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Abstract

Controlling large swarms of robotic agents presents many challenges including, but not limited to, computational

complexity due to a large number of agents, uncertainty in the functionality of each agent in the swarm, and uncertainty

in the swarm’s configuration. The contribution of this work is to decentralize Random Finite Set (RFS) control of

large collaborative swarms for control of individual agents. The RFS control formulation assumes that the topology

underlying the swarm control is complete and uses the complete graph in a centralized manner. To generalize the

control topology in a localized or decentralized manner, sparse LQR is used to sparsify the RFS control gain matrix

obtained using iterative LQR. This allows agents to use information of agents near each other (localized topology) or

only the agent’s own information (decentralized topology) to make a control decision. Sparsity and performance for

decentralized RFS control are compared for different degrees of localization in feedback control gains which show

that the stability and performance compared to centralized control do not degrade significantly in providing RFS

control for large collaborative swarms.

Index Terms

decentralized control, multi-agent systems, optimal control, set theory

I. INTRODUCTION

Control of large collaborative networks or swarms is currently an emerging area in controls research. A swarm

network is typically comprised of tiny robots programmed with limited actuators that perform specific tasks in

the network formation. For example, the swarm can use its combined effort to grasp or move in the environment

which can offer a better way to meet a goal compared to the abilities of a single agent [1]. Specifically in space

applications, swarm control of satellites and rovers can be used for the exploration of asteroids and other celestial

bodies of interest [2] or areas of assembly and construction on-orbit including constructing space observatories

and space habitats [3]. Swarms involving UAVs have proven to be widely useful in military applications such as

search and rescue missions, communication relaying, border patrol, surveillance, and mapping of hostile territory
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[4]. From these engineering applications, the use of collaborative swarms is an attractive option to meet objectives

that may be too difficult for a single agent.

For collaborative swarms, several control techniques have been implemented to date. With centralized control,

one agent in the swarm computes the overall swarm control and manages the control execution for individual

agents allowing it to oversee the other agents’ system processes [5]. Unfortunately, centralized control suffers

from two main problems. As the number of agents in the swarm increases, the computational workload becomes

more expensive [6]. This is especially true when the swarm agents are low-cost and are located in an unknown

environment. Additionally, centralized control is not robust against individual agent failures [7]. With a thousand

low-cost agents present in a swarm, communication, actuation, and sensing are performed with less reliability. Thus,

centralized control may not be a viable option for these systems.

Changing how the model for the representation and behavior for a swarm state in space and time has been shown

to alleviate the computational complexity of control methods and solutions [8]–[12]. Previously, the swarm/potential

model using the random finite set (RFS) formalism was used to describe the temporal evolution of the probabilistic

description of the robotic swarm to promote decentralized coordination [13]. By using a measure-value recursion

of the RFS formalism for the swarm agents, the swarm dynamics can be determined with computational efficiency.

This RFS formulation was then expanded for control of large collaborative swarms [14]. This work generalized

the state representation of the control problem as an RFS, where an RFS is a collection of agent states, with no

ordering between individual agents, that can randomly change through time [15]. Figure 1 shows the concept of

the contributed work, where the first moment of the RFS is used as the state, ν, and the desired RFS swarm

configuration is defined by its first moment, νdes. The novelty of this work was to generalize the notion of distance

using RFS-based distance measures and to “close-the-loop” by processing measurements from an unknown number

of agents with defined spawn (B), birth (Γ), and death (D) rates to obtain a multi-agent estimate for control

using the Gaussian mixture Probability Hypothesis Density (GM-PHD) filter and a variant of differential dynamic

programming (DDP) called iterative linear quadratic regulator (ILQR). In this example, the topology underlying

the swarm control is complete and uses the complete graph in a centralized manner. To obtain a complete graph

for RFS control, the swarm is estimated in both cardinality (number of agents) and state using the GM-PHD filter.

RFS control through ILQR approximates a quadratic value function from the distributional distance-based cost, and

it is iterated to determine an optimal control solution. The results combining the PHD filter and ILQR using the

RFS formalism provided implicit proof for RFS control of large collaborative swarms.

Although the RFS formalism allows for varying swarm states and number of agents with time, a central low-cost

agent with limited computational capacity may have difficulty computing a centralized control command due to

the large number of agents. Thus, it is necessary to break down the centralized control problem into smaller, more

manageable subproblems which are weakly dependent or independent from each other. This becomes the area of

decentralized or localized control. Decentralized control is able to control agents in a swarm by using different

techniques on the swarm control (information) structure. Two different methods are of interest for decentralized

control. The first area is the development of decentralized controllers under specific structural constraints [16]–[19].

An example of a structural constraint is sparsity requirements for an agent in the swarm which suggests that it
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Fig. 1. A block diagram of the RFS control and estimation architecture in a closed-loop.

only has access to the information structure from agents near it. The other area of interest is the development of

decentralized control under communication constraints (delays). By adding delay and uncertainty into multi-agent

systems, control can be degraded. Convex methods and optimal control have been tools used to develop decentralized

systems that incorporate communication delays [20], [21].

In the original RFS control problem, the control (information) topology is assumed to be complete using all the

state information obtained from the GM-PHD filter. This is centralized control in which the swarm computes the

overall swarm control and manages the control execution for individual agents, allowing it to oversee the other

agents’ control processes.

For decentralized RFS control, the control topology is used in a localized or decentralized manner using sparse

control matrices. The decentralized RFS control is realized using sparse LQR to sparsify the centralized RFS control

gain matrix obtained using ILQR. This allows agents to use local information topology (information of agents near

each other) or a fully decentralized topology (information of the agent’s own information) to make a control

decision. Sparse LQR allows for more stability and less performance degradation than truncating a centralized

control matrix may provide. Sparsity and performance for decentralized RFS control are compared for different

degrees of localization in the feedback control gains which show the viability for decentralized control for large

collaborative swarms.

II. RFS FORMULATION

The RFS formulation was first considered in [15] and implemented in a tractable recursion for multi-target

estimation in [22]. Then, the tractable recursion was used in conjunction with an RFS formulation for control of

large collaborative swarms in [14]. For a complete background of RFS control and estimation, [14], [22], [23] are

referred. The discussion below provides the neccessary background for forming decentralized RFS control.

The multi-agent problem considers the Bayesian recursion through an RFS formulation with discrete-time dy-

namics [22]. This theory addresses the decentralized formulation for each agent in the formation. Each agent

has the challenge of estimating its local formation configuration and designing a control policy to achieve some

local configuration. It is assumed that each agent within the swarm is identical and that using unique identifiers

on each agent is unnecessary. Using RFS theory, the number of agents and their states is determined from
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measurements. The agents in the field may die, survive and move into the next state through dynamics, or

appear by spawning or birthing. The number of agents in the field is denoted by Ntotal(t) and may be ran-

domly varying at each time-step by the union of the birth (Γk : ∅ → {xi,k,xi+1,k, · · · ,xi+Nbirth,k}), spawn

(Bk|k−1 (ζ) : xi,k−1 →
{
xi,k,xi+1,k, · · · ,xi+Nspawn,k

}
), and surviving (Sk|k−1 (ζ) : xi,k−1 → xi,k) agents.

Death is denoted by Dk (ζ) : xi,k−1 → ∅. Note that xi,k is for the ith swarm agent’s state. This is described by an

RFS, Xk, given by

Xk =

 ⋃
ζ∈Xk−1

Sk|k−1 (ζ)

 ∪
 ⋃
ζ∈Xk−1

Bk|k−1 (ζ)

 ∪ Γk. (1)

Xk =
{
x1,k,x2,k, · · · ,xNtotal(k),k

}
denotes a realization of the RFS distribution for agents. The individual RFSs

in Eq. (1) are assumed to be independent from each other. For example, any births that occur at any time-step are

independent from any surviving agents. At any time, k, the RFS probability density function can be written as

p(Xk = {x1,k,x2,k, . . . ,xn,k})

= p(|Xk| = n)× p({x1,k,x2,k, · · · ,xn,k} | |Xk| = n).
(2)

For a generalized observation process, the agents are either detected (Θk (xk) : xi,k → yi,k), or not detected

(Fk (xk) : xi,k → ∅). Clutter or false alarms (Kk : ∅ → {y1,k,y2,k, · · · ,yNclutter,k}), defined as measurements

that do not belong to any agents, are also present in the set of observations. Note that yi,k is for the ith swarm

agent’s measurement. Therefore, the RFS of measurements is described by

Zk = Kk ∪

[ ⋃
xk∈Xk

Θk (xk)

]
, (3)

where the origins of each measurement are not known and unique identifiers are not necessary. Again, the individual

RFSs in Eq. (3) are independent of each other, so measurements and clutter are obtained independently from each

other. Single-agent filtering cannot be applied because measurements cannot be associated with the agent that

generated it. By using the RFS formulation, measurements can be associated to individual agents in the swarm.

The control sequence is also defined by an RFS in the form Uk =
{
u1,k,u2,k, . . . ,uNtotal(k),k

}
and an RFS

probability density in a form similar to Eq. (2) since the number of the agents in the field to be controlled is also

varying.

The RFS formulation of describing multi-agent states (Xk) and observations (Zk) can be described by a state

transition, fk|k−1 (Xk|Xk−1), and a measurement likelihood, gk (Zk|Xk), function. To determine the multi-agent

posterior density, a multi-agent Bayes recursion is used given by

pk|k−1 (Xk|Z1:k−1) =

∫
fk|k−1 (Xk|Xk−1)

× pk−1 (Xk−1|Z1:k−1)µs(dXk−1),

(4a)

pk (Xk|Z1:k) =
gk (Zk|Xk) pk|k−1 (Xk|Z1:k−1)∫

gk (Zk|Xk) pk|k−1 (Xk|Z1:k−1)µs(dXk)
, (4b)

where µs is a reference measure on some function F (X). The recursion is computationally expensive due to

multiple integrals, but solutions have been found for a small number of targets using sequential Monte Carlo [24].

Fortunately, a PHD filter approximation provides computational tractability for large number of agents.



5

A. Probability Hypothesis Density (PHD) Filter

Instead of propagating the multi-agent posterior density through a multi-agent Bayes recursion, the Probability

Hypothesis Density (PHD) filter propagates the posterior intensity function. The nonnegative intensity function,

v(x), is a first-order statistical moment of the RFS state that represents the probability of finding an agent in a

region of state space S. The expected number of agents in the region S is the integral of the intensity function

given by

E(|X ∩ S|) =

∫
|X ∩ S|P (dX) =

∫
S

v(x)dx, (5)

where the expectation represents an RFS X intersecting a region S with a probability distribution P dependent on

X . This gives the total mass or the expected number of agents of RFS X in a region S. The local maximum in

intensity v(x) shows the highest concentration of expected number of agents which can be used to determine an

estimate for the agents in X at a time-step.

Poisson RFS are fully characterized by their intensities. By assuming the RFS X is Poisson of the form p(|X| = n)

and p({x1,x2, ...,xn} | |X| = n), approximate solutions can be determined by the PHD filter. Propagation of the

PHD can be determined if the agents are assumed to be independent and identically distributed with the cardinality

of the agent set that is Poisson distributed [22]. Secondly, it is assumed that the agents’ motion and measurements

are independent of each other. Thirdly, clutter and birth RFSs are assumed to be Poisson RFSs and clutter is

independent from the measurement RFS. Lastly, the time-update multi-target density pk|k−1 is Poisson, but if there

is no spawning and the surviving and birth RFSs are Poisson, then this assumption is satisfied. It is noted that the

assumptions made by the PHD filter are strong assumptions for swarming robotics. However, this is a good starting

point for an initial proof-of-concept study. The PHD recursion for a general intensity function, vt(x), is given by

v̄t(x) = b(x) +

∫
ps(ζ)f(x|ζ)v(ζ)dζ +

∫
β(x|ζ)v(ζ)dζ, (6a)

where b(x), ps(ζ), and β(x|ζ) are the agents’ birth, survival, and spawn intensity, f(x|ζ) is the target motion

model, and ζ is the previous state respectively [22]. The bar on v̄t(x) denotes that the PHD has been time-updated.

For the measurement update, the equation is given by

vt(x) = (1− pd(x))v̄t(x) +
∑

z∈Zt

pd(x)g(zt|x)v̄t(x)
c(z)+

∫
pd(ζ)g(zt|ζ)v̄t(ζ)dζ , (6b)

where pd(x), g(zt|x), and c(z) are the probability of detection, likelihood function, and clutter model of the sensor

respectively [22]. By using this recursion, the swarm probabilistic description can be updated. The recursion itself

avoids computations that arise from the unknown relation between agents and its measurements, and the posterior

intensity is a function of a single agent’s state space. Unfortunately, Eq. (6) does not contain a closed-form solution

and the numerical integration suffers from higher computational time as the state increases due to an increasing

number of agents.
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B. Gaussian Mixture Model and Control Formulation

Fortunately, a closed-form solution exists if it is assumed that the survival and detection probabilities are state

independent (i.e. ps(x) = ps and pd(x) = pd), and the intensities of the birth and spawn RFSs are Gaussian

mixtures. To formulate the optimal control problem, the current and desired intensities are

ν̄(x, k) ,
Nf∑
i=1

w
(i)
f N

(
x;mi

f , P
i
f

)
, νb(x, k) + νps(x, k)

+ νβ(x, k),

(7)

νdes(x, k) , g(x) ,
Ng∑
i=1

w(i)
g N

(
x;mi

g, P
i
g

)
, (8)

where w(i) are the weights and N
(
x;mi, P i

)
is the probability density function of an ith multivariate Gaussian

distribution with a mean and covariance corresponding to the peaks and spread of the intensity respectively. Nf and

Ng are the total number of multivariate Gaussian distributions in the current and desired intensities, respectively.

It is assumed that the desired Gaussian mixture intensity, νdes(x, k), is known. Eq. (7) includes the summation

of the individual birth (νb(x, k)), spawn (νβ), and survival (νps(x, k)) Gaussian mixture intensities which simplify

to another Gaussian mixture. Note that closed form solutions using Gaussian mixtures exist for cases without the

state independent assumption. Additionally,
∑Nf

i=1 w
(i)
f = Ntotal(t) and

∑Ng

i=1 w
(i)
g = N̄total(t) where N̄total(t) is the

desired number of agents. The intensity function ν(x, t) is in terms of the swarm state while νdes(x, t) is in terms

of the desired state. The swarm intensity function can be propagated through updates on the mean and covariance

of the Gaussian mixtures as given by

mi
f,k+1 = Akm

i
f,k +Bku

i
f,k, (9)

P if,k+1 = AkP
i
f,kA

T
k +Qk, (10)

where Qk is process noise. The agents’ states x are incorporated in the mean and covariance of the Gaussian

mixture intensity. Then given the Gaussian mixture intensities assumption, a control variable is calculated for each

component uif,k. Additionally, each Gaussian mixture component represents many agents since the intensity function

integrates to the total number of agents. Note that although linear dynamics are used, the dynamics can be modeled

as a nonlinear function of the state.

Additionally, the measurement update is also closed form given by the intensity

νk(x, k) = f(x) = (1− pd(x))ν̄k(x)

+
∑
z∈Zk

Nf∑
j=1

w
(j)
k N

(
x;m

(j)
k|k(z), P

(j)
k|k

)
,

(11)

where

w
(j)
k =

pd(x)w
(j)
f q(j)(z)

K(z) + pd(x)
∑Nf

l=1 w
(l)
f q(l)(z)

, (12a)

m
(j)
k|k(z) = m

(j)
f +K(j)

(
z−Hkm

(j)
f

)
, (12b)
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P
(j)
k|k =

(
I −K(j)Hk

)
P if , (12c)

K(j) = P ifH
T
k

(
HkP

i
fH

T
k +Rk

)−1
, (12d)

q
(j)
k (z) = N

(
z;Hkm

(j)
f , Rk +HkP

i
fH

T
k

)
, (12e)

which closely follow the Kalman filter measurement update equations.

Each individual swarm agent runs a local PHD observer to estimate the state of the swarm by modeling the swarm

as a distribution. Thus, using RFS theory, it is assumed that the individual swarm agents form an intensity function

that is a Gaussian mixture intensity in which the means and covariances of the Gaussian mixture are propagated and

controlled. An optimal control problem is set up that tracks a desired swarm formation by minimizing its control

effort in the following objective function

J(u) =

∫ T

0

u(t)TRu(t) +D(ν(x, t), νdes(x, t))dt, (13)

where νdes(x, t) is the desired formation, R is the positive definite control weight matrix, and u(t) is the control

effort for the Gaussian mixture intensities shown in Eq. (9). Both ν(x, t) and νdes(x, t) are defined over the complete

state space which include position and velocity parameters. D(·, ·) is the distance between Gaussian mixtures which

has several closed-form solutions, and it has been used previously to define an objective function for path planning

of multi-agent systems [11]. For the Gaussian mixture approximation for RFSs, the objective function is defined

by

min
uk,k=1,...,T

J(u) =

T∑
k=1

uTkRuk

+

Nf∑
j=1

Nf∑
i=1

w
(j)
f,kw

(i)
f,kN (mj

f,k;mi
f,k, P

i
f,k + P jf,k)

+

Ng∑
j=1

Ng∑
i=1

w
(j)
g,kw

(i)
g,kN (mj

g,k;mi
g,k, P

i
g,k + P jg,k)

− 2

Ng∑
j=1

Nf∑
i=1

w
(j)
g,kw

(i)
f,kN (mj

g,k;mi
f,k, P

i
g,k + P jf,k)

− α
Ng∑
j=1

Nf∑
i=1

w
(j)
g,kw

(i)
f,k ln

(
N (mj

g,k;mi
f,k, P

i
g,k + P jf,k)

)
,

(14)

Subject to : mi
f,k+1 = Akm

i
f,k +Bku

i
f,k,

P if,k+1 = AkP
i
f,kA

T
k +Qk,

(15)

in discrete time [23]. The term uk = [(u1
f,k)T , · · · , (uNf

f,k)T ]T is the collection of all control variables. Therefore,

control solutions are found by either using DDP where the objective function is quadratized by taking a Taylor

series approximation about a nominal trajectory or using optimization techniques (e.g. the Quasi-Newton method)

where the nonquadratic objective function is used directly to find an optimal control solution.

The key features for the RFS control problem is that it can allow for a unified representation for swarming

systems. This unified representation is achieved by minimizing the RFS objective function, Eq. (14), about the
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swarm intensity statistics given by Eq. (15). Thus, it can handle multi-fidelity swarm localization and control. The

swarm is treated probabilistically and the bulk motion is modeled which allows the theory to handle large numbers

of indistinguishable units with unknown swarm size. This reduces the dimensionality of the state while enabling

complex behavior. Naturally, the RFS control problem is formulated to enable complex decision making through

RFS theory.

III. DIFFERENTIAL DYNAMIC PROGRAMMING

The DDP approach to solving nonlinear and nonquadratic equations uses a second-order approximation of the

dynamics and objective function for value iteration. The solution is iterated to improve approximations of the

optimal trajectory of the system. [25]. Note that if linear dynamics are used, the iterative linear quadratic regulator

(ILQR) formulation is obtained [25], [26]. Since the results are produced by a linear system, both the DDP and

ILQR terms can be used interchangeably. For a nonlinear system,

xk+1 = f(xk,uk), (16)

and a nonquadratic objective function,

J(x0, U) =

N−1∑
k=0

l(xk,uk) + lf (xN ), (17)

where l(xk,uk) is the running cost, and lf (xN ) is the terminal cost, the cost-to-go is given by

J(xk, Uk) =

N−1∑
k

l(xk,uk) + lf (xN ), (18)

starting at state xk instead of x0. The value function, or optimal cost-to-go, can be found by minimizing Eq. (18)

in terms of the control sequence Uk = [uk,uk+1, · · · ,uN−1]. By letting V (xN ) = lf (xN ), the minimization of

the control sequence is reduced to a minimization to a control at a time-step by using the principle of optimality,

and the value can be solved backwards in time using

V (xk) = min
uk

(l(xk,uk) + V (xk+1)) . (19)

With Eq. (16) and Eq.(19), a Taylor series expansion can be found which linearizes and quadratizes the nonlinear

system and objective function about perturbations δxk and δuk given by

δxk+1 = fxδxk + fuδuk, (20)

Q(δx, δu) = l(xk + δxk,uk + δu)k − l(x,u)

+ V (xk+1 + δxk+1)− V (xk+1),

≈ 1

2


1

δxk

δuk


T 

0 QTx QTu

Qx Qxx Qxu

Qu Qux Quu




1

δxk

δuk

 ,
(21)
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where fx and fu are the linearized transition matrices, and Qx, Qu, Qxx, Qxu, and Quu are the running weights

of the Q-function. The authors would like to note that the time-step is dropped and any primes used denotes the

next time-step. The equations for these weights are given by

Qx = lx + fTx V
′
x, (22a)

Qu = lu + fTu V
′
x, (22b)

Qxx = lxx + fTx V
′
xxfx, (22c)

Quu = luu + fTu V
′
xxfu, (22d)

Qux = lux + fTu V
′
xxfx, (22e)

where lx, lu, lxx, luu, and lux are the gradients and Hessians of the cost function and V ′x and V ′xx are the gradient

and Hessian of the value function. The linear control policy is given by

K = −Q−1
uuQux, (23a)

k = −Q−1
uuQu, (23b)

where K is the local feedback and k is the feed-forwards gains for the optimal policy, and the gradient and Hessian

of the value function have the form

∆V = −1

2
kTQuuk, (24a)

Vx = Qx −KTQuuk, (24b)

Vxx = Qxx −KTQuuK. (24c)

Therefore, the optimal policy update is given by

ûk = uk + kk +Kk (x̂k − xk) . (25)

This algorithm is iterated to continuously obtain better approximations of the optimal trajectory. A tolerance can

be set as the cost function converges to its optimal trajectory to end the iteration.

IV. DECENTRALIZED CONTROL FORMULATION

The framework for decentralizing RFS control for swarming agents is to design sparse control matrices using

sparse LQR [27]–[29]. The following discussion on sparse LQR follows closely to Lin’s work on sparse feedback

gains [28].
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A. Sparse LQR Problem

The continuous state-space representation of a linear time-invariant dynamical system with a structured control

design is represented by

ẋ(t) = Acx(t) +Bcu(t) +Bc2d(t), (26a)

u(t) = −Fx(t), (26b)

where Ac is a continuous state transition matrix, Bc is a continuous control transition matrix, d(t) is a disturbance

or external input for a time t, Bc2 is the disturbance transition matrix, and F is a state feedback (control) gain

dependent on the sparsity (structural) constraints F ∈ S. A sparsity constraint subspace S is assumed to be non-

empty for all sparsity patterns for controller gains that are stable. For an infinite horizon LQR, the total cost is

quadratic in terms of the state and control given by

J(x(t),u(t)) =

∫ ∞
0

x(t)TQx(t) + u(t)TRu(t), (27)

where Q is a positive semi-definite state weight matrix and R is a positive definite control weight matrix. By

plugging in Eq. (26) into Eq. (27) for control gain F [30], the optimal control problem with structural constraints

becomes
min J(F ) = trace

(
BTc2

∫ ∞
0

e(A−BcF )T t
(
Q+ FTRF

)
e(A−BcF )tdtBc2

)
Subject to: F ∈ S.

(28)

The objective is to determine a control gain, F ∈ S, that minimizes the LQR cost. Fortunately, the integral in Eq.

(28) is bounded for stabilizing F , thus a control solution can be found using the Lyapunov equation given by

(A−BcF )TP + P (A−BcF ) = −(Q+ FTRF ), (29)

which reduces the J(F ) into

J(F ) = trace
(
BTc2P (F )Bc2

)
. (30)

The control objective in Eq. (28) assumes the sparsity constraints are known before the optimization takes place,

but these constraints may be unknown and appropriate sparsity patterns for decentralized control must be found.

The optimization problem can be modified to provide a sparsity promoting optimal control solution which provides

the performance and the topology for decentralized control. The sparsity-promoting optimal control problem is

min J(F ) + γg0(F ), (31a)

g0(F ) = nnz(F ), (31b)

where g0(F ) is the number of non-zeros (nnz(·)) for control gain F and γ ≥ 0 is a scalar weight to penalize

g0(F ). By including the number of non-zeros in the control gain F into the control objective directly, sparsity in F

is directly promoted in the optimization of the problem. More zeros (sparsity) in a control gain matrix corresponds

to more localization in the information topology network. The weight γ follows similarly to how the Q and R

matrices penalize x and u, respectively, but γ penalizes the number of non-zeros in F . For example, when γ >> 0,

the number of non-zeros in F is penalized heavily, thus, γ promotes more localized control. When γ = 0, no
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penalization of the control gain takes place, and a standard LQR solution with a centralized control gain matrix is

found.

B. Sparsity-Promoting Optimal Control

The function g0(F ) is a nonconvex argument in the optimization problem. As a result, finding the solution

involves a brute-force search which becomes intractable. To circumvent this issue, the g0(F ) function is substituted

with the L1 norm which is a nondifferentiable convex function given by

g1(F ) = ||F ||1 =
∑
i,j

|Fij |, (32)

which gives higher costs to non-zeros elements in F with larger magnitudes [31]. This differs from g0(F ) which

gives the same cost to all non-zero elements. Therefore, the L1 norm becomes a convex relaxation of the original

problem, but the original g0(F ) can be approximated better or recovered exactly by using a weighted L1 norm

given by

g2(F ) =
∑
i,j

Wij |Fij |, (33)

where Wij are positive weights. The weights can be used to approximate the L1 norm closer to g0(F ), but if Wij

is chosen to be inversely proportional to |Fij | as given by

Wij =

1/|Fij |, if Fij 6= 0,

∞, if Fij = 0,

(34)

the weighted L1 norm and g0(F ) equate to ∑
i,j

Wij |Fij | = nnz(F ). (35)

Although the weighted L1 norm is viable to recover g0(F ), the weights are dependent on the unknown feedback

gain F . Therefore, an iterative algorithm, the alternating direction method of multipliers (ADMM), is used which

trades off optimal performance, J , and sparsity, γ. First, initial centralized control gain, F , with γ = 0 is inputted

into ADMM. Then, γ is increased and the ADMM iterative algorithm is used in conjunction with F and the previous

γ to obtain a sparser F . Once the desired sparsity is found, the sparsity structure is fixed and the sparse control

gain is found using the structured optimal control problem in Eq. (28). The method by which sparsity structures

are identified using ADMM is explained in the next discussion.

C. Alternating Direction Method of Multipliers

The optimization problem in Eq. (31) can be rearranged into a constrained optimization problem

min J(F ) + γg(G),

Subject to: F −G = 0,
(36)
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where G decouples the sparsity cost separately from the performance cost. The equality constraint F−G = 0 makes

Eq. (36) equivalent to Eq. (28). The associated augmented Lagrangian to the constrained optimization problem is

Lρ(F,G,Λ) = J(F ) + γg(G)

+ trace(ΛT (F −G)) +
ρ

2
||F −G||2F ,

(37)

where λ is the Langrange multiplier, ρ > 0 is scalar, and || · ||F is the Frobenius norm. By decoupling J and g,

the structures for both J and g can be exploited using the ADMM algorithm optimization. The ADMM algorithm

contains the F -minimization, G-minimization, and Lagrange multiplier steps in which F and G are minimized

iteratively [32]. This is given by

F k+1 = arg min
F
Lρ(F,Gk,Λk), (38a)

Gk+1 = arg min
G
Lρ(F k+1, G,Λk), (38b)

Λk+1 = Λk + ρ(F k+1 −Gk+1), (38c)

and the convergence tolerance

||F k+1 −Gk+1||F ≤ ε and ||Gk+1 −Gk||F ≤ ε. (39)

The F -minimization and G-minimization alternate direction in terms of finding the optimal F and G, respectively,

which gives ADMM its namesake. The Lagrange multiplier update steps with a size ρ which guarantees the

feasibility of finding Gk+1 and Λk+1.

For the sparsity-promoting optimization problem, ADMM provides benefits in the separability and differentiability

of the sparsity cost and the performance cost. When calculating the performance cost using the control gain matrix,

the matrix cannot be separated into individual elements to find optimal solutions. By separating optimization in

the F -minimization and G-minimization steps, the G-minimization step can be decomposed into subproblems

that involve individual elements (scalars) of the control gain matrix. Therefore, an optimal solution can be found

analytically using either g0(F ), g1(F ), or g2(F ). The other benefit to ADMM is differentiability. The performance

cost is differentiable in terms of the control gain, but the sparsity cost is non-differentiable as discussed before. By

separating the optimization problem in two steps, gradient descent algorithms can be used for the F -minimization

step, and analytical solutions can be found for the G-minimization step. This is discussed next.

1) The F -Minimization Step Solution: The minimization of Eq. (38a) can use any descent method. Although

gradient descent or Newton’s methods can be used, the Anderson-Moore descent can converge faster than gradient

descent and is simpler to implement than Newton’s method [33]. From the augmented Lagrangian in Eq. (37), an

equivalent optimization problem can be obtained by completing the square given by

minφ(F ) = J(F ) + (ρ/2)||F − Uk||2F ,

Uk = Gk − (1/ρ)Λk.
(40)

Using methods developed in [30], [34], the necessary conditions for optimality are obtained as

(A−BcF )L+ L(A−BcF )T = −Bc2BTc2, (41a)
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(A−BcF )TP + P (A−BcF ) = −(Q+ FTRF ), (41b)

∇φ(F ) = 2RFL+ ρF − 2BTc PL− ρUk = 0, (41c)

where Eqs. (41a) and (41b) are the controllability and observability grammians, respectively, and Eq. (41c) is the

optimality condition for Lp. Anderson-Moore iteratively solves for Eqs. (41a) and (41b) for L and P with a fixed

F using the solution to the Lyapunov equations, and then solves F in Eq. (41c) with a fixed L and P using the

solution to the Sylvester equation to obtain a new F̄ [28], [33]. This consists of one iteration for the F-minimization

step. To complete the F-minimization step, a descent direction, F̃ = F̄ − F , is obtained to allow for convergence

to a stationary point on φ. The stationary point φ is locally convex and provides a local minimum on φ. Note that

step-size rules (i.e. determining s in F + sF̃ using the Armijo rule) can be used to guarantee convergence to the

stationary point [35].

2) The G-Minimization Step Solution: To find an analytical solution to the G-minimization in Eq. (38b), the

first step is to complete the square of Eq. (37) with respect to G. This is given by

minφ(G) = γg(G) + (ρ/2)||G− V k||2F ,

V k = (1/ρ)Λk + F k+1.
(42)

This equation can be reduced into summation of element-wise components (scalars) by substituting the g(·) functions

from Eqs. (31b), (32), or (33) and solving directly. The weighted L1 , Eq. (33), is a general function for Eq. (32)

when Wij = 1 and Eq. (31b) when Eq. (34), so the objective can be reduced element-wise using a strictly convex

Eq. (33) given by

φ(G) =
∑
i,j

(
γWij |Gij |+ (ρ/2)(Gij − V kij)2

)
. (43)

Thus, the minimization is

minφij(Gij) = γWij |Gij |+ (ρ/2)(Gij − V kij)2, (44)

for each element in G. The unique solution to this problem is

G∗ij =


V kij − a, V kij ∈ (a,∞),

0, V kij ∈ (−a, a),

V kij + a, V kij ∈ (−∞,−a),

(45)

where a = (γ/ρ)Wij is a scalar. This equation is the shrinkage operator [32], and it is the solution when Eq. (32)

or (33) is substituted. The amount by which G∗ij is minimized is the parameter a. If γ or Wij is increased, the

minimization becomes more forceful. This occurs similarly by reducing ρ. If Eq. (31b) is used, the G-minimization

reduces to

minφij(Gij) = γnnz(Gij) + (ρ/2)(Gij − V kij)2, (46)

and has a unique solution given by

G∗ij =

0, |V kij | ≤ b,

V kij , |V kij | > b,

(47)
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where b =
√

2γ/ρ is a scalar. This is the truncation operator [29]. By using any of the g(·) functions, a unique

solution for the optimization in Eq. (38b) can be found.

V. APPLICATION TO RFS CONTROL

The theory for using Sparse LQR for decentralized control is formulated in a continuous time representation

given by Eqs. (26) and (27). Unfortunately, RFS control is formulated in discrete time with a zero-order hold on

control. Therefore, a bridge between the two theories must be found. Previously, sparse feedback gains have been

found in discrete time using non-convex sparsity-promoting penalty functions using sequential convex optimization

[36], but for this work, a less computationally intensive and theoretically extensive method is more useful. Work in

discretizing the sparse LQR formulation has been made by high level discussion of using discrete Lyapunov and

Sylvester equations, although no theory or algorithms have been presented [37]. This method is used to obtain a

discrete version of sparse LQR which is used directly with the centralized gain outputted by RFS control. Thus,

the output of sparse LQR is a decentralized RFS gain which contains an information topology that is localized or

fully decentralized.

VI. RELATIVE MOTION USING CLOHESSY-WILTSHIRE EQUATIONS

To show viability of decentralized swarm control via RFS, a spacecraft relative motion model described by a

linear system is used to model satellite dynamics. The dynamic equations of individual agents are used to describe

the dynamics of the Gaussian mixture components (means) given by the control objective Eqs. (14) and (15). Since

linear dynamics are used, the DDP term can be expressed as ILQR.

For a spacecraft in low Earth orbit, the relative dynamics of each spacecraft (agent), to a chief spacecraft in

circular orbit, is given by the Clohessy-Wiltshire equations [38]

ẍ = 3n2x+ 2nẏ + ax, (48a)

ÿ = −2nẋ+ ay, (48b)

z̈ = −n2z + az, (48c)

where x, y, and z are the relative positions in the orbital local-vertical local-horizontal (LVLH) frame and ax, ay ,

and az are the accelerations in each axis respectively. The variable n is defined as the orbital frequency given by

n =

√
µ

a3
, (49)

where µ is the standard gravitational parameter and a is the radius of the circular orbit. The continuous state-space

representation is given by

Ac =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2 0 0 0 2n 0

0 0 0 −2n 0 0

0 0 −n2 0 0 0


, Bc =



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1


, (50)
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with a state vector x = [x, y, z, ẋ, ẏ, ż] and a control input u = [ax, ay, az]
T . The Ac and Bc matrices are discretized

along a fixed time interval utilizing a zero-order hold assumption for the control (i.e. control is held constant over

the time-interval). This results in discretized A and B matrices for the state-space equation,

xk+1 = Axk +Buk. (51)

VII. RESULTS

Decentralized RFS control is implemented using the relative motion Clohessy-Wiltshire dynamics with different

sparsity (γ) weights. Specifically, RFS control is implemented using the L2
2 plus quadratic distance and ILQR. The

dynamics model for agents within the swarm are decoupled from each other, but the distributional distance-based

cost may have coupling between agents. Therefore, an RFS control gain that is found will be centralized due to

coupling in the objective function. Then, the control gain matrix is decentralized by varying the γ parameter and

using sparse LQR. Three cases with varying γ are implemented to show how changes in information topology

affect performance of the agents in action.

A. Case 1: Centralized Control

For Case 1, 12 swarm Gaussian mixtures are birthed at the initial time (described by the contours) from uniformly

random initial conditions between -1 and 1 m from a chief satellite in a circular orbit. A γ = 0 is applied to the

problem which provides no penalty in the sparsity-promoting objective. Figure 2(a) shows the trajectory snapshots of

the spacecraft (contours) and the desired Gaussian mixtures (black x’s) using the aforementioned L2
2 plus quadratic

divergence and ILQR control. Through time, the swarm intensity converges quickly into the rotating star-shaped

formation (where each contour contains a single agent and its covariance) and maintains the formation for a duration

of 40 min. Figure 2(b) shows the number of non-zeros in the control gain K. The control gain matrix of a single

agent under Clohessy-Wiltshire dynamics is size 3× 6. Therefore, the size for the control gain K of the entire 12

agent swarm is (3 · 12) × (6 · 12). With γ = 0, Figure 2(b) has no elements that are zero. Each sub-block that

contains the 3× 6 sized matrix is non-zero which totals to 2592 non-zero elements in K. Therefore, each agent in

the swarm requires some control information from all the other agents in the field to take an action. Figure 5(a)

shows the information graph between all the agents. Every agent in the field requires a signal to take an action, but

the signals from agents further away from each other may provide a minimal control performance boost in terms

of computational power needed. Thus, the control-gain is sparsified to reduce the complexity of the entire network

to take an action.

B. Case 2: Localized Control

Case 2 illustrates the effect of promoting sparsity with a γ = 10−19 for the same 12 agent problem. With

γ = 10−19, the number of non-zeros is penalized in the sparsity-promoting function in Eq. (31). Figure 3(a) shows

the trajectory snapshots of the swarm using localized RFS control. Through time, the swarm intensity converges

almost as quickly into the rotating star-shaped formation for the 40 min duration. Specifically from Table I, there

is only a reduction of 6 × 10−8% in performance in terms of the centralized performance, the Jc cost, due to
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Fig. 2. Trajectory and number of non-zeros of control gain K for the centralized RFS control case.
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Fig. 3. Trajectory and number of non-zeros of control gain K for the localized RFS control case.

localizing the control. Figure 3(b) shows the number of non-zeros in the control gain K. From the figure, the

number of non-zeros is reduced to 782 which is 30.2% of the number of non-zeros from the centralized gain, Kc,

case in Table I. From Figures 3(b) and 5(b), the agents use the control information from agents local to it. As the

control gain matrix becomes more localized, the number of non-zeros in K become increasingly diagonalized with

a smaller spread. This is the inherent nature in decentralizing control using sparse LQR. The sparsity-promoting

penalty function allows for reduction in the control information needed from individual agents to provide stable

localized control with minimal effects on performance.

C. Case 3: Fully Decentralized Control

Case 3 shows the effect of promoting sparsity with a larger penalty, γ = 0.7, for the 12 agent problem. Figure

4(a) shows the trajectory snapshots of the swarm moving in a fully decentralized manner using RFS control. The

swarm intensity converges into the rotating star-shaped formation for the 40 min duration. Performance-wise, there

is only a 0.4% reduction in performance compared to γ = 0 example in Table I. Figure 4(b) shows the number of

non-zeros in the control gain K. The total number of non-zeros in K is 72 which is 2.8% of γ = 0 in Table I.

In this case, the 3 × 6 sub-matrices occur directly across the diagonal with no spread. No control information is
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Fig. 4. Trajectory and number of non-zeros of control gain K for the decentralized RFS control case.

collected from other agents in the swarm which is observed in Figure 5(c). Increasing the γ weight penalizes the

number of non-zeros in K which allows for more localized, and in this case, a fully decentralized RFS control.
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Fig. 5. Information graph of the 12 agent swarm for γ = 0, 10−19, and 0.7 for Figures 5(a), 5(b), and 5(c), respectively.

TABLE I

SPARSITY VS. PERFORMANCE FOR SWARM SYSTEM

Localized Decentralized

nnz(K)/nnz(Kc) 30.2% 2.8%

(J − Jc)/Jc 6× 10−8% 0.4%

VIII. CONCLUSION

The objective of this work is to formulate the multi-target estimation and control background for large collaborative

swarms using RFS and decentralizing the information topology for control by considering sparse control gain

matrices. To provide a control topology that is localized or decentralized, sparse control gain matrices are obtained
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by sparsifying the RFS control gain matrix using sparse LQR. This allows agents to use local information topology

or fully decentralized topology to drive an agent to a target. Specifically by decentralizing the RFS control gain,

there is only minimal performance reduction when compared to the centralized gain while reducing the control

information necessary for an agent to take an action. Thus, decentralized RFS control becomes more tangible to

scientific exploration, communication relaying, self-assembly, and surveillance by allowing agents to use localized

information to meet a control objective.
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