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Abstract—We study the problem of enforcing safety in multi-
agent systems at runtime by modifying the system behavior
if a potential safety violation is detected. Traditional runtime
enforcement methods that solve a reactive synthesis problem
at design time have two significant drawbacks. Firstly, these
techniques do not scale as one has to take into account all
possible behaviors from every agent, and this is computationally
prohibitive. Second, these approaches require every agent to
know the state of every other agent. We address these limitations
through a new approach where online modifications to behavior
are synthesized onboard every agent. There is an enforcer
onboard every agent, which can modify the behavior of only
the corresponding agent. In this approach, which is naturally
decentralized, the enforcer on every agent has two components:
a pathfinder that corrects the behavior of the agent and an
ordering mechanism that dynamically modifies the priority of
the agent. The current priority of an agent determines if the
enforcer uses the pathfinder to modify the behavior of the agent.
We derive an upper bound on the maximum deviation for any
agent from its original behavior, that is all agents make progress.
We prove that the worst-case synthesis time is quadratic in
the number of agents at runtime as opposed to exponential at
design-time for the existing methods that rely on design-time
computation merely. Additionally, we prove the completeness of
the technique under some mild assumptions; that is, if the agents
can progress safely, then enforcers will find this behavior. We test
the technique in collision avoidance scenarios. For 50 agents in a
50×50 grid modeling the common workspace for the agents, the
online synthesis requires only a few seconds per agent whenever a
potential collision is detected. In contrast, the centralized design
time synthesis of shields for a similar setting is intractable beyond
four agents in a 5×5 grid.

Index Terms—Multi-Agent Systems, Runtime Enforcement,
Synthesis, Safety.

I. INTRODUCTION

Ensuring the safety of multi-agent systems is a crucial
and challenging problem. We study this problem in a setting
in which (i) the agents do not know the state of the other
agents, (ii) the agents can only communicate if they are in a
communication group, which depends on spatial proximity,
and (iii) each agent can share only a limited amount of
information with the other agents.

Runtime enforcement is one approach for ensuring safety
for multi-agent systems [1]. Enforcers typically monitor the
behavior of the system and modify the behavior, if they detect
a potential unsafety. Shielding is an approach to runtime
enforcement [2], [3]. A shield is typically assumed to be
aware of and be able to affect all the agents in the system
instantaneously [4]. Thus, shields require global information
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about the state of the system. However, global information
on the state of all the agents is often difficult to obtain in
multi-agent systems. There has been some work in relaxing
these assumptions using localized shields that have awareness
and authority over only the agents in their local region.
However, no genuinely decentralized approach, in which a
shield onboard each agent can modify only the corresponding
agent’s behavior, exists [5]. In such an approach, there would
be no entity that has global information on the state space of
the entire system.

Without global information of the state, guaranteeing safety
is, in general, undecidable [6]. Thus, we focus solely on
enforcing local safety properties, which is a subset of general
temporal safety properties. A safety property is local if it
can be enforced in the entire multi-agent system by enforcing
it within each communication group. Essentially, shields are
partial functions from the current states of the agents to the
next states. Existing methods find this partial function by
solving a reactive synthesis problem at design time [2], [4],
[5]. However, it is computationally prohibitive in the case of
multi-agent systems since the resulting safety game has to take
into account all possible behaviors from every agent [5].

We formulate the synthesis of modified safe behavior of
an agent as a graph search problem. More specifically, we
assume agents know the intended behaviors of the other
agents in its communication group and hence, an onboard
enforcer can modify an agent’s behavior, taking into account
the behavior of the other agents in the same group. If the
system continues to remain unsafe after the agent has changed
its behavior, then the other agents are forced to change their
behaviors. Thus, the synthesis of safe behavior for all agents
in a communication group can be framed as a sequence of
graph searches. This technique is similar to hierarchical path
planning [7]. In particular, we synthesize safe behavior online
when required, i.e., when the intended trajectories of the
agents violates a safety requirement. However, such an online
approach to synthesizing new behaviors may create scenarios
where some agents may never progress. That is, the behaviors
of some agents may be perpetually modified to ensure safety.

In this paper, we present a novel decentralized framework
for online synthesis for runtime enforcement. The enforcer
onboard each agent issues modifications to the behavior of
its corresponding agent in an order according to their priority
using graph search. The framework uses a novel decentralized
ordering mechanism to dynamically maintain the agent’s pri-
orities to ensure that every agent can make progress according
to their intended behaviors. We assume that the agents have
agreed on this mechanism. Additionally, it is possible to
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compute the order between any two agents (the total order
relation corresponding to the priorities) on the fly using only
the flags that are local to the two agents. Moreover, only the
corresponding agents can modify these flags. The presented
ordering mechanism provably guarantees that every agent can
acquire the highest priority in a finite length of time; hence
live-locks are avoided. The online synthesis approach performs
local behavior modification as needed, this circumvents the
state-space explosion.

The proposed approach is similar to cooperative path
planning in multi-agent systems, which is a PSPACE-hard
problem [8]. Hierarchical cooperative A* (HCA*) is a decen-
tralized approach that uses fixed priorities on agents and makes
a plan for an agent while respecting the plans of the agents
with higher priorities [7]. However, HCA* may require the
agents to change their plan continuously and, therefore, cannot
guarantee finite-time progress [7]. Proposed approaches that
achieve completeness and produce optimal paths [9], [10] are
either non-tractable or rely on global information. The method
in [11] relaxes the reliance on global information; however, it
still falls back to using it as a last resort.

In contrast, the proposed framework does not need global in-
formation, ensures bounded progress, and can be implemented
in a decentralized manner. This level of decentralization,
while ensuring system-level safety, is possible because the
decentralized priority exchange mechanism we present ensures
the absence of live-locks. In the existing techniques, live-
locks have to be detected which requires global information.
Additionally, if the agents in the system can idle, we provide a
condition that guarantees completeness. That is, if there exists
a safe behavior then the enforcer can guarantee safety.

Contributions.: To our best knowledge, this paper presents
the first approach where the enforcement of safety properties
is viewed through the lens of cooperative path planning. The
existing formulation for runtime enforcement through shield-
ing uses reactive systems. However, this is unsuitable and
cumbersome for the online approach. Therefore, we provide
a new formulation where the enforcers are tuples of partial
functions. An extra benefit of such an approach is that the
joint behavior of all the agents can be directly expressed
as a functional composition. Lastly, we prove the resulting
enforcers also satisfy the following properties:

1) Correctness: The modified system behavior satisfies all
the safety properties,

2) Minimal Deviation: The enforcer must modify behavior
only if necessary and

3) Bounded: The deviation from the original behavior must
be finite. We additionally show that the maximum devi-
ation is linear in the number of agents.

4) Completeness: If a centralized stabilizing shield [12] can
guarantees correctness, the enforcers will also guarantee
correctness.

By construction, the enforcers do not require global informa-
tion. Additionally, we prove that the worst-case synthesis time
for each agent is at most quadratic in the number of agents.

II. PRELIMINARIES

B = {>,⊥} is the domain of Booleans. A finite (infinite)
word over a set Σ of elements is a finite (infinite) sequence
w = a1a2 . . . an of elements of Σ. The length of w is |w|. εΣ
denotes the empty word over Σ or ε when the context is clear.
The concatenation of two words w and w′ is denoted w ·w′. A
word w′ is a prefix of a word w, denoted w′ ≤ w, whenever
there exists a word w′′ such that w = w′ · w′′, and w′ < w
if additionally w′ 6= w. w is said to be an extension of w′.
The sets of all words and all non-empty words are denoted by
Σ∗ and Σ+, respectively. Σ≤k denotes all words of length at
most k. A language or a property over Σ is any subset L of
Σ∗.

Let G = (V,E) be a directed graph where V is a finite set
of nodes, and E is a finite set of edges. The distance d(u, v)
between two vertices u and v is defined as the length of a
shortest directed path from u to v. Let U denote a set of node
labels and Σ denote a set of edge labels. T = {1, 2, . . .∞}
is a discrete set of time indices. A graph with node labels
and edge labels is called a labeled graph. An edge labeling
is a function Y : E × T → Σ. A node labeling is a function
X : V ×T→ 2U . A node labeling X is consistent at time t if
X partitions V , i.e., if for any u and v, X (v, t)∩X (u, t) 6= ∅
implies u = v.

An environment is a tuple (G,Y) where G is a labeled
graph and Y is an edge-labeling. Y(e, t) is the label of
edge e at time t. The environment is said to be static if
the associated edge labeling is time-invariant. For a static
environment (G,Y), δ : V × Σ→ 2V is called the transition
function. δ is deterministic, if for any v, v1, v2 ∈ V and s ∈ Σ,
v1, v2 ∈ δ(v, s) implies v1 = v2. The extended transition
function δ̂ : V ×Σ∗ → 2V is defined recursively as δ̂(v, ε) = v
and δ̂(v, w · a) = δ(δ̂(v, w), a). A static environment is deter-
ministic, if the associated transition function δ is deterministic.
A word w = w0w1w2 . . . is said to induce a path in a
graph G starting at vertex v0 if there exists a sequence of
vertices v1v2v3 . . . such that vi ∈ δ(vi−1, wi−1). In a static
deterministic environment, the final state induced by a finite
word w = w0w1 . . . wn starting at v is the node δ̂(v, w).

A trajectory p in a static environment (G,Y) is a pair (v, w)
where w ∈ Σ∗ is a finite word such that w induces a path in
G starting at vertex v. The final state of a trajectory p =
(v, w) is the final state induced by w on v and is given by
δ̂(v, w). The concatenation of a trajectory p and a word w′

is p · w′ = (v, w · w′). For trajectory p, we denote its sub-
trajectory (v, w[i : `]) by p[i : `]. A joint trajectory is a finite
set of trajectories.

For any vertex label u, p = (v, w) is a trajectory for u at
time t if u ∈ X (v, t) and w induces a path from v. Define
the final state of u through p as the final state of (v, w). The
final state of u through trajectory p = (v, w) is (δ̂(v, w)) and
is denoted u w−→

v
→ δ̂(v, w). Let X (v, t) = {u} ∪X , (v, w) be a

trajectory and X (δ̂(v, w), t) = Y . If agent u follows trajectory
(v, w), then at time t+ |w| the vertex label of v is X and the
vertex label of δ̂(v, w) is Y ∪ {u}.

Given an n-tuple of symbols e = (e1, . . . , en), for i ∈
[1, n],

∏
i(e) is the projection of e on its i-th element denoted
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(
∏

i e
def
= ei). Ri(e, x) replaces the ith element of e with x

,i.e., Ri(e, x) = (e1, . . . , ei−1, x, ei+1, . . . , en).

III. ONLINE ENFORCERS

Environment and Agents.: We model the region of operation
of the agents as a deterministic environment (G,Y) with a
consistent node labeling X . The set of all agents is U , and it
is the same as the set of all node labels. At time t, an agent
u is said to be at location v if u ∈ X (v, t). An agent can
move from a vertex v to a vertex v′ in one time unit through
an action s, if there is an edge with label s between v and
v′. If (v, w) is a trajectory, and agent u follows the trajectory
starting at time t, then at time t + i, (i ≤ w) the state of
the agent u is δ̂(v, w[0 : i]). Furthermore, X (v, t) = {u} and
X (δ̂(v, w[0 : i]), t+ i) = ∅. For any trajectory (v, w), we drop
the initial vertex when it is clear. At time t+i, X (v, t) = ∅ and
X (δ̂(v, w[0 : i]), t + i) = {u}. Boolean goalu,t is true when
agent u reaches its final state at time t, which is referred to
as the agent having completed the goal. Formally,

goalu,t =


> if u has reached its final state

following the trajectory (v, w),

⊥ otherwise.

Associated with any agent is a unique priority from [1, |U|],
defined as priority : U × T → [1, |U|], such that
priority(u1, t) = priority(u2, t) implies u1 = u2. At any
time t, the priorities of the agents induce a total order ≺t

among them. For agents u1 and u2 in U , u1 ≺t u2 if and only
if priority(u1, t) < priority(u2, t).

Example 1. In Figure 1b, blue and green agents operate in
a grid world. The vertices of the underlying labeled graph
G are the cells in the grid. There is an edge from a vertex
to another, if they are adjacent in the grid (no diagonal
edges). The set Σ

def
= {l, r, t, d} of edge labels is the set of

actions available to each agent. The set U = {blue, green} of
vertex labels corresponds to the set of agents operating in the
system. X ((2, 4), 0) = {green} and X ((4, 2), 0) = {blue},
that is, blue agent is at (4, 2) and green agent is at (2, 4).
The trajectory of the blue agent is ((4, 2), lll) and that of
the green agent is ((2, 4), ddd). At time t = 1, the labeling
function is X ((2, 3), 1) = {green}, X ((2, 3), 1) = {blue},
X ((2, 4), 1) = ∅, X ((4, 2), 1) = ∅. The blue and the
green agents have reached their goals at t = 3. Therefore,
goalblue,3 = > and goalblue,2 = goalblue,1 = ⊥. The final
state of the blue agent is (2, 1) and the green agent is(2, 1).
That is,

blue
lll−−−→

(4,2)
→ (1, 2) and green

ddd−−−→
(2,4)
→ (2, 1).

Communication.: The agents in the system can communi-
cate when they are close to each other. Moreover, two agents
ui and uj can also communicate if there is a sequence of
agents c1 . . . ck such that c1 is ui, and ck is uj and there
is a path of length less than or equal to d between agents
ci and ci+1. Here d is a positive integer referred to as the

communication constant. At any time t, Ui(t) denotes the
communication group of agent ui. The agents in the same
communication group know the partial trajectories of the other
agents in the group upto length `. Formally, every agent u
knows the partial trajectory (vu′ , wu′)[0 : `] of every other
agent u′ in its communication group, where (vu′ , wu′) is the
trajectory for agent u′. Henceforth, ` is referred to as the look-
ahead.

Example 2. In Figure 1a, the trajectories of 5 agents are
shown. The communication constant d = 2 and ` = 3. At time
0, the Ublue(0) = Ugreen(0) = Ured(0) = {blue, green, red}
and Upurple(0) = Ublack(0) = {purple, black}. All agents in
the first group know that the trajectory of the red agent is
((2, 5), ddd), the blue agent is ((2, 7), tt) and the green agent
is ((4, 7), lll). In the second group, all agents know that the
trajectory of the purple agent is ((6, 3), ll) and the black agent
is ((6, 1), rr).

Safety Functions.: A safety property ϕ is a function ϕ :
2P → B from the vertex labeling to Booleans, where P =
V × 2U . As the vertex labels themselves depend on time, we
extend the notion of safety to safety at time t. If the vertex
labeling at time t is safe, then ϕ(t) = >.

Example 3. Consider a safety function ϕ : T→ B defined as

ϕ(t) =


> if for any v ∈ V |X (v, t)| = 1

and X (u, t) = X (v, t) implies u = v,

⊥ otherwise.

Simply if X is the vertex labeling at some time, X is safe
if there is only one agent at any location at any given time
and any agent can be present at only one location at any time
(consistent label). In the grid world in Figure 1c, the system is
safe at all times. In the grid world in Figure 1b, the system is
unsafe at time t = 2 as the blue and the green agents occupy
the same location.

Next we extend the notion of safety to trajectories. For every
agent u, denote its trajectory by (vu, wu) . The system is safe
on the trajectories, if the system is safe at all times. Formally,
ϕ(U) = > if for all t ∈ [0,m] ,ϕ(t) = >, where m =
max{|wu| : u ∈ U}.

Example 4. Consider safety as described in Example 3. Then,
in Figure 1c, the system is safe on trajectories ltlld and ddd
for the blue and green agents respectively. However, in Figure
1b, the system is not safe as it is unsafe at t = 2. We say that
the blue and green agents violate safety.

Recall the agents in the system have only limited commu-
nication. Therefore, we are interested in a subclass of safety
functions that can be enforced across the system by enforcing
them locally in every communication group. Suppose ϕi is a
safety property such that ϕi(t) = > if and only if the agents
in the communication group Ui are safe. Then, the property
ϕ(t) defined as

ϕ(t)
def
=

∧
i∈1..|U|

ϕi(t)
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(b) Unsafe behavior
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t=0
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(c) Safe behavior

Figure 1: (a) The communication groups at time t = 0. The communication constant d is 2. The agents in the same group have been
encircled. The black and purple agents are in a group. While blue, green and the red agents are in a different group. (b) Grid world example:
There are two agents (blue and green). Their intended trajectories are marked by lines. Their positions at different times are also shown. At
time t = 2 the blue and green agents occupy the same cell, hence ϕ(2) = ⊥. However, the system is still safe at times t = 0 and t = 1.
(c) The modified trajectory for the blue agent as a consequence of the enforcer S(blue, 0) on the blue agent at t = 0 is shown on the right.

is a local safety property. Observe that the safety function
defined in Example 3 is a local safety property.

Enforcers.: Informally, the purpose of an enforcer is to take
a (possibly incorrect) trajectory produced by a running system
and to transform it into a trajectory that is safe with respect to a
local safety function ϕ that we want to enforce. Abstractly, an
enforcer can be seen as a function that transforms trajectories.

Denote by S(u, t) the enforcer acting on agent u at time
t. S(u, t) is a pair of partial functions 〈S1(u, t), S2(u, t)〉.
S1(u, t) accepts a finite trajectory for each agent in the system
and returns a modified trajectory for agent u. S2(u, t) accepts
a vector of current priorities and a vector of Booleans goalu,t
for the agents in the system. It returns a vector of priorities
with only the priority of its corresponding agent u possibly
changed. Formally, the enforcer on agent u at time t is a pair
of partial functions 〈S1(u, t), S2(u, t)〉 such that

S1(u, t) : L|U|1 → L|U|1 and

S2(u, t) : [1, |U|]|U| × B|U| → [1, |U|]|U| × B|U|,

where L1 = [1, |U|] × V × Σ∗. The above definition of a
enforcer is quite general as both the input trajectory and
the modified trajectory can be of arbitrary length. Next, we
introduce (`, `′)-enforcers. For every agent in the system, these
enforcers accept trajectories of length at most ` and return a
new trajectory of length at most `′ ≥ `. Formally, an (`, `′)-
enforcer on agent u at time t is a pair of partial functions
〈S1(u, t), S2(u, t)〉 such that

S1(u, t) : L|U|I → L|U|O and

S2(u, t) : [1, |U|]|U| × B|U| → [1, |U|]|U| × B|U|,

where LI = [1, |U|]×V ×Σ≤` and LO = [1, |U|]×V ×Σ≤`
′
.

Example 5. In Figure 1b, the blue and green agents occupy
the same location at time t = 2. However, in Figure 1c,
the blue agent’s trajectory has been modified by the enforcer
onboard. As a result they never occupy the same position at the
same time. Priority of the blue agent is 1 and the priority of the
green agent is 2. S1(blue, 0)

(
(blue, 1, lll)(green, 2, ddd)

)
=

(blue, 1, ltlld)(green, 2, ddd).

Composition of enforcers.: When multiple agents act in the
same system, their trajectories and their priorities are modified
only by their respective enforcers. However, the individual
enforcers act together to make the system safe. The joint
behavior of enforcers are captured by functional composition.
We first define composition of enforcers for two agents u1 and
u2 at time t. If u1 ≺t u2 then

S(u1, t) ◦ S(u2, t) = S(u2, t) ◦ S(u1, t)

= 〈S1(u2, t) ◦ S1(u1, t), S2(u2, t) ◦ S2(u1, t)〉.

This composition can be extended to an arbitrary number of
enforcers by composing their constituent functions in the order
≺t.

1 2 3 4 5 6

1

2

3

4

5

6

t=0

t=2

t=2 t=0

t=0 t=2

(a) Before modification

1 2 3 4 5 6

1

2

3

4

5

6

t=0

t=0

t=0

(b) After modification

Figure 2: Original trajectories of the agents and their modified tra-
jectories. The system is safe after the modification of the trajectories
by the enforcers. (a) Blue, green and red agents violate safety at time
2 in (3,2). (b) The trajectories of blue and green agents have been
modified by the respective enforcers. However, red agent does not
deviate.

Example 6. In Figure 2a, at t = 0, blue agent has priority
1, green agent has priority 2 and red agent priority 3. All the
three agents occupy the same location (3,2) at time 2. The
enforcer on the blue agent modifies its trajectory first and this
modification is relayed to the green and the red agents. The
enforcer on the green agent then modifies its trajectory. There
is no change in the trajectory of the red agent as now there
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is no safety violation. The modified trajectories are shown in
Figure 2b.

Properties of enforcers.: We define the desired properties
for a set of enforcers. For any agent u in U , let S(u, t) be the
enforcer acting on agent u at time t, pu its original trajectory
at time t and p′u its modified trajectory at time t. The enforcers
{S(u, t) | u ∈ U} are correct if the modified trajectories
{p′u | u ∈ U} are safe and the final states are unchanged.
An enforcer S(u, t) is said to cause minimum deviation if
p′u = pu when ϕu(t) = >. The enforcers {S(u, t) | u ∈ U}
are bounded, if there exists ` and `′ in N such that all the
enforcers are (`, `′)-enforcers. We later prove that boundedness
and correctness ensure that all agents progress in finite time,
while still guaranteeing the safety of the system. We now state
the problem studied in this paper.

Problem 1. Given a set U = {u1, . . . , un} of agents and a
set {(vu, wu) | u ∈ U and |wu| ≤ `} of their trajectories,
construct a set {S(u, t) | u ∈ U and t ∈ T} of enforcers such
that these enforcers are correct, cause minimum deviation and
bounded.

IV. ONLINE SYNTHESIS

Informally, the enforcer S(u, t) onboard agent u can directly
affect only the trajectory of agent u. Every enforcer has access
to a pathfinder that modifies the corresponding trajectory. If a
potential safety violation is detected, the enforcer on the agent
with the lowest priority calls the pathfinder first. The order ≺t

determines the next agent potentially required to modify its
trajectory. The pathfinder resolves conflicts, if any, within the
group. If a new agent comes into the group, the pathfinder
is called by the enforcer on the lowest priority agent. The
trajectory of an agent is not modified if it is not involved in a
safety violation. A ordering mechanism maintains the order ≺t

among the agents. When an agent reaches its final state, then
its intended trajectory is updated and the ordering mechanism
also updates the priorities.

Pathfinder.: Informally, the pathfinder returns a new path
whenever called. It constructs a graph and searches for a
path in the graph from a vertex corresponding to the current
location to a vertex in a target set corresponding to the agent’s
final state. This graph does not have any outgoing edges from
vertices that correspond to unsafe configurations. After a single
call to the pathfinder, the maximum length of the modified
trajectory is at most ` + k. where ` ≤ k < d is some
constant. But such a path may not always exist. In this case,
the pathfinder returns a path that at the minimum keeps the
system safe.

Assumption 1. The graph G is 2-edge connected and there
is self loop on every vertex in G.

For any agent u ∈ U , its trajectory pu is pu = (vu, wu). The
final state of agent u is vfu and priority(u, t) is its priority at
time t.

Example 7. Figure 3 depicts the graph G0
blue constructed by

the pathfinder on the blue agent for the example in Figure
2a. The initial position is vinit = ((4, 2), 0) and the target

set F = {((1, 2), 4), ((1, 2), 5)), ((1, 2), 6))} is marked red.
The nodes occupied by some other higher priority agent at
the time are marked by black circles. These black nodes do
not have any out-edges. The pathfinder returns a path from
vinit to some vertex in F . The positions of the green agent
are unmarked as it has a lower priority.

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0,0

...

4,2
...

5,5

0,0

2,3

5,5

...

0,0

2,2

5,5

i,j

i-1,j
i,j-1
i,j+1

i+1,j

0,0

3,2

2,1

5,5

1,2

0,0

3,1

5,5

...

1,2

0,0

3,1

5,5

...

1,2

0,0

3,1

5,5

...

Figure 3: The graph constructed by the pathfinder for the blue
agent in Example 5. The set of vertices is {0, . . . 5} × {0, . . . 5} ×
{0, . . . , 6}. There is an edge between ((i, j), t1) and ((i′, j′), t2) if
and only if |i′ − i| + |j′ − j| = 1 and t2 = t1 + 1 and there is
no out-edge from a black vertex (a black vertex corresponds to it
being occupied by some agent at the corresponding time). vinit is
blue and the vertices in F are red. The positions of the green agent
are unmarked as it has a lower priority than the blue agent.

Example 8. For the safety function defined in Example 3, the
pathfinder constructs the graph Gt

u = (V ′, E′) where V ′ =
V ×[t, t+d(vu, v

f
u)+k]. There is an edge with label e between

(v, t) and (v′, t′+1), if in G there is an edge (v, v′) with label
e and X (v, t′) = ∅, i.e., there are no higher priority agents
occupying the same state. The target set F is {(vfu, t′)|t +
d(vu, v

f
u) ≤ t′ ≤ t + d(vu, v

f
u) + k} and the initial state is

vinit = (vu, t).

Occupancy Graph.: The occupancy graph Ot
u is similar to

the pathfinder graph, however none of the edges are removed
from the occupied states. The occupied states are labeled
with the corresponding agents. Formally, the occupancy graph
Ot

u = (V ′, E′) where V ′ = V × [t, t + d(vu, v
f
u) + k] \

{(v, t′)| v is occupied by highest priority agent at t′}. There
is an edge with label e between (v, t) and (v′, t′ + 1), if in
G there is an edge (v, v′) with label e. If u′ ∈ X (v, t) and
priority(u) ≥ priority(u′), then u′ ∈ X ((v, t)).

General Pathfinder Graph.: Next, we present the pathfinder
construction for any local safety property ϕ for agent u. For
this, we need the safety function ϕ̄u(t) defined as:

ϕ̄u(t)
def
=

∧
priority(u)≤priority(i)

ϕi(t).

The safety function ϕ̄u(t) ensures that all the agents with
priorities higher than u are safe. Gt

u = (V ′, E′) is the graph
whose nodes V ′ are V ′ = P × [t, t + d(vu, v

f
u) + k]. Recall

P = V × 2U . There is an edge between (v, t1) to (v′, t2) if
i) ϕu(v) = >, ii) (v, v′) is an edge in G, iii) t2 = t1 + 1,
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iv) ϕ̄u(t) = >, and v) all the other higher priority agents are
following their trajectories, i.e.,

ui ∈ X

(
δ̂(uti,

∏
i

W [0 : t1]), t1

)

and ui ∈ X

(
(δ̂(uti,

∏
i

W [0 : t2]), t2

)
.

The initial vertex vinit is (a, t) where a = vu × X (vu, t)
and the set of target vertices F is F = {(v, j)|v ∈ P ′ and t+
d(vu, v

f
u) ≤ j ≤ t+d(vu, v

f
u)+k}, where P ′ ⊆ P is a subset

of all vertex labeling such that agent u has reached its final
state. Next, we describe the working of the pathfinder. The
pathfinder constructs the graph Gt

u, initializes vinit, a set F
of target vertices. The pathfinder then returns a path from vinit
to some state in F if it exists, else it returns a random path
of length 1 that only ensures safety. If no such path exists,
the agent finds a shortest path in the occupancy graph to a
vertex that ensures safety. This path may have other agents.
All the other agents are forced to move 1 step along this path.
If p = v1v2 . . . vivi+1 is the path from the occupancy graph,
and agent m is at vi, then the trajectory of m is replaced
by (vi, vi+1). In short, if some lower priority agent cannot
plan around the higher agent, then it might disturb all the
agents other than the highest priority agent to ensure safety.
However, the highest priority agent’s path cannot be changed.
In the worst case, the pathfinder ensures that the agent with
the highest priority can progress without any modifications. In
essence lower priority agents progress, if they can plan around
the highest priority agent.

Result: Safe path for u
Initialize Gt

u and Ot
u;

Initialize vinit and F ;
P = path in Gt

u from vinit to F ;
if P exists then

return p;
end
else

P = shortest path to an unoccupied vertex in Ot
u;

forall vertex vi ∈ P do
if X (vi, t) = a then

wa = (vi, vi+1);
end

end
end

Algorithm 1: Pathfinder on agent u

Ordering Mechanism.: The priorities of the agents cannot
remain static with time. Otherwise, some agent might be
forced to change its trajectory infinitely often. In the sequel,
we present the ordering mechanism.

Overview of Ordering Mechanism for Two Agents.:
Consider a system with two agents a and b that have com-
municated, i.e., observed each other’s trajectories. Agent a
maintains a flag cba and agent b maintains a flag cab . If agent a
has reached its final state after communicating with agent b,
then the flag cba is set to 1. Suppose agent b is yet to reach its

final state and there is a safety violation after a has completed
its goal, then in order to ensure freedom from locks, agent a is
forced to modify its trajectory. When agent b reaches its final
state, both agents have uniformly completed their goals and
the flags are reset to 0. The above procedure is equivalent to
the standard binary semaphores algorithm to achieve process
synchronization [13].

Example 9. In Figure 4, the agents are following the modified
trajectories in Figure 1c. The priority of the agent changes
once the agent reaches its final state. More precisely, the agent
gets the lowest priority once it reaches its final state.

1 2 3 4 5

1

2

3

4

5
t=0

t=1

t=3

t=0
t=3

t=5

(a) blue ≺o green

1 2 3 4 5

1

2

3

4

5

t=3

t=3

t=5

(b) green ≺3 blue

Figure 4: The blue and green agents are following their modified
trajectories from Example 3. Initially, the blue agent has a lower
priority; hence, it is forced to modify its path. When the green agent
reaches its final state at t = 3, the green agent is assigned a lower
priority. The blue agent’s priority is higher than the green agent’s.
Again at t = 5, the priorities change since the blue agent has reached
its final state.

Extension to Arbitrary Number of Agents.: We extend
the procedure outlined above to multiple agents. Each pair of
agents ui and uj maintain two Booleans between them (each
of them is analogous to a binary semaphore) that are used to
measure relative progress. Formally, Cu = (c1u, c

2
u, . . . , c

|U|
u )

is a vector of Boolean flags for maintaining progress of u
with respect to the other agents and Bu is a set maintained
by u for tracking the agents it has communicated with during
the current final state. Initially, Bu = ∅ and Cu = 0. The
flag cvu on agent u records the progress of u with respect
to v. If cvu is 1, agent u has recorded that it has finished a
goal (goalu,t = >) after communicating with v (v ∈ Bu).
Whenever the corresponding progress measures cvu and cuv are
equal and the agents are in the same communication group, the
Boolean flags are reset to 0. The exact algorithm is presented
in Figure 5b.

Let cvu(t) denote the value of the flag cvu at time t. We use
a ≺t b to denote that cba(t) = 1, cab (t) = 0 and a =t b to
denote cba(t) = cab (t). Observe that for any pair of agents a
and b either a =t b or a ≺t b or b ≺t a.

Proposition 1. If a ≺t b and b ≺t c, then no agent d exists
such that c ≺t d and d ≺t a.

proof by contradiction. For any agent u, let comp(u) denote
the earliest time t′ such that goalu,t′ = >. If a ≺t b, then
cba = 1 and cab = 0, i.e., agent a has reached its final state,
but agent b has not. Similarly, b ≺t c implies that agent b has
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reached its final state, but agent c has not. Therefore,

comp(a) < comp(b) < comp(c). (1)

Now, suppose there exists an agent d such that c ≺t d and
d ≺t a, then by the same argument, the order of last completed
goals among a, c and d is

comp(c) < comp(d) < comp(a). (2)

(1) contradicts (2). Therefore, there cannot exist agent d such
that c ≺t d and d ≺t a.

Corollary 1. ≺t is a partial-order.

Proposition 2. There exists a total order ≺t that respects ≺t.

Proof. Define ≺t as

a ≺t b if i) a ≺t b or ii) a =t b and a ≺0 b,

b ≺t a otherwise,

where a and b are some agents. ≺t as defined is a total order.

Henceforth, we use ≺0 to generate ≺t that respects ≺t.
Decentralized Enforcement.: So far, we have described the

components of the enforcers onboard an agent. In traditional
shield synthesis, S1 is a function that is fully constructed and
used as the shield [2]. In contrast, here S1 is a partial function
which is when required. Figure 5a presents the algorithm to
determine the calls to the pathfinder and Figure 5b presents
the ordering mechanism to update the priorities by modifying
the corresponding flags.

For some agent ui, if w′ui
is the path returned

by the pathfinder, then S1(u, t)(O, V,W ) =
(O, V,Ri(W, (vui , w

′
ui

))). That is, the path for the agent ui
has been replaced with w′ui

, with the paths of the other agents
unaffected and their priorities unchanged. If the pathfinder
is never called, then the path does not get modified, i.e.,
S1(ui, t)(O, V,W ) = (O, V,W ).

The following lemma is a direct consequence of the con-
struction of the pathfinder graph Gt

u and a path between vinit
and F .

Lemma 1. For all t′ ∈ [t, t+ `] and u ∈ U , if agent u moves
along the trajectory returned by S1(u, t′), then ϕ(t′) = >.

Next, we prove that the agent with the highest priority is able
to progress without any deviation.

Lemma 2. If agent u has the highest priority according to
≺t then it will reach its final state without any modifications.
Moreover, if a `–stabilizing centralized shield can ensure
safety, then the enforcers also can ensure safety.

Proof. If u has the highest priority by ≺t, then for all v ∈ U ,
it is either the case that cvu = 0 and cuv = 1 (or) cvu = cuv
and v <0 u. In either case, v finds a new path if a safety
violation is detected. Since a centralized shield can ensure
safety, it implies that there is at least one safe position for
v in the occupancy graph Ot

v . Assumption 1 states that G is
1-edge connected therefore, there is a safe vertex such that
the path length is at most `. By the pathfinder algorithm, the

trajectory of v is modified. Similarly, all other agents modify
their trajectories in the case of a safety violation.

Corollary 2. In the worst case, the distance between u and
its final state maybe |U|(`).

We now prove that the other agents are also guaranteed to
make progress. The following theorem bounds the maximum
deviation from the original trajectory.

Lemma 3 (Main). Enforcer on agent u may cause a deviation
from the intended trajectory for at most |U|2(`) steps before
the final state is reached.

Proof. In the worst case, any agent u may be forced to use
the occupancy graph during every call to the pathfinder, before
agent u has the highest priority according to ≺t. In worst
case, agent u might be the lowest priority vertex to start with.
Hence, agent u may require |U| − 1(|U|`) steps to get the
highest priority. At this stage by Corollary 2, agent u requires
|U|(`) steps to reach its goal.

The next theorem establishes that the enforcers we synthe-
size satisfy the properties stated in Problem 1.

Theorem 1 (Main). The set {S(u, t)|u ∈ U} of enforcers are
i) correct, ii) deviate minimally, iii) bounded, and iv) complete.

Proof. As a consequence of Lemma 3, the maximum number
of steps that any agent needs to reach its final state is
bounded by (|U|2`). Therefore, the synthesized enforcers are
all (`, |U|2`)–enforcers and bounded. If no safety violation
is detected then the pathfinder is never called. Hence, the
enforcers also deviate minimally. Moreover, Lemma 1 estab-
lishes that the enforcers are correct. Further by Lemma 2 the
enforcer can ensure safety, if a `–stabilizing centralized sheild
can ensure safety. That is, it is complete.

The main complexity result of the paper, where we bound the
worst-case synthesis time, is formalized in the theorem below.

Theorem 2. Given fixed look-ahead ` and maximum deviation
length k, the enforcer on an agent takes O(|U|2) time to
modify the corresponding agent’s trajectory.

Proof. The pathfinder constructs a graph for agent u of size at
most (k+`)|U|. If k and ` are fixed, then the size of the graph
constructed by the pathfinder is LINEAR(|U|). Moreover, the
number of edges in this graph is also at most (k + `)|U|.
The time complexity of solving a search in this graph is
O((k + `)|U|). In the worst case, all agents are in the same
communication group and the lowest priority agent may have
to modify its trajectory at most |U| times.

V. EXTENSION TO TRAJECTORIES OF ARBITRARY LENGTH

In problem 1, we assume that the length of any trajectory
is bound by some constant `. In this section, we define the
problem for trajectories of arbitrary length and propose a
solution. We show how to use the ordering mechanism to
ensure that the enforcers can ensure safe behavior even when
the trajectories are of arbitrary length.
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∀v ∈ Bu : φ(u,v, t)?

v ≺t u?

Path

Call Pathfinder

⊥
>, wu

>

⊥, wu

w′u

Joint Trajectory
w′uW

(a)

goalu,t? ∀v ∈ Bu:cvu = 1

Bu = ∅

∀v ∈ Uu: Bu = Bu ∪ {v}

cuv = cvu = 1 ∧ v ∈ range(u)?

cuv = cvu = 0

>
⊥

>

(b)

Figure 5: (a) Algorithm for the enforcer S(u, t) to decide if the pathfinder should be called at time t. (b) Algorithm to maintain the priorities.

Problem 2. Given a set U = {u1, . . . , un} of agents and a
set {(vu, wu) | u ∈ U} of their trajectories, construct a set
{S(u, t) | u ∈ U and t ∈ T} of enforcers such that these
enforcers are correct, cause minimum deviation and bounded.

Luckily, we do not have to change the entire synthesis
procedure to solve this problem. We artificially restrict the
input to the enforcers. wu(0) be the trajectory (possibly
infinite) for agent u. vu be the start state of the agent.
We divide wu into blocks of length `, wu(0) = wu[0 :
` − 1] · wu[` : 2` − 1] . . . . The enforcer S(u, 0) uses wu(0)
as its trajectory, once it reaches the final state δ̂(vu, wu(0)), it

uses
(

(δ̂(vu, wu(0)), wu[` : 2`−1]

)
as the new trajectory for

the enforcer synthesis. Algorithm 2 describes this procedure.
In the algorithm, whenever the agent reaches its final state,

its trajectory is updated with the next ` moves and its flags
are also suitably reset. The correctness of this procedure is a
direct consequence of the main theorem.

VI. EXPERIMENTAL EVALUATION

We evaluate the performance of the runtime decentralized
enforcer synthesis framework in the context of collision-
avoidance for multi-agent systems. Specifically, we use the
collision-avoidance safety function defined in Example 3 and
the pathfinder construction described in Example 7. The im-
plementation of the system for ensuring safety from collisions
uses the general pseudocode presented in Algorithm 2.

Comparison with Centralized Shields.: We compare the
modified trajectories of two agents equipped with decentral-
ized enforcers that are synthesized at runtime with two other
agents whose behaviors are modified by a centralized shield
synthesized at design-time using the algorithm from [4] in a
5x5 grid world. The intended trajectories of the agents in both
scenarios are the same.

Decentralized enforcers can incorporate look-ahead ` ≥ 1.
In the case with ` = 1, the decentralized enforcers behave
precisely the same as the centralized enforcer as they can only
detect collisions in the next step. In the case with look-ahead
` = 3, i.e., with further look-ahead, we recover the solution
presented in Figure 4. In the case with ` = 2, the enforcers
induce a different behavior. At t = 0, only the collision is

Result: Trajectory of length at most length `+ k
i = 0;
Initialize wu and vu;
vfu = δ̂(vu, wu(0)[0 : `]);
wu(0) = wu[0 : `];
while True do

Update Communication Groups ;
Increment Time ;
if goalu,t = > then

i+ +;
v′ = vfu;
wu(t) = wu[i` : (i+ 1)`];
vfu = δ̂(vu, wu[i` : (i+ 1)`− 1]);
vu = v′;

end
forall v in Uu do

if (u, v violate safety) ∧(v =t u) then
if v ≺0 u then

Call the pathfinder on u and find a new
path ;

end
end
else if (u, v violate safety) ∧(v ≺t u) then

Call the pathfinder on u and find a new path ;
Bu = ∅ ;

end
end
t++ ;

end
Algorithm 2: Enforcer on agent u

detected, but the final state for the blue agent is (2,2) instead
of (1,2) as in the previous case. The intended trajectory is
updated when the agents have reached their current goals (in
this case, this update happens at (2,2) for both the agents).
The effect of the enforcer is shown in Figure 6.

As shown in these examples, the look-ahead parameter `
impacts the modified behavior. The agent has an increased
ability to prevent future collisions with a larger value of `.
This enhanced ability to prevent collisions comes at the cost
of the synthesis time as the size of the graph constructed by
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(a) t = 0
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(b) t = 2
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t=4

t=4

(c) t = 4

Figure 6: The trajectories of the blue and green agents have been modified by the respective enforcers acting on them to ensure no collisions.
The first goal for the two agents is (2,2), as their look-ahead `′ = 2. Once they reach (2,2), their intended trajectories are updated, which is
shown in (b) and (c).

the pathfinder increases. But, it does not affect the maximum
length of the deviation.

Scalability.: We built a multi-agent system where the agents
are equipped with the decentralized enforcer framework for
collision-avoidance in Python. The distributed nature of the
system is modeled using shared memory. The size of the grid
world, the look-ahead length `, the communication constant
d, and the length k of the maximum deviation by one use of
the pathfinder are user inputs. The original trajectories for the
agents are random. We record the effect of ` and k on the
synthesis time for modified behavior. The results are obtained
on an Intel Core-i7 CPU @ 2.2 GHz with 16GB of RAM. We
set d = ` in all the experiments. We show the results of these
experiments in Table I.

To synthesize the centralized shield, a safety game is solved.
We show the size of the game graph (in the order of magni-
tude) for the different scenarios. The large size explains why
the design-time synthesis of centralized shields is infeasible
in multi-agent settings. For comparison, we also show the
exact size of the graph constructed by the pathfinder for
each scenario. Finally, we record the best and the worst-case
synthesis times in the decentralized setting. Observe that the
synthesis times are the same if `, k, and |U| are the same. Table
I shows that the synthesis time does not depend on the number
of states in the environment. This observation is consistent
with the earlier analysis. The worst case is when all the agents
interfere with one another and they have global information.
In this scenario, only the agent with the highest priority can
progress without modifications. Every other agent has to wait
for the agents with a lower priority to fix their trajectories.
Nevertheless, Table I shows that that the synthesis time is in
the order of a few seconds.

ROS/Gazebo Simulation.: In this section, we demonstrate
the implementation of the enforcers in a high-fidelity simula-
tion environment shown in Figure 7. We do not use any in-built
obstacle avoidance library for low level collision avoidance.
We tested two different scenarios in this environment. In
the first scenario, we used a new safety function to prevent
collision with obstacles (buildings) and ensure that the Man-
hattan distance between any two agents is at least 2 units. We
randomly generated trajectories for the agents. A simulation
with eight agents is presented in the video 1.

1 Video can be found at https://tinyurl.com/yhdddpm6

In the second setting shown in 7 (top) nine agents are
occupying locations corresponding to a 3x3 square. The agent
in the center has to escape the confinement. Further, no
trajectories for the other agents are given. In this scenario, the
central agent chooses its trajectory when it gets the highest
priority. The agents along the path of this agent have to make
way. During this process, sometimes a set of agents may
actually have to make way for one another. This scenario is
presented in the video 2.

Figure 7: Custom Gazebo environment used for the experiments.

VII. CONCLUSION

We present an online synthesis approach for runtime en-
forcers that guarantee local safety in multi-agent systems.
Moreover, this approach is decentralized, since new behav-
ior is synthesized onboard each agent when necessary. The
algorithm we present does not require global information on
the states of the other agents in the system. It only requires
the information about the agents in the same communication
group. With minor assumptions, we prove the correctness of
this approach in enforcing safety and also prove that all the
agents progress per their original plan by proving a bound
on the maximum deviation. Additionally, we also provide a
condition which guarantees completeness. More specifically,

2Video can be found at https://tinyurl.com/ygwaplcp
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|U| States ` k
Centralized
game graph

Decentralized
pathfinder graph |LI | |LO|

Decentralized
synthesis time

|V | |E| |V | |E| (best) (worst)

3 32 3 3 108 1012 18 18 102 103 0.089 0.267
3 32 5 5 1011 1018 30 30 103 107 0.092 0.276
3 32 10 5 1020 1030 45 45 107 1010 0.093 0.279
3 52 5 5 1013 1019 30 30 105 107 0.092 0.276
3 102 5 5 1015 1021 30 30 106 107 0.092 0.276
3 502 5 5 1019 1025 30 30 107 107 0.092 0.276
5 32 5 5 1019 1025 50 50 103 107 0.2 1
5 52 5 5 1022 1028 50 50 105 107 0.2 1
5 102 5 5 1025 1031 50 50 106 107 0.2 1
20 502 3 3 10104 10107 120 120 106 106 0.41 8.2
20 502 5 5 10128 10134 200 200 107 107 0.42 8.4
20 502 10 5 10188 10197 300 300 1010 1010 1.29 25.8
30 502 10 5 10282 10291 450 450 1010 1010 1.62 48.6
40 502 10 5 − − 600 600 1010 1010 1.64 65.6
50 502 10 5 − − 750 750 1010 1010 1.67 83.5
60 502 10 5 − − 900 900 1010 1010 1.7 102

Table I: Comparison of state space sizes between centralized and decentralized online enforcement approaches with reported synthesis times
for the decentralized approach. As the enforcers are only synthesized as needed for the relevant agents, we report both the worst and best-case
total synthesis times(sec) for all relevant enforcers for every detected collision. In case of the number of vertices and edges in the centralized
approach the order of magnitude are shown. LI and LO are the input alphabet and the output alphabet respectively.

we show that if a `-stabilizing centralized shield can guaran-
tee correctness, then (`, |U|2`)–enforcers can also guarantee
correctness. We further prove that this synthesis scales with
the number of agents. In the future, we plan to consider the
enforcement of general safety properties that do not require
the local restriction. Additionally, we will attempt to solve the
problem in more realistic communication architectures.
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