,w)| = r, w ∈ W} ⊂ Z×W. For
all (x,w) ∈ Rn+1 \ {0} define the function

μ ((x,w), t) :=
(

|(x,w)|
r

)θ+1 [
1 0

]
e
A

( |(x,w)|
r

)α

t
y(x,w)

(30)
where A is as in (27) and

y(x,w) =

[
φ̃
(
(r x

|(x,w)| , 0, r
w

|(x,w)| )
)

δ1

]
.

The function μ((x,w), t) satisfies (15a), (15c), and (15d) for all
(x,w) ∈ (Rn × R+) \ {0}, but condition (15b) is satisfied only
in the cone

C = {(x,w) ∈ Rn × R+ : |x|2 + w2 ≤ w2

w2
r2} \ {0} (31)

and ∀t ∈ [0, τ((x,w))].
Proof: See the Appendix. �
Remark 4: Observe that under Assumptions 1 and 2, the

term ∂φ̃
∂z (z, w)w

α+1fe(w
−1z, u) is bounded for all (z, w, u) ∈

Ξ×Δ, since fe is locally bounded, φ is continuously dif-
ferentiable (implying that φ̃ is also continuously differ-
entiable for w �= 0), φ̃(z, w) is bounded for all (z, w) ∈
Z× {0} ×W and Ξ×Δ is compact and does not con-
tain any point (z, 0, u). Thus, coefficients δ0 ≥ 0 and δ1 >
0 satisfying (29) always exist; e.g., δ0 = 0 and δ1 >

max{εδ, sup(z,w,u)∈Ξ×Δ
∂φ̃
∂z (z, w)w

α+1fe(w
−1z, u)}. In [13],

a computational algorithm has been proposed, which computes
the coefficients δi for a given ETC system and triggering
function, by employing linear programming and satisfiability-
modulo theory solvers (see, e.g., [23]).

Let us explain the intuition behind Theorem VI.2. First,
observe that according to Lemma VI.1, the coefficients δ0, δ1
satisfying (29a), determine a function ψ(y((x, 0, w�)), t) that
upper bounds sup{φ(X F̃

t ((x, 0, w�)))}. The sets Z,W,Φ,E,Ξ
have been chosen such that the inequality

ψ(y((x, 0, w�)), t) ≥ sup{φ(X F̃
t ((x, 0, w�)))}

holds for all t ∈ [0, τ((x,w�))]. Now, introducing the scaling
terms ( |(x,w)|

r )α, r x
|(x,w)| , etc., which projects ψ(·) onto the

spherical segment Dr and transforms it into μ(·), enforces that
μ(·) satisfies (15b) and the scaling property (15c). Inequalities
δ0 ≥ 0, δ1 > 0 and (29b) enforce that μ(·) satisfies (15d). Fi-
nally, (15b) being satisfied only in the cone C stems from the fact
that 0 /∈ int(W). Note thatW is chosen such that it is guaranteed
that (29) is well-defined everywhere in Ξ×Δ.

The fact that (15b) is satisfied only in the cone C has the
following implication.

Corollary VI.3. (See Theorem IV.4): Consider the family of
ETC systems (12), the DI (19) abstracting them, a (homoge-
nized) triggering function φ̃(ξ(t;x), w(t)), and let Assumptions
1 and 2 hold. Consider the function μ((x,w), t) from (30).
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Fig. 3. Isochronous manifold Mτ1 (solid line) and approximations of
isochronous manifolds Mτ1

,Mτ2
(dashed lines). The set Mτ1

inner
approximates Mτ1 only inside the cone C. The red region R1 contained
between Mτ1

and Mτ2
and the cone C satisfies (11).

The sets Mτ� = {(x,w) ∈ Rn+1 : μ((x,w), τ�) = 0} inner-
approximate isochronous manifolds Mτ� of DI (19) inside the
cone C, i.e., for all (x,w) ∈Mτ� ∩ C

∃!κ(x,w) ≥ 1 s.t. κ(x,w)(x,w) ∈Mτ�

�∃λ(x,w) ∈ (0, 1) s.t. λ(x,w)(x,w) ∈Mτ� .

Moreover, the sets Mτ� satisfy the properties mentioned in
Proposition IV.3.

Proof: It follows identical arguments to the proof of Theorem
IV.4 in [13]. The only difference is that the arguments are now
made for all (x,w) ∈ C and not for all (x,w) ∈ Rn+1. �

The implications of the aforementioned corollary are depicted
in Fig. 3. According to Section IV-B, since the zero-level sets
Mτi of μ((x,w), t) inner-approximate isochronous manifolds
inside C, for the regions Ri that are delimited by consecutive
approximations Mτi and the cone C (see Fig. 3) it holds that:
τi ≤ τ((x,w)). Thus, given the set of times {τ1, . . . , τq}, the
regions Ri are defined as the regions between consecutive
approximations Mτi and the cone C

Ri := {(x,w) ∈ C : μ ((x,w), τi) ≤ 0 ,

μ ((x,w), τi+1) ≥ 0} . (32)

As discussed in Section V-B, in a real-time implementation,
given a measurement x ∈ Rn, the controller checks to which
regionRi the point (x, 1) ∈ Rn+1 belongs, and correspondingly
decides the next sampling time instant (see Fig. 2).

Remark 5: The innermost region Rq cannot be defined as in
(32), as there is no τq+1. For Rq , it suffices that we write

Rq := {(x,w) ∈ C : μ ((x,w), τq) ≤ 0} .

B. Semiglobal Nature of Region-Based STC

It is obvious that the regions Ri do not cover the wholew = 1
hyperplane (which is where the state space of the original system
is mapped), i.e., there exist states x ∈ Rn such that the point
(x, 1) ∈ Rn+1 does not belong to any region Ri, and thus no
STC intersampling time can be assigned tox. Let us demonstrate
which set B ⊆ Rn is covered by the partition created and show
that it can be made arbitrarily large.

The set B is composed of all points x ∈ Rn such that (x, 1)
belongs to any region Ri, i.e.,

B :=

{
x ∈ Rn : (x, 1) ∈

⋃
i

Ri

}
.

From the definition (32) of regions Ri and the scaling property
(15c) of μ(·), it follows that⋃

i

Ri = C ∩ {(x,w) ∈ Rn × R+ : μ((x,w), τ1) ≤ 0}.

By fixing w = 1 in the expression (31) of C and in {(x,w) ∈
Rn × R+ : μ((x,w), τ1) ≤ 0}, we get

(x, 1) ∈ C ⇐⇒ x ∈ {x ∈ Rn : |x|2 ≤ r2 − w2

w2
} =: B1

(33)

(x, 1) ∈ {(x,w) ∈ Rn × R+ : μ ((x,w), τ1) ≤ 0} ⇐⇒
x ∈ {x ∈ Rn : μ ((x, 1), τ1) ≤ 0} =: B2. (34)

Thus, we can write the set B as

B := {x ∈ Rn : x ∈ B1, x ∈ B2} = B1 ∩B2. (35)

The setB1 is depicted in Fig. 7 in the Appendix. Since r > w,B1

is nonempty. Moreover, we can choose w > 0 to be arbitrarily
small without changing r, therefore we can make the set B1

arbitrarily large. Finally,B2 is nonempty (as it is the set delimited
by Mτ1 and C) and, owing to the scaling property (15c) of μ(·),
it can be made arbitrarily large by selecting a sufficiently small
τ1. Consequently, B is nonempty, and can be made arbitrarily
large. Hence, region-based STC is applicable semiglobally in
Rn.

Remark 6: As discussed in [13], for fixed τ1 and τq , as the
total number q of predefined times τi grows, the sets Ri become
smaller (since the same set B is partitioned into more regions
Ri). This increases the accuracy of times τi as lower bounds
of the actual ETC times τ(x), but also increases the online
computational load of the controller , thus providing a tradeoff
between performance and computations.

VII. NUMERICAL EXAMPLE

Let us demonstrate how the proposed STC is applied to a
perturbed uncertain system, and compare its performance to the
STC of Liu and Jiang [4]. Consider the ETC system from [4]

ζ̇1 = ζ2 + g1(ζ1, d1), ζ̇2 = u(ζ, εζ) + g2(ζ2) (36)

where |g1(ζ1, d1)| ≤ 0.1|ζ1|+ 0.1|d1| and |g2(ζ2)| ≤ 0.2|ζ2|2
are uncertain, and d1(t) is an unknown bounded distur-
bance with |d1(t)| ≤ 4. The ETC feedback u is u(ζ, εζ) =
−(7.02|ζ2 + εζ2 − p1| − 25.515)(ζ2 + εζ2 − p1), where p1 =
−2.1(ζ1 + εζ1). The triggering function from Liu and Jiang [4],
which is to be emulated, is

φ(ζ, εζ) = |εζ(t)|2 − 0.0049|ζ(t)|2 − 16 (37)
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which guarantees convergence to a ball (practical stability).
First, we bring (36) to the form of (12), by writing

ξ̇(t) =

⎡
⎢⎢⎢⎣
ζ̇1

ζ̇2

ε̇ζ1
ε̇ζ2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
ζ2 + 0.1d2ζ1 + 0.1d1

u(ζ, εζ) + 0.2d3ζ
2
2

−ζ2 − 0.1d2ζ1 − 0.1d1

−u(ζ, εζ)− 0.2d3ζ
2
2

⎤
⎥⎥⎥⎦ = fe(ξ(t), d(t))

(38)
where d(t) = (d1(t), d2(t), d3(t)) ∈ [−4, 4]× [−1, 1]2, i.e.,
Δ = [−4, 4]× [−1, 1]2. Observe that Assumption 1 is satisfied.
Then, we construct the homogeneous DI abstracting (38) ac-
cording to (19)(

ξ̇(t)

ẇ(t)

)
=

[
{w2fe(w

−1ξ, d(t)) : d(t) ∈ Δ}
0

]
(39)

and homogenize the triggering function as follows:

φ̃(ξ(t), w(t)) = |εζ(t)|2 − 0.0049|ζ(t)|2 − 16˜w2(t). (40)

The degree of homogeneity for both (39) and (40) is 1.
Next, we derive the δi coefficients according to Theorem

VI.2 to determine the regions Ri. We fix Z = [−0.1, 0.1]2,
W = [10−6, 0.1] and define the setsΦ,E,Ξ as in (28), whereΦ is
indeed compact. By employing the computational algorithm of
Delimpaltadakis and Mazo [13], δ0 ≈ 0.0353 and δ1 ≈ 0.3440
are obtained. We choose r = 0.099 such that Dr ⊂ Z×W,
and define μ((x,w), t) as in (30). Finally, the state space of
DI (39) is partitioned into 434 regions Ri with τ1 ≈ 63 · 10−5

and τi+1 = 1.01τi.
We ran a number of simulations to compare our approach

to the approach of Liu and Jiang [4] and to the ideal perfor-
mance of the emulated ETC (37). More specifically, we simu-
lated the system for 100 different initial conditions uniformly
distributed in a ball of radius 2. The simulations’ duration
is 5s. As in [4], we fix: g1(ζ1, d1) = 0.1ζ1 sin(ζ1) + 0.1d1,
d1 = 4 sin(2πt), and g2(ζ2) = 0.2ζ22 sin(ζ2). The self-triggered
sampler of Liu and Jiang [4] determines sampling times as
follows: ti+1 = ti +

1.54
28(|xi|+4)+29 , where xi is the state mea-

sured at ti. The total number of samplings for each simulation
of all three schemes is depicted in Fig. 4. The average num-
ber of samplings per simulation was: 200.71 for region-based
STC, 482.32 for STC [4], and 38.81 for ETC. We observe
that region-based STC is in general less conservative than the
STC of Liu and Jiang [4] while being more versatile as well.
Recall that the main advantage of our approach is its versatility
compared to the rest of the approaches, in terms of its ability to
handle different performance specifications and different types
of system’s dynamics, provided that an appropriate triggering
function is given. For example, the work in [4] is constrained
to ISS systems, whereas our approach does not obey such a
restriction. Finally, as expected, ETC leads to a smaller amount
of samplings compared to both STC schemes.

We, also, present illustrative results for one particular simula-
tion with initial condition (−1,−1). Fig. 5 shows the trajectories
of the system when controlled via region-based STC and the STC
from Liu and Jiang [4], whereas Fig. 6 shows the time-evolution
of intersampling times for the two schemes. Region-based STC

Fig. 4. Number of samplings for each simulation of region-based STC
(orange), STC of Liu and Jiang [4] (blue), and ETC (37) (green).

Fig. 5. Trajectories of system (36) with initial condition (−1,−1), under
region-based STC (orange lines) and the STC of Liu and Jiang [4]
(dashed blue lines).

Fig. 6. Evolution of intersampling times during a simulation with initial
condition (−1,−1), for region-based STC (orange line) and the STC of
Liu and Jiang [4] (blue line).

led to 166 samplings, whereas the STC of Liu and Jiang [4] led
to 483. We observe that while the performance of both schemes
is the same (the trajectories are almost identical in Fig. 5),
region-based STC leads to a smaller amount of samplings, i.e.,
less resource utilization. Moreover, from Fig. 6, we observe that,
especially during the steady-state response, region-based STC
performs considerably better in terms of sampling. However,
there is a small period of time in the beginning of the simulation,
when the trajectories overshoot far away from the origin and
region-based STC gives faster sampling. Finally, we have to note
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that while we have not added more comparative simulations with
the other STC schemes that address disturbances or uncertain-
ties [10]–[12] for conciseness, simulation results have indicated
that region-based STC is competitive to these approaches as
well.

VIII. CONCLUSION

In this work, by extending the work of Delimpaltadakis and
Mazo [13], we have proposed a region-based STC scheme for
nonlinear systems with disturbances and uncertainties, which
is able to provide different performance guarantees, depending
on the triggering function that is chosen to be emulated. By
employing a framework based on DIs and introducing ETC no-
tions therein, we have extended significant results on ETC/STC
to perturbed uncertain systems. Employing the renewed results,
we have constructed approximations of isochronous manifolds
of perturbed/uncertain systems, enabling region-based STC.
The provided numerical simulations indicate that our approach
while being more versatile is competitive with respect to other
approaches as well, in terms of intersampling times. It is worth
noting that region-based STC provides room for numerous ex-
tensions, due to the generic way of converting ETC to STC
it offers. For example, (dynamic) output-feedback could easily
be considered by incorporating the (controller’s and) observer’s
dynamics into the system description. Hence, for future work,
we will consider several extensions of the proposed STC (e.g.,
to systems with communication delays). Apart from that, we
plan on utilizing the derived approximations of isochronous
manifolds to construct timing models of perturbed uncertain
nonlinear ETC systems for traffic scheduling in networks of
ETC loops, building upon Delimpaltadakis and Mazo [19].

APPENDIX

Proof of Theorem V.2: According to the definition of inter-
sampling times (18), for τ(λ(x,w)), we have

τ (λ(x,w)) = inf

{
t > 0 : sup

{
φ̃
(
X F̃

t (λ(x, 0, w))
)}

≥ 0

}
.

Employing the scaling property (4) and the fact that φ̃ is homo-
geneous of degree θ, we can write τ(λ(x,w)) as

inf

{
t > 0 : sup

{
φ̃
(
λX F̃

λαt((x, 0, w))
)}

≥ 0

}

= inf

{
t > 0 : sup

{
λθ+1φ̃

(
X F̃

λαt((x, 0, w))
)}

≥ 0

}

= inf

{
λ−αt > 0 : sup

{
φ̃
(
X F̃

t ((x, 0, w))
)}

≥ 0

}

= λ−ατ ((x,w)) .

�
Proof of Lemma VI.1: Consider the restriction of ODE (22)

to the set Ξ

ξ̇(t) = f(ξ(t), d(t)), ξ(t) ∈ Ξ. (41)

Any solution of (41) is also a solution of (22) (possibly not a
maximal one). Note that (24) is equivalent to

φ̇(ξ(t; ξ0)) ≤ δ0φ(ξ(t; ξ0)) + δ1 (42)

where ξ(t; ξ0) is any solution of (41), with ξ0 ∈ Ξ. Observe
that ψ(y(ξ0), t) is the solution to the scalar differential equation
ψ̇ = δ0ψ + δ1 with initial condition ψ0 = φ(ξ0)

ψ(y(ξ0), t) =
[
1 0

]
eAty(ξ0) = eδ0tφ(ξ0) +

eδ0t − 1

δ0
δ1.

Thus, by employing the comparison lemma (see [22], pp. 102–
103), from (42), we get that for any d�(t) satisfying Assumption
1 and all ξ0 ∈ Ξ

φ(ξ(t; ξ0)) ≤ ψ(y(ξ0), t) ∀t ∈ [0, te,d�
(ξ0)) (43)

where [0, te,d�
(ξ0)) is the maximal interval of existence of

solution ξ(t; ξ0) to ODE (41) under the realization d(t) = d�(t).
The time te,d�

(ξ0) is defined as the time when ξ(t; ξ0), under
the realization d(t) = d�(t), leaves the set Ξ

te,d�
(ξ0)=sup{τ > 0 : d(t) = d�(t), ξ(t; ξ0)∈Ξ ∀t ∈ [0, τ)}.

Since (43) holds for all d�(t) satisfying Assumption 1, we can
conclude thatψ(y(ξ0), t) bounds all solutions of DI (23) starting
from ξ0 ∈ Ξ as follows:

sup
{
φ
(XF

t (ξ0)
)} ≤ ψ(y(ξ0), t) ∀t ∈ [0, inf

d�

te,d�
(ξ0)).

Finally, note that infd�
te,d�

(ξ0) represents the smallest pos-
sible Ξ-escape time among all trajectories generated by
DI (23), i.e., infd�

te,d�
(ξ0) = inf{t > 0 : XF

t (ξ0) �⊆ Ξ} =
te(ξ0). Hence, we can conclude that

sup
{
φ
(XF

t (ξ0)
)} ≤ ψ(y(ξ0), t) ∀t ∈ [0, te(ξ0)).

�
Proof of Theorem VI.2: First notice that under item 4) of

Assumption 1, (15a) holds:

μ((x,w), 0)=

(|(x,w)|
r

)θ+1

φ̃

((
r

x

|(x,w)| , 0, r
w

|(x,w)|
))
< 0

for all (x,w) ∈ Rn+1 \ {0}. Moreover, observe that μ(·, ·) sat-
isfies the time-scaling property (15c) by construction. It remains
to prove that μ(·, ·) satisfies (15b) and (15d).

In order to prove that μ(·, ·) satisfies (15b), as already ex-
plained in Section VI-A, we follow the following steps.

1) We show that the coefficients δ0, δ1 satisfying (29a) de-
termine a function ψ(y((x, 0, w�)), t) satisfying (44).

2) Using the sets Z,W,E,Φ,Ξ, we show that
ψ(y((x, 0, w�)), t) satisfies (45).

3) Finally, observing that μ is obtained by a projection of ψ
to Dr, we show that μ satisfies (15b) [see (49)].

Let us formally prove it. Assumption 1 implies that
F̃ (ξ, w) ⊆ R2n+1 is nonempty, compact, and convex for
any (ξ, w) ∈ R2n+1 \ {0} and outer semicontinuous. These
conditions ensure existence and extendability of solutions for
each initial condition [21]. According to Lemma VI.1 and since
Ξ is compact, the coefficients δ0, δ1 satisfying (29a), determine
a function ψ(y((x, e, w�)), t) such that for all (x, e, w)
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Fig. 7. Sets Z×W (region contained in blue box), Dr (red spherical
segment), and the cone C (green) from (31). The subset of the hyper-
plane w = 1 painted in purple represents the set B1 from (33).

∈ Ξ : ψ(y((x, e, w)), t) ≥ sup{φ(X F̃
t ((x, e, w)))} ∀t ∈ [0,

te((x, e, w))],where te((x, e, w)) is defined in (25) as the
time when X F̃

t ((x, e, w)) leaves the set Ξ. Since we are only
interested in initial conditions with the measurement error
component being 0, we write

ψ(y((x, 0, w)), t) ≥ sup
{
φ
(
X F̃

t ((x, 0, w))
)}

∀(x, 0, w) ∈ Ξ and ∀t ∈ [0, te ((x, 0, w))].
(44)

Observe that for all initial conditions (x, 0, w) ∈ Z× E×W,
the sets Φ and E are exactly such that ξ(t; (x, 0)) /∈ Φ× E ⇒
φ(ξ(t; (x, 0))) > 0, where ξ(·) represents the ξ-component of
solutions of DI (19) (sincew(t) remains constant along solutions
of DI (19), we neglect it). Thus, all trajectories that start from any
initial condition (x, 0, w) ∈ Z× E×W reach the boundary of
Ξ = Φ× E×W after (or at) the intersampling time τ((x,w)),
i.e., τ((x,w)) ≤ te((x, e, w)) for all (x,w) ∈ Z×W. Thus,
employing (44), we write

ψ(y((x, 0, w)), t) ≥ sup
{
φ
(
X F̃

t ((x, 0, w))
)}

∀(x,w) ∈ Z×W and ∀t ∈ [0, τ ((x,w))].
(45)

Now, consider any point (x0, w0) ∈ Dr ⊆ Z×W. Observe
that μ((x0, w0), t) = ψ(y((x0, 0, w0)), t). Thus, since Dr ⊆
Z×W, from (45), we get

μ ((x0, w0), t) ≥ sup
{
φ
(
X F̃

t ((x0, 0, w0))
)}

∀(x0, w0) ∈ Dr and ∀t ∈ [0, τ ((x0, w0))].
(46)

To prove that μ(·) satisfies (15b) in the cone C from (31), we
have to show that (46) holds for all (x,w) ∈ C. First, observe
that C is defined as the cone stemming from the origin with its
extreme vertices being all points in the intersectionDr ∩ Z×W
(see Fig. 7). Thus, sinceDr is a spherical segment, for any point
(x,w) ∈ C there always exists a λ > 0 and a point (x0, w0) ∈
Dr such that (x,w) = λ(x0, w0). If we interchange (x0, w0)
with λ−1(x,w) in (46), we get

μ
(
λ−1(x,w), t

) ≥ sup
{
φ
(
X F̃

t (λ−1(x, 0, w))
)}

∀(x,w) ∈ C and ∀t ∈ [0, τ
(
λ−1(x,w)

)
]. (47)

But, from (4), (15c), and Theorem (V.2), we get

• sup
{
φ
(
X F̃

t (λ−1(x, 0, w))
)}

= λ−θ−1 sup
{
φ
(
X F̃

λ−αt((x, 0, w))
)}

• μ (λ−1(x,w), t
)
= λ−θ−1μ

(
(x,w), λ−αt

)
• τ (λ−1(x,w)

)
= λατ ((x,w)) . (48)

Incorporating (48) into (47), we finally get

μ ((x,w), t) ≥ sup
{
φ
(
X F̃

t ((x, 0, w))
)}

∀(x,w) ∈ C and ∀t ∈ [0, τ ((x,w))] (49)

i.e., μ(·) satisfies (15b) in C.
Finally, let us prove that μ(·) satisfies (15d). Observe

that since δ0 ≥ 0, δ1 > 0, and (29b) holds, then μ((x,w), t)
and μ̇((x,w), t) are strictly increasing w.r.t. t (for a more
detailed proof, see [13]). Thus, since μ((x,w), 0) < 0,
then for any (x,w) ∈ Rn+1 \ {0}, ∃!τ ↓(x,w) > 0 such that
μ((x,w), τ ↓((x,w))) = 0. �
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