
1

Totally Asynchronous Large-Scale Quadratic Programming:

Regularization, Convergence Rates, and Parameter Selection

Matthew Ubl? and Matthew T. Hale?

Abstract

Quadratic programs arise in robotics, communications, smart grids, and many other applications. As these

problems grow in size, finding solutions becomes more computationally demanding, and new algorithms are needed

to efficiently solve them at massive scales. Targeting large-scale problems, we develop a multi-agent quadratic

programming framework in which each agent updates only a small number of the total decision variables in a

problem. Agents communicate their updated values to each other, though we do not impose any restrictions on the

timing with which they do so, nor on the delays in these transmissions. Furthermore, we allow weak parametric

coupling among agents, in the sense that they are free to independently choose their stepsizes, subject to mild

restrictions. We further provide the means for agents to independently regularize the problems they solve, thereby

improving convergence properties while preserving agents’ independence in selecting parameters and ensuring a

global bound on regularization error is satisfied. Larger regularizations accelerate convergence but increase error in

the solution obtained, and we quantify the tradeoff between convergence rates and quality of solutions. Simulation

results are presented to illustrate these developments.

I. INTRODUCTION

Convex optimization problems arise in a diverse array of engineering applications, including signal processing [1],

robotics [2], [3], communications [4], machine learning [5], and many others [6]. In all of these areas, problems can

become very large as the number of network members (robots, processors, etc.) becomes large. Accordingly, there

has arisen interest in solving large-scale optimization problems. A common feature of large-scale solvers is that

they are parallelized or distributed among a collection of agents in some way. As the number of agents grows, it

can be difficult or impossible to ensure synchrony among distributed computations and communications, and there

has therefore arisen interest in distributed asynchronous optimization algorithms.

One line of research considers asynchronous optimization algorithms in which agents’ communication topologies

vary in time. A representative sample of this work includes [7]–[12], and these algorithms all rely on an underlying

averaging-based update law, i.e., different agents update the same decision variables and then repeatedly average

their iterates to mitigate disagreements that stem from asynchrony. These approaches (and others in the literature)

?Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, 32611, USA. Emails:

{m.ubl,matthewhale}@ufl.edu. This research was supported by the office of Naval Research under grant N00014-19-1-2543,

the Air Force Office of Scientific Research under the Center of Excellence for Assured Autonomy in Contested Environments, and by a task

order from the Munitions Directorate of the Air Force Research Laboratory at Eglin AFB.

June 17, 2020 DRAFT

ar
X

iv
:2

00
6.

09
14

4v
1

 [
m

at
h.

O
C

]
 1

5
Ju

n
20

20

2

require some form of graph connectivity over intervals of a finite length. In this paper, we are interested in cases in

which delay bounds are outside agents’ control, e.g., due to environmental hazards and adversarial jamming for a

team of mobile autonomous agents. In these settings, verifying graph connectivity can be difficult for single agents

to do, and it may not be possible to even check that connectivity assumptions are satisfied over prescribed intervals.

Furthermore, even if such checking is possible, it will be difficult to reliably attain connectivity over the required

intervals with unreliable and impaired communications. For multi-agent systems with impaired communications,

we are interested in developing an algorithmic framework that succeeds without requiring delay bounds.

In this paper, we develop a totally asynchronous quadratic programming (QP) framework for multi-agent opti-

mization. Our interest in quadratic programming is motivated by problems in robotics [3] and data science [13],

where some standard problems can be formalized as QPs. The “totally asynchronous” label originates in [14], and

it describes a class of algorithms which tolerate arbitrarily long delays, which our framework will do. In addition,

our developments will use block-based update laws in which each agent updates only a small subset of the decision

variables in a problem, which reduces each agent’s computational burden and, as we will show, reduces its onboard

storage requirements as well.

Other work on distributed quadratic programming includes [15]–[20]. Our work differs from these existing results

because we consider non-separable objective functions, and because we consider unstructured update laws (i.e., we

do not require communications and computations to occur in a particular sequence or pattern). Furthermore, we

consider only deterministic problems, and our framework converges exactly to a problem’s solution, while some

existing works consider stochastic problems and converge approximately or in an appropriate statistical sense. This

work is also somewhat related to distributed solutions to systems of linear equations, e.g. [21], because the gradient

of a quadratic function is a linear function. However, methods for such problems are not readily applicable in this

paper due to set constraints.

Asynchrony in agents’ communications and computations implies that they will send and receive different

information at different times. As a result, they will disagree about the values of decision variables in a problem.

Just as it is difficult for agents to agree on this information, it can also be difficult to agree on a stepsize value in

their algorithms. One could envision a network of agents solving an agreement problem, e.g., [22], to compute a

common stepsize, though we instead allow agents to independently choose stepsizes, subject to mild restrictions,

thereby eliminating the need to reach agreement before optimizing.

It has been shown that regularizing problems can endow them with an inherent robustness to asynchrony and

improved convergence properties, e.g., [23]–[25]. Although regularizing is not required here, we show, in a precise

sense, that regularizing improves convergence rates of our framework as well. It is common for regularization-

based approaches to require agents to use the same regularization parameter, though this is undesirable for the same

reasons as using a common stepsize. Therefore, we allow agents to independently choose regularization parameters

as well.

To the best of our knowledge, few works have considered both independent stepsizes and regularizations. The most

relevant is [23], which considers primal-dual algorithms for problems with functional constraints and synchronous

June 17, 2020 DRAFT

3

primal updates. This paper is different in that we consider set-constrained problems with totally asynchronous

updates, in addition to unconstrained problems. Regularizing introduces errors in a solution, and we bound these

errors in terms of agents’ regularization parameters.

A preliminary version of this work appeared in [26], however this version further includes distributed regular-

ization selection rules for convergence rate and error bound satisfaction, along with new error bounds and and

simulation results.

The rest of the paper is organized as follows. Section II provides background on QPs and formal problem

statements. Then, Section III proposes an update law to solve the problems of interest, and Section IV proves its

convergence. Next, Section V derives a convergence rate, and Section VI then quantifies the effect of regularizations

on the convergence rate. Section VII provides an absolute error bound in terms of agents’ regularizations for a

set-constrained problem, while Section VIII provides a relative error bound for the unconstrained case. Section IX

next illustrates these results in simulation. Finally, Section X concludes the paper.

II. BACKGROUND AND PROBLEM STATEMENT

In this section, we describe the quadratic optimization problems to be solved, as well as the assumptions imposed

upon these problems and the agents that solve them. We then describe agents’ stepsizes and regularizations and

introduce the need to allow agents to choose these parameters independently. We next describe the benefits of

independent regularizations, and give two formal problem statements that will be the focus of the remainder of the

paper.

A. Quadratic Programming Background

We consider a quadratic optimization problem distributed across a network of N agents, where agents are indexed

over i ∈ [N] := {1, ..., N}. Agent i has a decision variable x[i] ∈ Rni , ni ∈ N, which we refer to as its state, and

we allow for ni 6= nj if i 6= j. The state x[i] is subject to the set constraint x[i] ∈ Xi ⊂ Rni , and we make the

following assumption about each Xi.

Assumption 1: For all i ∈ [N], the set Xi ⊂ Rni is non-empty, compact, and convex. 4

We define the network-level constraint set X := X1 × · · · ×XN , and Assumption 1 implies that X is non-

empty, compact, and convex. We further define the global state as x :=
(
x[1]

T
, ..., x[N]T

)T
∈ X ⊂ Rn, where

n =
∑
i∈[N] ni. We consider quadratic objectives

f(x) :=
1

2
xTQx+ rTx,

where Q ∈ Rn×n and r ∈ Rn. We then make the following assumption about f .

Assumption 2: In f , Q is symmetric. 4

Note that Assumption 2 holds without loss of generality because a non-symmetric Q will have only its symmetric

part contribute to the value of the quadratic form that defines f . Because f is quadratic, it is twice continuously

differentiable, which we indicate by writing that f is C2. In addition, ∇f = Qx+ r, and ∇f is therefore Lipschitz

June 17, 2020 DRAFT

4

with constant ‖Q‖2. It is common to assume outright that Q is positive definite, though here we are able to dispense

with this assumption based on one in terms of the block structure of agents’ updates.

In this paper, we divide n × n matrices into blocks. Given a matrix B ∈ Rn×n, where n =
∑N
i=1 ni, the ith

block of B, denoted B[i], is the ni × n matrix formed by rows of B with indices
∑i−1
k=1 nk + 1 through

∑i
k=1 nk.

In other words, B[1] is the first n1 rows of B, B[2] is the next n2 rows, etc. Similarly, for a vector b, b[1] is the

first n1 entries of b, b[2] is the next n2 entries, etc. We further define the notation of a sub-block B
[i]
j , where

B[i] =
[
B

[i]
1 B

[i]
2 ... B[i]

N

]
. That is, B[i]

1 is the first n1 columns of B[i], B[i]
2 is the next n2 columns, etc. For

notational simplicity, B =
[
B

[i]
j

]
p

means the matrix B has been partitioned into blocks according to the partition

vector p := [n1, n2, . . . , nN]T . That is,

B =
[
B

[i]
j

]
p

=

B[1]

B[2]

...

B[N]

 =

B

[1]
1 B

[1]
2 . . . B

[1]
N

B
[2]
1 B

[2]
2 . . . B

[2]
N

...
...

. . .
...

B
[N]
1 B

[N]
2 . . . B

[N]
N

 ,

where B[i]
j ∈ Rni×nj for all i, j ∈ [N]

Previous work has shown that totally asynchronous algorithms may diverge if Q is not diagonally dominant [14,

Example 3.1]. While enforcing this condition is sufficient to ensure a totally asynchronous update scheme will

converge, in this paper we will instead require the weaker condition of block diagonal dominance.

Definition 1: Let the matrix B =
[
B

[i]
j

]
p
, where p = [n1, n2, . . . , nN]T is given by the dimensions of agents’

states above. If the diagonal sub-blocks B[i]
i are nonsingular and if(∥∥∥B[i]−1

i

∥∥∥
2

)−1
≥

N∑
j=1
j 6=i

∥∥∥B[i]
j

∥∥∥
2

for all i ∈ [N], (1)

then B is said to be block diagonally dominant relative to the choice of partitioning p. If strict inequality in

Equation (1) is valid for all i ∈ [N], then B is strictly block diagonally dominant relative to the choice of

partitioning p. N

In later analysis, we will use the gap between the left and right hand side of Equation (1), which we define as

δi(B) =
(∥∥∥B[i]−1

i

∥∥∥
2

)−1
−

N∑
j=1
j 6=i

∥∥∥B[i]
j

∥∥∥
2
.

Note that if p = [1, 1, . . . , 1]T , Definition 1 reduces to diagonal dominance in the usual sense. We now make the

following assumption:

Assumption 3: In f , Q =
[
Q

[i]
j

]
p

is strictly block diagonally dominant, where p = [n1, n2, . . . , nN]T , and ni is

the length of x[i] for all i ∈ [N]. 4

Note also that from Theorem 2 in [27], if Assumptions 2 and 3 hold for a matrix B, then B is also positive

definite. Therefore Assumptions 2 and 3 imply that Q � 0, which renders f strongly convex.

June 17, 2020 DRAFT

5

B. Problem Statements

Following our goal of reducing parametric coupling between agents, we wish to allow agents to select stepsizes

independently. In particular, we wish for the stepsize for block i, denoted γi, to be chosen using only knowledge

of Q[i]. The selection of γi should not depend on any other block Q[j], j 6= i, or any stepsize choice, γj , for any

other block. Allowing independent stepsizes will preclude the need for agents to agree on a single value before

optimizing. The following problem will be one focus of the remainder of the paper.

Problem 1: Design a totally asynchronous distributed optimization algorithm to solve

minimize
x∈X

1

2
xTQx+ rTx,

where only agent i updates x[i], and where agents choose stepsizes independently. �

While an algorithm that satisfies the conditions stated in Problem 1 is sufficient to find a solution, we wish to

allow for regularizations as well. Regularizations are commonly used for centralized quadratic programs to improve

convergence properties, and we will therefore use them here. However, in keeping with the independence of agents’

parameters, we wish to allow agents to choose independent regularization parameters. As with stepsizes, we wish

for the regularization for block i, denoted αi, to be chosen using only knowledge of Q[i]. The regularized form of

f , denoted fA, is

fA(x) := f(x) +
1

2
xTAx =

1

2
xT (Q+A)x+ rTx, (2)

where A = diag (α1In1 , ..., αNInN
), and where Ini is the ni × ni identity matrix. Note that ∂fA

∂x[i] = Q[i]x +

r[i] +αix
[i], where we see that only αi affects the gradient of f with respect to x[i]. With the goal of independent

regularizations in mind, we now state the second problem that we will solve.

Problem 2: Design a totally asynchronous distributed optimization algorithm to solve

minimize
x∈X

1

2
xT (Q+A)x+ rTx,

where only agent i updates x[i], and where agents independently choose their stepsizes and regularizations. 4

Section III specifies the structure of the asynchronous communications and computations used to solve Problem

1, and we will solve Problem 1 in Section IV. Afterwards, we will solve Problem 2 in Section V.

III. BLOCK-BASED MULTI-AGENT UPDATE LAW

To define the update law for each agent’s state, we first describe the information stored onboard each agent and

how agents communicate with each other. Each agent will store a vector containing its own state and that of every

agent it communicates with. Formally, we will denote agent i’s full vector of states by xi, and this is agent i’s local

copy of the global state. Agent i’s own states in this vector are denoted by x[i]i . The current values stored onboard

agent i for agent j’s states are denoted by x[j]i . In the forthcoming update law, agent i will only compute updates

for x[i]i , and it will share only x[i]i with other agents when communicating. Agent i will only change the value of

x
[j]
i when agent j sends its own state to agent i.

June 17, 2020 DRAFT

6

At time k, agent i’s full state vector is denoted xi(k), with its own states denoted x[i]i (k) and those of agent j

denoted x[j]i (k). At any timestep, agent i may or may not update its states due to asynchrony in agents’ computations.

As a result, we will in general have xi(k) 6= xj(k) at all times k. We define the set Ki to contain all times k at

which agent i updates x[i]i . In designing an update law, we must provide robustness to asynchrony while allowing

computations to be performed in a distributed fashion. First-order gradient descent methods are robust to many

disturbances, with the additional benefit of being computationally simple. Using our notation of a matrix block, we

define ∇[i]f := ∂f
∂x[i] , and we see that ∇[i]f(x) = Q[i]x+ r[i], and we propose the following update law:

x
[i]
i (k + 1) =

ΠXi

[
x
[i]
i (k)−γi

(
Q[i]xi(k) + r[i]

)]
k ∈ Ki

x
[i]
i (k) k /∈ Ki

,

where agent i uses some stepsize γi > 0. The advantage of the block-based update law can be seen above, as agent

i only needs to know Q[i] and r[i]. Requiring each agent to store the entirety of Q and r would require O(n2)

storage space, while Q[i] and r[i] only require O(n). For large quadratic programs, this block-based update law

dramatically reduces each agent’s onboard storage requirements, which promotes scalability.

In order to account for communication delays, we use τ ji (k) to denote the time at which the value of x[j]i (k)

was originally computed by agent j. For example, if agent j computes a state update at time ka and immediately

transmits it to agent i, then agent i may receive this state update at time kb > ka due to communication delays.

Then τ ji is defined so that τ ji (kb) = ka. For Ki and τ ji , we assume the following.

Assumption 4: For all i ∈ [N], the set Ki is infinite. Moreover, for all i ∈ [N] and j ∈ [N]\{i}, if {kd}d∈N is

a sequence in Ki tending to infinity, then

lim
d→∞

τ ji (kd) =∞. 4

Assumption 4 is simply a formalization of the requirement that no agent ever permanently stop updating and sharing

its own state with any other agent. For i 6= j, the sets Ki and Kj do not need to have any relationship because

agents’ updates are asynchronous. Our proposed update law for all agents can then be written as follows.

Algorithm 1: For all i ∈ [N] and j ∈ [N]\{i}, execute

x
[i]
i (k + 1) =

ΠXi

[
x
[i]
i (k)− γi

(
Q[i]xi(k) + r[i]

)]
k ∈ Ki

x
[i]
i (k) k /∈ Ki

x
[j]
i (k + 1) =

x
[j]
j

(
τ ji (k + 1)

)
i receives j’s state at k + 1

x
[j]
i (k) otherwise �

In Algorithm 1 we see that x[j]i changes only when agent i receives a transmission directly from agent j; otherwise

it remains constant. This implies that agent i can update its own state using an old value of agent j’s state multiple

times and can reuse different agents’ states different numbers of times.

June 17, 2020 DRAFT

7

IV. CONVERGENCE OF ASYNCHRONOUS OPTIMIZATION

In this section, we prove convergence of Algorithm 1. This will be shown using Lyapunov-like convergence. We

will derive stepsize bounds from these concepts that will be used to show asymptotic convergence of all agents.

A. Block-Maximum Norms

The convergence of Algorithm 1 will be measured using a block-maximum norm as in [28], [14], and [25].

Below, we define the block-maximum norm in terms of our partitioning vector p.

Definition 2: Let x =
[
x[i]
]
p
∈ Rn, where p = [n1, n2, . . . , nN]T . The norm of the full vector x is defined as

the maximum 2-norm of any single block, i.e.,

‖x‖2,p := max
i∈[N]

‖x[i]‖2. N

The following lemma allows us to upper-bound the induced block-maximum matrix norm by the norms of the

individual blocks.

Lemma 1: For the matrix B =
[
B

[i]
j

]
p

and induced matrix norm ‖B‖2,p,

‖B‖2,p ≤ max
i∈[N]

N∑
j=1

∥∥∥B[i]
j

∥∥∥
2
.

Proof: Proof in Appendix A. �

B. Convergence Via Lyapunov Sub-Level Sets

We now analyze the convergence of Algorithm 1. We construct a sequence of sets, {X(s)}s∈N, based on work

in [28] and [14]. These sets behave analogously to sub-level sets of a Lyapunov function, and they will enable an

invariance type argument in our convergence proof. Below, we use x̂ := arg minx∈X f(x) for the minimizer of f .

We state the following assumption on these sets, and below we will construct a sequence of sets that satisfies this

assumption.

Assumption 5: There exists a collection of sets {X(s)}s∈N that satisfies:

1) · · · ⊂ X(s+ 1) ⊂ X(s) ⊂ · · · ⊂ X

2) lims→∞X(s) = {x̂}

3) There exists Xi(s) ⊂ Xi for all i ∈ [N] and s ∈ N such that X(s) = X1(s)× ...×XN (s)

4) θi(y) ∈ Xi(s+ 1), where θi(y) := ΠXi

[
y[i] − γi∇[i]f(y)

]
for all y ∈ X(s) and i ∈ [N]. 4

Assumptions 5.1 and 5.2 jointly guarantee that the collection {X(s)}s∈N is nested and that the sets converge to

a singleton containing x̂. Assumption 5.3 allows for the blocks of x to be updated independently by the agents,

which allows for decoupled update laws. Assumption 5.4 ensures that state updates make only forward progress

toward x̂, which ensures that each set is forward-invariant in time. It is shown in [28] and [14] that the existence

of such a sequence of sets implies asymptotic convergence of the asynchronous update law in Algorithm 1. We

therefore use this strategy to show asymptotic convergence in this paper. We propose to use the construction

X(s) =
{
y ∈ X : ‖y − x̂‖2,p ≤ q

sDo

}
,

June 17, 2020 DRAFT

8

where we define Do := maxi∈[N]

∥∥xi(0)− x̂
∥∥
2,p

, which is the block furthest from x̂ onboard any agent at timestep

zero, and where we define the constant

q = max
i∈[N]

∥∥∥I − γiQ[i]
i

∥∥∥
2

+ γi

N∑
j=1
j 6=i

∥∥∥Q[i]
j

∥∥∥
2
.

To show convergence, we will use the fact that each update contracts towards x̂ by a factor of q, and will

state a lemma that establishes bounds on every γi that imply q ∈ (0, 1). Additionally, we will see that a proof of

convergence using this method requires a block diagonal dominance condition on Q. This result will be used to

show convergence of Algorithm 1 through satisfaction of Assumption 5.

If we wish for q ∈ (0, 1), this condition can be restated as∥∥∥I − γiQ[i]
i

∥∥∥
2

+ γi

N∑
j=1
j 6=i

∥∥∥Q[i]
j

∥∥∥
2
< 1 for all i ∈ [N]. (3)

Note that because Q = QT � 0 and Q
[i]
i is a diagonal submatrix of Q, we have Q[i]

i = Q
[i]T

i � 0. From this

fact, we see
(∥∥∥Q[i]−1

i

∥∥∥
2

)−1
= λmin

(
Q

[i]
i

)
, meaning that Assumption 3 holds. Then, in particular,

λmin

(
Q

[i]
i

)
>

N∑
j=1
j 6=i

∥∥∥Q[i]
j

∥∥∥
2

for all i ∈ [N].

The following lemma states an equivalent condition for Equation (3), which demonstrates the necessity and

sufficiency of strict block diagonal dominance.

Lemma 2: Let Q = QT =
[
Q

[i]
j

]
p
, where p = [n1, n2, . . . , nN]T . Additionally, let the n × n matrix Γ =

diag(γ1In1 , γ2In2 , ..., γNInN
), where Ini is the identity matrix of size ni and γi > 0. Then∥∥∥I − γiQ[i]

i

∥∥∥
2

+ γi

N∑
j=1
j 6=i

∥∥∥Q[i]
j

∥∥∥
2
< 1 for all i ∈ [N]

if and only if

λmin

(
Q

[i]
i

)
>

N∑
j=1
j 6=i

∥∥∥Q[i]
j

∥∥∥
2

and γi <
2∑N

j=1

∥∥∥Q[i]
j

∥∥∥
2

for all i ∈ [N].

Proof: Proof in Appendix B. �

Note that γi only depends on Q[i]. This lemma implies that γi can be chosen according to the conditions of

Problem 1 such that q ∈ (0, 1), given that Assumption 3 holds for Q. Choosing appropriate stepsizes for all i ∈ [N]

and recalling our construction of sets {X(s)}s∈N as

X(s) = {y ∈ X : ‖y − x̂‖2,p ≤ qsDo} , (4)

we next show that Assumption 5 is satisfied, thereby ensuring convergence of Algorithm 1.

Theorem 1: If Assumptions 1-4 hold and Γ = diag(γ1In1 , γ2In2 , ..., γNInN
) satisfies the conditions in Lemma 2,

then the collection of sets {X(s)}s∈N as defined in Equation (4) satisfies Assumption 5.

June 17, 2020 DRAFT

9

Proof: Proof in Appendix C. �

Regarding Problem 1, we therefore state the following:

Theorem 2: Algorithm 1 solves Problem 1 and asymptotically converges to x̂.

Proof: Proof in Appendix D. �

From these requirements, we see that agent i only needs to be initialized with Q[i] and r[i]. Agents are then free

to choose stepsizes independently, provided stepsizes obey the bounds established in Lemma 2.

V. CONVERGENCE RATE

Beyond asymptotic convergence, the structure of the sets {X(s)}s∈N allows us to determine a convergence rate.

To do so, we first define the notion of a communication cycle.

Definition 3: One communication cycle occurs when every agent has calculated a state update and this updated

state has been sent to and received by every other agent. N

Once the last updated state has been received by the last agent, a communication cycle ends and another begins.

It is only at the conclusion of the first communication cycle that each agents’ copy of the ensemble state is moved

from X(0) to X(1). Once another cycle is completed every agent’s copy of the ensemble state is moved from

X(1) to X(2). This process repeats indefinitely, and coupled with Assumption 5, means the convergence rate is

geometric in the number of cycles completed, which we now show.

Theorem 3: Let Assumptions 1-5 hold and let γi ∈

(
0, 2∑N

j=1

∥∥∥Q[i]
j

∥∥∥
2

)
for all i ∈ [N]. At time k, if c(k) cycles

have been completed, then ‖xi(k)− x̂‖2,p ≤ qc(k)Do for all i ∈ [N].

Proof: Proof in Appendix E. �

From the definition of q, we may write q = maxi∈[N] qi, where

qi =
∥∥∥I − γiQ[i]

i

∥∥∥
2

+ γi

N∑
j=1
j 6=i

∥∥∥Q[i]
j

∥∥∥
2
, (5)

which illustrates the dependence of each qi upon γi. As in all forms of gradient descent optimization, the choice

of stepsizes has a significant impact on the convergence rate, which can be expressed through its effect on q.

Therefore, we would like to determine the optimal stepsizes for each block in order to minimize q, which will

accelerate convergence to a solution. Due to the structure of q, minimizing qi for each i ∈ [N] will minimize q.

This fact leads to the following theorem:

Theorem 4: q is minimized when, for every i ∈ [N],

γi =
2

λmax

(
Q

[i]
i

)
+ λmin

(
Q

[i]
i

) .
Proof: Proof in Appendix F. �

VI. REGULARIZATION AND CONVERGENCE RATE

In centralized optimization, regularization can be used to accelerate convergence by reducing the condition number

of Q. It is well known that the condition number of Q, denoted kQ, plays a significant role in the convergence

June 17, 2020 DRAFT

10

rate, with large condition numbers correlating to slow convergence rates. However in a decentralized setting it is

difficult for agents to independently select regularizations such that kQ is reduced, and harder still to know the

magnitude of the reduction. In [26] it is shown that if the ratio of the largest to smallest regularization used in

the network is less than kQ, then the condition number of the regularized problem is guaranteed to be smaller.

However, this requires global knowledge of kQ, requires an upper bound on regularizations to somehow be agreed

on, and institutes a lower bound on agents’ choice of regularizations, all of which lead to the type of parametric

coupling that we wish to avoid.

As stated in Problem 2, we want to allow agents to choose regularization parameters independently. Here, we

therefore only require that agent i use a positive regularization parameter αi > 0. In Algorithm 1, this changes

only agent i’s updates to x[i]i , which now take the form

x
[i]
i = ΠXi

[
x
[i]
i (k)− γi

(
Q[i]xi(k) + r[i] + αix

[i]
i (k)

)]
.

Before we analyze the effects of independently chosen regularizations on convergence, we must first show that an

algorithm that utilizes them will preserve the convergence properties of Algorithm 1. As shown in Equation (2), a

regularized cost function takes the form

fA(x) :=
1

2
xT (Q+A)x+ rTx,

where Q + A is symmetric and positive definite because Q = QT � 0. We now state the following theorem that

confirms that minimizing fA succeeds.

Theorem 5: Suppose that A = diag (α1In1
, ..., αNInN

) � 0, where agent i chooses αi independently of all other

agents. Then Algorithm 1 satisfies the conditions stated in Problem 2 when fA is minimized.

Proof: Replacing Q with Q + A, all assumptions and conditions used to prove Theorem 2 hold, with the only

modifications being the network will converge to x̂A := arg minx∈X fA(x). These steps are similar to those used

to prove Theorem 2 and are therefore omitted. �

Theorem 5 establishes that regularizing preserves asymptotic convergence, and we next turn to analyzing conver-

gence rates. Because the condition number kQ is a parameter that depends on the entirety of Q, and each agent only

has access to a portion of Q, it is impossible for agents to know how their independent choices of regularizations

affect kQ. However, we can instead use q, which provides our convergence rate and can be directly manipulated

by agents’ choice of regularizations. Assume the optimal stepsize for block i is chosen as given in Equation (12).

We then have

qi =
2
∑N
j 6=i

∥∥∥Q[i]
j

∥∥∥
2

+ λmax

(
Q

[i]
i

)
− λmin

(
Q

[i]
i

)
λmax

(
Q

[i]
i

)
+ λmin

(
Q

[i]
i

) .

When we regularize the problem with A, the convergence parameter becomes qA = maxi qαi
, where

qαi =
2
∑N
j 6=i

∥∥∥Q[i]
j

∥∥∥
2

+ λmax

(
Q

[i]
i

)
− λmin

(
Q

[i]
i

)
λmax

(
Q

[i]
i

)
+ λmin

(
Q

[i]
i

)
+ 2αi

.

June 17, 2020 DRAFT

11

The only effect regularization has on qi is adding 2αi to the denominator, meaning that any choice of positive

regularization will result in qαi
< qi, and thus all regularizations accelerate convergence. Using this fact, we can

tailor parameter selections to attain a desired convergence rate. Assume we have a desired convergence rate for

our system, corresponding to q∗. If we want to set qA ≤ q∗, we need qαi
≤ q∗ for all i ∈ [N]. Some algebraic

manipulation of the above equation shows we therefore need to choose αi such that

αi ≥
(
qi
q∗
− 1

)λmax
(
Q

[i]
i

)
+ λmin

(
Q

[i]
i

)
2

 .

Note that this term will be negative if qi < q∗. That is, if the dynamics of block i are such that it will already

converge faster than required by q∗, then there is no need to regularize that block. We now state the following

theorem:

Theorem 6: Given q∗ ∈ (0, 1), if for all i ∈ [N] agent i chooses

γi =
2

λmax

(
Q

[i]
i

)
+ λmin

(
Q

[i]
i

)
+ 2αi

, (6)

where

αi = max

(
qi
q∗
− 1

)λmax
(
Q

[i]
i

)
+ λmin

(
Q

[i]
i

)
2

 , 0

 ,

then qA ≤ q∗.

Proof: Substitute Equation (6) into Equation (5). �

VII. REGULARIZATION ABSOLUTE ERROR BOUND: SET CONSTRAINED CASE

Regularization inherently results in a suboptimal solution because the system converges to ΠX [x̂A] rather than

ΠX [x̂]. We therefore wish to bound this error by a function of the regularization matrix A. We define this error

in two ways, ‖ΠX [x̂]−ΠX [x̂A]‖2,p = maxi

∥∥∥ΠXi

[
x̂[i]
]
−ΠXi

[
x̂
[i]
A

]∥∥∥
2
, which is the largest error of any one

block in the network, and |f (ΠX [x̂])− f (ΠX [x̂A])|, which is the difference in cost for the system between the

regularized and unregularized cases. Note that in this section we are deriving descriptive error bounds in the sense

that a network operator with access to each agent’s local information can bound the error for the entire system, but

no individual agent is expected to have access to this information.

Looking at the first definition of error, we find

‖ΠX [x̂]−ΠX [x̂A]‖2,p ≤ ‖x̂− x̂A‖2,p

which follows from the non-expansive property of the projection operator. Because of the fact that x̂ = −Q−1r

and x̂A = −(Q+A)−1r, we see

‖x̂− x̂A‖2,p =
∥∥(Q−1 − (Q+A)−1)r

∥∥
2,p
.

Through use of the Woodbury matrix identity, one can see Q−1 − (Q+A)−1 = (I +A−1Q)−1Q−1, because A is

invertible. This gives

‖x̂− x̂A‖2,p ≤
∥∥(I +A−1Q)−1

∥∥
2,p

∥∥Q−1∥∥
2,p
‖r‖2,p . (7)

June 17, 2020 DRAFT

12

Here ‖r‖2,p = maxi
∥∥r[i]∥∥

2
is the largest norm of any individual block of r, which a network operator can gather

from agents. However, the two other terms are 2, p-norms of inverse matrices, which we do not assume the network

operator has the ability to calculate. However, these terms can be bounded above using local information from

agents according to the following lemma.

Lemma 3: If there is a block strictly diagonally dominant matrix B =
[
B

[i]
j

]
p
, where p = [n1, n2, . . . , nN]T ,

and βp(B) = mini

(∥∥∥B[i]−1

i

∥∥∥−1
2
−
∑N
j=1
j 6=i

∥∥∥B[i]
j

∥∥∥
2

)
, then∥∥B−1∥∥

2,p
≤ β−1p (B).

Proof: Theorem 2 in [29] establishes the above result for ‖ · ‖∞, and the proof for ‖ · ‖2,p follows identical steps.

�

We note also that I+A−1Q is strictly block diagonally dominant, as (A−1Q)[i] = α−1i Q[i]. That is, each block of

Q is multiplied by a positive scalar, which preserves the strict diagonal dominance of each block, as does the addition

of I . Therefore, using Lemma 3 and Q[i]
i = Q

[i]T

i � 0 for all i ∈ [N] we see
∥∥(I +A−1Q)−1

∥∥
2,p
≤ β−1p (I+A−1Q)

and
∥∥Q−1∥∥

2,p
≤ β−1p (Q), where βp(I +A−1Q) = mini

(
1 + α−1i δi(Q)

)
and βp(Q) = mini δi(Q). Finally,

‖ΠX [x̂]−ΠX [x̂A]‖2,p ≤
maxi ‖r[i]‖2

βp(I +A−1Q)βp(Q)
. (8)

The significance of this error bound is that if a network operator has access to ‖r[i]‖2, αi, and δi(Q) for all i ∈ [N],

which are locally known to every agent, the network operator can compute these bounds.

Defining ∆XA
= ΠX [x̂]−ΠX [x̂A], we find that f(ΠX [x̂])− f(ΠX [x̂A]) = 1

2 (ΠX [x̂] + ΠX [x̂A])TQ(∆XA
) +

rT (∆XA
), which gives

|f(ΠX [x̂])− f(ΠX [x̂A])|

=
∣∣∣1
2

(ΠX [x̂] + ΠX [x̂A])TQ(∆XA
) + rT (∆XA

)
∣∣∣

≤ ‖1

2
(ΠX [x̂] + ΠX [x̂A])TQ+ rT ‖2,p‖∆XA

‖2,p

≤ (‖1

2
(ΠX [x̂] + ΠX [x̂A])TQ‖2,p + ‖rT ‖2,p)‖∆XA

‖2,p

≤ (‖1

2
(ΠX [x̂]+ΠX [x̂A])T ‖2,p‖Q‖2,p+‖rT ‖2,p)‖∆XA

‖2,p.

Note that by definition, ‖xT ‖2,p =
∑N
i=1 ‖x[i]‖2, and by Lemma 1 ‖B‖2,p ≤ maxi

∑N
j=1

∥∥∥B[i]
j

∥∥∥
2
. Combining this

with the non-expansive property of the projection operator gives

|f(ΠX [x̂])− f(ΠX [x̂A])|

≤
(

max
i

∥∥∥1

2

(
ΠXi

[
x̂[i]
]

+ ΠXi

[
x̂
[i]
A

])T∥∥∥
2

max
i

N∑
j=1

∥∥∥Q[i]
j

∥∥∥
2

+

N∑
i=1

∥∥∥r[i]∥∥∥
2

)
‖∆XA

‖2,p.

June 17, 2020 DRAFT

13

From Assumption 1, the set constraint for each block is compact, meaning agents can find the vector x̄[i] =

arg maxx[i]∈Xi
‖x[i]‖2. Setting MXi

= ‖x̄[i]‖2 and combining this with Equation (8) gives

|f(ΠX [x̂])− f(ΠX [x̂A])|

≤
(maxi∈[N]MXi maxi∈[N]

∑N
j=1

∥∥∥Q[i]
j

∥∥∥
2

+
∑N
i=1 ‖r[i]‖2)

βp(I +A−1Q)βp(Q)

+
maxi∈[N] ‖r[i]‖2

βp(I +A−1Q)βp(Q)
.

VIII. REGULARIZATION RELATIVE ERROR BOUND: UNCONSTRAINED CASE

In the previous section we derived a descriptive bound for the absolute error in both the states of the system and

the cost due to regularizing. This bound is descriptive in the sense that given the agents’ regularization choices,

one can derive a bound describing error for the system. However given a desired error bound, agents cannot use

the above rules to independently select regularizations due to the need for global information. Eliminating this

dependence upon global information appears to be difficult because of the wide range of possibilities for the set

constraints Xi. However, in the case where our problem does not have set constraints, i.e. Assumption 1 no longer

holds and X = Rn, we find that we can develop an entirely independent regularization selection rule to bound

relative error. In particular, given some ε > 0, we wish to bound the relative cost error via

|f(x̂)− f(x̂A)|
|f(x̂)|

≤ ε.

If agents independently select regularizations, then αi is selected using only knowledge of Q[i]. Because we do

not want to require agents to coordinate their regularizations to ensure the error bound is satisfied, we must develop

independent regularization selection guidelines that depend only on Q[i].

Problem 3: Given the restriction that αi can be chosen using only knowledge of Q[i] and ε, where ε ∈ (0, 1),

develop independent regularization selection guidelines that guarantee

|f(x̂)− f(x̂A)|
|f(x̂)|

≤ ε. 4

For the unregularized problem, the solution is x̂ = −Q−1r and the optimal cost is f(x̂) = − 1
2r
TQ−1r. For

the regularized problem, the regularized solution is x̂A = −P−1r, where P = Q + A, and the suboptimal cost is

f(x̂A) = 1
2r
TP−1QP−1r−rTP−1r. Note that f(x̂) ≤ f(x̂A) ≤ 0. That is, the cost can be upper-bounded by zero

trivially for both the regularized and unregularized cases using x = 0. Therefore the optimal cost in both cases will

be negative, with f(x̂) ≤ f(x̂A). In particular, we know f(x̂) − f(x̂A) ≤ 0 and f(x̂) ≤ 0. Assuming f(x̂) 6= 0,

we can say
f(x̂)− f(x̂A)

f(x̂)
≥ 0.

That is,
|f(x̂)− f(x̂A)|
|f(x̂)|

≤ ε if and only if
f(x̂)− f(x̂A)

f(x̂)
≤ ε.

June 17, 2020 DRAFT

14

The solution to Problem 3 will be developed in two parts. First, it will be shown that the block diagonal dominance

condition of Q allows A to be chosen under the restrictions of Problem 3 such that a certain eigenvalue condition

of the matrix A−1Q is satisfied. Afterward, it will be shown that this condition on A−1Q is sufficient to guarantee

the error bound given by ε is satisfied.

A. Block Gershgorin Circle Theorem

The Gershgorin Circle Theorem tells us that for any eigenvalue of a symmetric n × n matrix B, we have

λk(B) ∈
⋃n
k=1[bk,k −

∑n
j 6=k |bk,j |, bk,k +

∑n
j 6=k |bk,j |] for all k = 1, ..., n. That is, every eigenvalue of B is con-

tained within a union of intervals dependent on the rows of B. This implies that we can lower bound the minimum

eigenvalue of B by λmin(B) ≥ mink(bk,k −
∑n
j 6=k |bk,j |). In the event that B is a strictly diagonally dominant

matrix in the usual sense, i.e., ni = 1 for all i ∈ [N], this implies that every eigenvalue of B is positive, because

λmin(B) ≥ mink bk,k −
∑n
j 6=k |bk,j | > 0 for all k = 1, ..., n. Note further that if we let C be an n × n positive

definite diagonal matrix, then λmin(CB) ≥ mink ck,k(bk,k −
∑n
j 6=k |bk,j |) > 0. That is, if B is a strictly diagonally

dominant matrix and C is a positive definite diagonal matrix, then CB is strictly diagonally dominant.

Let B and C meet the criteria above, and now let us treat C as a design choice. Suppose we wish for the smallest

eigenvalue of CB to be greater than or equal to a particular constant l, i.e., we want λmin(CB) ≥ l. From the

Gershgorin Circle Theorem, we see this is true if ck,k(bk,k −
∑n
j 6=k |bk,j |) ≥ l for all k = 1, ..., n. This condition

can be restated as

if ck,k ≥
l

bk,k −
∑n
j 6=k |bk,j |

for all k = 1, ..., n,

then λmin(CB) ≥ l.

That is, given a strictly diagonally dominant matrix B and a positive constant l, the kth diagonal element of

C can be chosen using only knowledge of the kth row of B and l such that λmin(CB) ≥ l. This intuition can

be extended to a strictly block diagonally dominant matrix B using a block analogue of the Gershgorin Circle

Theorem, as described below.

Lemma 4: For the matrix B =
[
B

[i]
j

]
p
, where p = [n1, n2, . . . , nN]T , each eigenvalue λ(B) satisfies

(∥∥∥∥(B[i]
i − λ(B)I

)−1∥∥∥∥
2

)−1
≤

N∑
j=1
j 6=i

∥∥∥B[i]
j

∥∥∥
2

for at least one i ∈ [N].

Proof: See Theorem 2 in [27]. �

Note that (∥∥∥∥(B[i]
i −λmin(B)I

)−1∥∥∥∥
2

)−1
= min

i

∣∣∣λmin(B)−λi
(
B

[i]
i

)∣∣∣.
Additionally, let

µ
(
B

[i]
i

)
= arg min

λi

∣∣∣λmin(B)− λi
(
B

[i]
i

)∣∣∣ ,

June 17, 2020 DRAFT

15

which is the eigenvalue of B[i]
i closest to the minimum eigenvalue of B. Then,(∥∥∥∥(B[i]

i − λmin(B)I
)−1∥∥∥∥

2

)−1
=
∣∣∣λmin(B)− µ

(
B

[i]
i

)∣∣∣ .
From the block Gershgorin Circle Theorem, we then have

λmin(B) ≥ µ
(
B

[i]
i

)
−

N∑
j=1
j 6=i

∥∥∥B[i]
j

∥∥∥
2

for at least one i ∈ [N].

Because µ
(
B

[i]
i

)
≥ λmin

(
B

[i]
i

)
, we can say λmin(B) ≥ δi(B) for at least one i ∈ [N].

Just as before, if B is strictly block diagonally dominant, then every eigenvalue of B is positive. Now let

C =
[
C

[i]
j

]
p
, with C [i]

i = ciI for every i ∈ [N] and C [i]
j = 0 when j 6= i. In the same manner as above, we find

if ci ≥
l

δi(B)
for all i ∈ [N], (9)

then λmin(CB) ≥ l.

That is, ci can be chosen using only knowledge of B[i] and l. This brings us back to the restrictions imposed in

Problem 3. For reasons that will be shown in the following subsection, choose B = Q, C = A−1, and l = 1−
√
ε√
ε

.

Assuming each block uses a scalar regularization, i.e. ci = 1
αi

where αi > 0, we have the following lemma

Lemma 5: Let Assumptions 2 and 3 hold for the matrix Q with respect to the partitioning vector p = [n1, n2, . . . , nN]T .

Let A =
[
A

[i]
j

]
p
, with A[i]

i = αiI for every i ∈ [N] and A[i]
j = 0 when j 6= i. If we have αi ≤

√
ε

1−
√
ε
δi(Q) for all i ∈

[N], then λmin
(
A−1Q

)
≥ 1−

√
ε√
ε

.

Proof: Use Equation (9) and substitute C = A−1, B = Q, and l = 1−
√
ε√
ε

. �

We have shown this eigenvalue condition can be satisfied according to the conditions in Problem 3, i.e. A[i] is

chosen using only knowledge of Q[i] and ε. The following subsection will show this condition is sufficient to satisfy

the error bound in Problem 3.

B. Error Bound Satisfaction

Proof of error bound satisfaction will be done using the following lemma.

Lemma 6: Let f(x) = 1
2x

TQx+rTx, where Q = QT � 0, Q ∈ Rn×n, and r, x ∈ Rn. Let x̂ = arg minx∈Rn f(x)

and x̂A = arg minx∈Rn f(x) + 1
2x

TAx, where A � 0 and diagonal. Additionally, let ε ∈ [0, 1]. If

1−
√
ε√

ε
≤ λmin(A−1Q), then

|f(x̂)− f(x̂A)|
|f(x̂)|

≤ ε.

Proof: Proof in Appendix G. �

With these lemmas, we now present the following theorem.

Theorem 7: Let Assumptions 2 and 3 hold for the matrix Q with respect to the partitioning vector p =

[n1, n2, . . . , nN]T . Let A =
[
A

[i]
j

]
p
, with A

[i]
i = αiI for every i ∈ [N] and A

[i]
j = 0 when j 6= i. Let

June 17, 2020 DRAFT

16

f(x) = 1
2x

TQx + rTx, where r, x ∈ Rn. Let x̂ = arg minx∈Rn f(x) = −Q−1r and x̂A = arg minx∈Rn f(x) +

1
2x

TAx = −P−1r, where P = Q+A. Additionally, let ε ∈ [0, 1]. If

αi ≤
√
ε

1−
√
ε
δi(Q) for all i ∈ [N],

then,

|f(x̂)− f(x̂A)|
|f(x̂)|

≤ ε

Proof: Lemma 5 shows that the regularization selection rules presented above, along with Assumption 3, imply

that 1−
√
ε√
ε
≤ λmin(A−1Q). Lemma 6 shows that 1−

√
ε√
ε
≤ λmin(A−1Q) implies that |f(x̂)−f(x̂A)|

|f(x̂)| ≤ ε. �

Additionally, we can derive a similar bound for relative error in the solution itself. Defining this error as ‖x̂−x̂A‖2,p
‖x̂‖2,p

and using Equation (7) we see

‖x̂− x̂A‖2,p
‖x̂‖2,p

=
‖(I +A−1Q)−1Q−1r‖2,p

‖Q−1r‖2,p

≤ ‖(I +A−1Q)−1‖2,p‖Q−1r‖2,p
‖Q−1r‖2,p

= ‖(I +A−1Q)−1‖2,p

≤ 1

mini∈[N]

[
1 + α−1i δi(Q)

] .
If we wish for agents to select regularizations such that the above error is less than a given constant η, we see this

is accomplished if

1

η
≤ min
i∈[N]

1 + α−1i δi(Q)

αi ≤
η

1− η
δi(Q) for all i ∈ [N].

This rule has the same structure as the one in Theorem 7, with the only difference being there is no square root

taken of η.

Note that throughout this section it was assumed that A is invertible, which is true if αi > 0 for all i ∈ [N].

However in scenarios where there is no need for a particular agent to regularize, e.g. qi < q∗, that agent can choose

αi = 0 for all practical applications. This is because all of the above analysis holds if αi is chosen to be a small

positive value, which can be set arbitrarily close to zero.

C. Trade-Off Analysis

There is an inherent trade-off between the speed at which we reach a solution and the quality of that solution.

Theorem 6 provides a lower bound on αi that allows us to converge at any speed we wish, while Theorem 7

provides an upper bound on αi that allows us to bound the cost error between the solution we find and the optimal

solution. However, in general, there is no reason to expect these two bounds to be compatible in the sense that

αi can be chosen such that both are satisfied for all i ∈ [N]. Therefore, when implemented, it is likely that the

network operator will be able to choose whether speed or accuracy is more critical for the specific problem. If

June 17, 2020 DRAFT

17

0 10 20 30 40 50 60 70 80 90 100

% Reduction in q

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
rr

o
r

B
o

u
n

d

Regularization vs Relative Cost Error

q
initial

 = 0.99

q
initial

 = 0.95

q
initial

 = 0.85

q
initial

 = 0.70

q
initial

 = 0.50

q
initial

 = 0.30

q
initial

 = 0.01

Fig. 1. The percent reduction in q due to regularization plotted vs the relative cost error bound that regularization induces, with different lines

plotting this relationship for QPs with different initial values for q.

speed is mission-critical, then agents may select the smallest regularizations required to match that speed, and if

accuracy is mission-critical, agents may select the largest regularizations that obey the specific error bound.

IX. SIMULATION

To visualize the trade-off between speed and error when regularizing, we generate seven QPs, each with 100

diagonally dominant blocks. The QPs are generated to have initial convergence parameters of qinitial = 0.99, 0.95,

0.85, 0.70, 0.50, 0.30, and 0.01. For each QP, A is independently chosen according to Theorem 6 such that q is

reduced by percentages ranging from 0% to 100%, and this percentage reduction is plotted against the corresponding

error bound given by Theorem 7 in Figure 1. For example, the data for the QP with qinitial = 0.85 is plotted by the

yellow dotted line in Figure 1, and one can see that if this QP is regularized to reduce q by 10% (i.e., a reduction

from 0.85 to 0.765), the relative error in cost can be upper bounded by approximately ε = 18%.

There are two main takeaways from Figure 1. The first is that, as expected, larger regularizations result in a

larger relative error bound, which is upper bounded by 1. This is because q → 0 as A→∞, f(x̂A)→ 0 as A→ 0,

and ε → 1 as f(x̂A) → 0. The second is that the larger qinitial is, the more sensitive the error bound for the QP

is to regularizing. That is, if qinitial is thought of as a condition number, then “poorly conditioned" QPs will have

larger errors due to regularizing.

A second simulation was run to demonstrate the convergence properties due to regularizing. One QP was generated

with 100 blocks and qinitial = 0.85. Three different regularization matrices were chosen according to Theorem 6,

called A5, A15, and A45, such that q is reduced by 5%, 15%, and 45%, respectively. The blocks are then distributed

among 100 agents, who have a 10% chance of computing an update and a 1% chance of transmitting a state to

each other agent at each timestep. Four simulations were run, one solving the unregularized QP, and three others

using each regularization matrix. The 2-norm of the system error to the unregularized solution, ‖x(k) − x̂‖2, is

June 17, 2020 DRAFT

18

0 100 200 300 400 500 600 700 800 900 1000

Iteration Number

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
 o

f
S

y
s
te

m
 E

rr
o

r
(F

ro
m

 U
n

re
g

u
la

ri
z
e
d

 S
o

lu
ti

o
n

) Convergence Comparison (System Norm)

Unregularized

5% Reduction

15% Reduction

45% Reduction

Fig. 2. Network error convergence of Algorithm 1 when unregularized vs regularizing such that q is reduced by 5%, 15%, and 45%.

plotted for each simulation against iteration number in Figure 2.

As expected, only the unregularized case converges to the unregularized solution, while the other cases converge

to other solutions whose distances to the unregularized solution grow with larger regularizations. However, the

cases with larger regularizations initially converge to x̂ faster, up to a point. That is, larger regularizations mean

the system will initially move toward x̂ faster, but will reach the turn-off point, where the system error grows

again, earlier and further away from x̂. This behavior suggests a vanishing regularization scheme, where A shrinks

to zero with time, may lead to accelerated convergence to the exact solution x̂. Note also that convergence even

in the unregularized case is non-monotone, and at times the norm of the system error may even grow due to the

asynchronous nature of of communications, but Theorem 2 guarantees these growths are bounded and error will

converge to zero.

X. CONCLUSIONS

We have developed a distributed quadratic programming framework that converges under totally asynchronous

conditions. This framework allows agents to select stepsizes and regularizations independently of one another, using

only knowledge of their block of the QP, that guarantee a specified global convergence rate and cost error bound.

Future work will apply these developments to quadratic programs with functional constraints.

REFERENCES

[1] Z.-Q. Luo and W. Yu, “An introduction to convex optimization for communications and signal processing,” IEEE Journal on selected

areas in communications, vol. 24, no. 8, pp. 1426–1438, 2006.

[2] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential

convex optimization and convex collision checking,” The International Journal of Robotics Research, vol. 33, no. 9, pp. 1251–1270, 2014.

[3] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and control for quadrotors,” in 2011 IEEE International Conference on

Robotics and Automation. IEEE, 2011, pp. 2520–2525.

June 17, 2020 DRAFT

19

[4] M. Chiang et al., “Geometric programming for communication systems,” Foundations and Trends R© in Communications and Information

Theory, vol. 2, no. 1–2, pp. 1–154, 2005.

[5] S. Shalev-Shwartz et al., “Online learning and online convex optimization,” Foundations and Trends R© in Machine Learning, vol. 4, no. 2,

pp. 107–194, 2012.

[6] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.

[7] A. I. Chen and A. Ozdaglar, “A fast distributed proximal-gradient method,” in 2012 50th Annual Allerton Conference on Communication,

Control, and Computing (Allerton). IEEE, 2012, pp. 601–608.

[8] M. Zhu and S. Martínez, “On distributed convex optimization under inequality and equality constraints,” IEEE Transactions on Automatic

Control, vol. 57, no. 1, pp. 151–164, 2012.

[9] A. Nedic, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus and optimization in multi-agent networks,” IEEE Transactions on

Automatic Control, vol. 55, no. 4, pp. 922–938, 2010.

[10] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-agent optimization,” IEEE Transactions on Automatic Control,

vol. 54, no. 1, p. 48, 2009.

[11] S. S. Ram, A. Nedić, and V. V. Veeravalli, “Distributed stochastic subgradient projection algorithms for convex optimization,” Journal of

opt. theory and applications, vol. 147, no. 3, pp. 516–545, 2010.

[12] I. Lobel and A. Ozdaglar, “Distributed subgradient methods for convex optimization over random networks,” IEEE Transactions on

Automatic Control, vol. 56, no. 6, pp. 1291–1306, 2011.

[13] I. Rodriguez-Lujan, R. Huerta, C. Elkan, and C. S. Cruz, “Quadratic programming feature selection,” Journal of Machine Learning

Research, vol. 11, no. Apr, pp. 1491–1516, 2010.

[14] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation: numerical methods. Prentice hall, 1989, vol. 23.

[15] R. Carli, G. Notarstefano, L. Schenato, and D. Varagnolo, “Distributed quadratic programming under asynchronous and lossy communi-

cations via newton-raphson consensus,” in 2015 European Control Conference (ECC). IEEE, 2015, pp. 2514–2520.

[16] A. Teixeira, E. Ghadimi, I. Shames, H. Sandberg, and M. Johansson, “Optimal scaling of the admm algorithm for distributed quadratic

programming,” in 52nd IEEE Conference on Decision and Control. IEEE, 2013, pp. 6868–6873.

[17] C.-P. Lee and D. Roth, “Distributed box-constrained quadratic optimization for dual linear svm,” in International Conference on Machine

Learning, 2015, pp. 987–996.

[18] K. Lee and R. Bhattacharya, “On the convergence analysis of asynchronous distributed quadratic programming via dual decomposition,”

arXiv preprint arXiv:1506.05485, 2015.

[19] A. Kozma, J. V. Frasch, and M. Diehl, “A distributed method for convex quadratic programming problems arising in optimal control of

distributed systems,” in 52nd IEEE Conference on Decision and Control. IEEE, 2013, pp. 1526–1531.

[20] M. Todescato, G. Cavraro, R. Carli, and L. Schenato, “A robust block-jacobi algorithm for quadratic programming under lossy

communications,” IFAC-PapersOnLine, vol. 48, no. 22, pp. 126–131, 2015.

[21] P. Wang, S. Mou, J. Lian, and W. Ren, “Solving a system of linear equations: From centralized to distributed algorithms,” Annual Reviews

in Control, 2019.

[22] W. Ren, R. W. Beard, and E. M. Atkins, “A survey of consensus problems in multi-agent coordination,” in Proceedings of the 2005,

American Control Conference, 2005. IEEE, 2005, pp. 1859–1864.

[23] J. Koshal, A. Nedić, and U. V. Shanbhag, “Multiuser optimization: Distributed algorithms and error analysis,” SIAM Journal on Optimization,

vol. 21, no. 3, pp. 1046–1081, 2011.

[24] M. T. Hale, A. Nedić, and M. Egerstedt, “Cloud-based centralized/decentralized multi-agent optimization with communication delays,” in

2015 54th IEEE Conference on Decision and Control (CDC), Dec 2015, pp. 700–705.

[25] M. T. Hale, A. Nedić, and M. Egerstedt, “Asynchronous multiagent primal-dual optimization,” IEEE Transactions on Automatic Control,

vol. 62, no. 9, pp. 4421–4435, 2017.

[26] M. Ubl and M. Hale, “Totally asynchronous distributed quadratic programming with independent stepsizes and regularizations,” arXiv

preprint arXiv:1903.08618, 2019.

[27] D. G. Feingold, R. S. Varga et al., “Block diagonally dominant matrices and generalizations of the gerschgorin circle theorem.” Pacific

Journal of Mathematics, vol. 12, no. 4, pp. 1241–1250, 1962.

June 17, 2020 DRAFT

20

[28] D. P. Bertsekas and J. N. Tsitsiklis, “Convergence rate and termination of asynchronous iterative algorithms,” in Proceedings of the 3rd

International Conference on Supercomputing, 1989, pp. 461–470.

[29] J. M. Varah, “A lower bound for the smallest singular value of a matrix,” Linear Algebra and its Applications, vol. 11, no. 1, pp. 3–5,

1975.

[30] D. S. Bernstein, Matrix Mathematics: Theory, Facts, and Formulas-Second Edition. Princeton university press, 2009.

Matthew Ubl is a PhD student at the University of Florida, where he is an Institute for Networked Autonomous Systems

Fellow and a recipient of the Graduate Student Preeminence Award. He received his Bachelor’s degree in Aerospace

Engineering from the University of Central Florida in 2018. His current research interests are in asynchronous multi-

agent coordination, with particular focus upon multi-agent optimization with impaired and unreliable communications.

Matthew Hale is an Assistant Professor of Mechanical and Aerospace Engineering at the University of Florida. He

received his BSE in Electrical Engineering summa cum laude from the University of Pennsylvania in 2012, and his

MS and PhD in Electrical and Computer Engineering from the Georgia Institute of Technology in 2015 and 2017,

respectively. He directs the Control, Optimization, and Robotics Engineering (CORE) Lab at the University of Florida,

and his research interests include multi-agent systems, mobile robotics, privacy in control, distributed optimization, and

graph theory. He was the Teacher of the Year in the UF Department of Mechanical and Aerospace Engineering for the

2018-2019 school year, and he received an NSF CAREER Award in 2020 for his work on privacy in control systems.

APPENDIX A

Proof of Lemma 1: By definition of the maximum norm,

‖B‖2,p = sup
‖x‖2,p=1

‖Bx‖2,p = sup
‖x‖2,p=1

max
i∈[N]

∥∥∥B[i]x
∥∥∥
2
.

Since B[i] =
[
B

[i]
1 B

[i]
2 ... B[i]

N

]
, we can now write B[i]x = B

[i]
1 x

[1] + B
[i]
2 x

[2] + ... +B
[i]
N x

[N]. Therefore,

‖B‖2,p = sup
‖x‖2,p=1

max
i∈[N]

∥∥∥B[i]
1 x

[1] + ... +B
[i]
N x

[N]
∥∥∥
2
.

By the triangle inequality, we have

‖B‖2,p ≤ sup
‖x‖2,p=1

max
i∈[N]

N∑
j=1

∥∥∥B[i]
j x

[j]
∥∥∥
2
.

The condition ‖x‖2,p = 1 implies
∥∥x[i]∥∥

2
≤ 1 for all i ∈ [N]. Therefore, for each element in the sum above, we

can write
∥∥∥B[i]

j x
[j]
∥∥∥
2
≤ sup‖x[j]‖

2
=1

∥∥∥B[i]
j x

[j]
∥∥∥
2

=
∥∥∥B[i]

j

∥∥∥
2
. Substituting this above completes the proof. �

June 17, 2020 DRAFT

21

APPENDIX B

Proof of Lemma 2: Because Q[i]
i = Q

[i]T

i � 0, we see that∥∥∥I − γiQ[i]
i

∥∥∥
2

= max
{∣∣∣λmin (I − γiQ[i]

i

)∣∣∣ , ∣∣∣λmax (I − γiQ[i]
i

)∣∣∣}
= max

{∣∣∣1− γiλmin (Q[i]
i

)∣∣∣ , ∣∣∣1− γiλmax (Q[i]
i

)∣∣∣} ,
which allows us to write ∥∥∥I − γiQ[i]

i

∥∥∥
2

+ γi

N∑
j=1
j 6=i

∥∥∥Q[i]
j

∥∥∥
2
< 1

if and only if both ∣∣∣1− γiλmin (Q[i]
i

)∣∣∣ < 1− γi
N∑
j=1
j 6=i

∥∥∥Q[i]
j

∥∥∥
2

and ∣∣∣1− γiλmax (Q[i]
i

)∣∣∣ < 1− γi
N∑
j=1
j 6=i

∥∥∥Q[i]
j

∥∥∥
2
.

The first inequality will be true if and only if both

λmin(Q
[i]
i) >

N∑
j=1
j 6=i

∥∥∥Q[i]
j

∥∥∥
2

(10)

and

γi <
2

λmin(Q
[i]
i) +

∑N
j=1
j 6=i

∥∥∥Q[i]
j

∥∥∥
2

,

and the second will be true if and only if both

λmax(Q
[i]
i) >

N∑
j=1
j 6=i

∥∥∥Q[i]
j

∥∥∥
2

and

γi <
2

λmax(Q
[i]
i) +

∑N
j=1
j 6=i

∥∥∥Q[i]
j

∥∥∥
2

. (11)

Taking the most restrictive of these conditions, we can write∥∥∥I − γiQ[i]
i

∥∥∥
2

+ γi

N∑
j=1
j 6=i

∥∥∥Q[i]
j

∥∥∥
2
< 1

if and only if Equations (10) and (11) hold. �

June 17, 2020 DRAFT

22

APPENDIX C

Proof of Theorem 1: For Assumption 5.1, by definition we have

X(s+ 1) =
{
y ∈ X : ‖y − x̂‖2,p ≤ qs+1Do

}
.

Since q ∈ (0, 1), we have qs+1 < qs, which results in ‖y − x̂‖2,p ≤ qs+1Do < qsDo. Then y ∈ X(s+ 1) implies

y ∈ X(s) and X(s+ 1) ⊂ X(s) ⊂ X , as desired.

For Assumption 5.2 we find

lim
s→∞

X(s) = lim
s→∞

{y ∈ X : ‖y − x̂‖2,p ≤ qsDo} = {x̂} .

The structure of the weighted block-maximum norm then allows us to see that ‖y − x̂‖2,p ≤ qsDo if and only if

‖y[i] − x̂[i]‖2 ≤ qsDo for all i ∈ [N]. It then follows that

Xi(s) =
{
y[i] ∈ Xi : ‖y[i] − x̂[i]‖2 ≤ qsDo

}
,

which gives X(s) = X1(s)× ...×XN (s), thus satisfying Assumption 5.3.

We then see that, for y ∈ X(s),∥∥∥θi(y)− x̂[i]
∥∥∥
2

=
∥∥∥ΠXi

[
y[i] − γi

(
Q[i]y + r[i]

)]
−ΠXi

[
x̂[i] − γi

(
Q[i]x̂+ r[i]

)] ∥∥∥
2
,

which follows from the definition of θi(y) and the fact that x̂[i] = ΠXi
[θi(x̂)]. Using the non-expansive property

of the projection operator ΠXi
[·], we find∥∥∥θi(y)− x̂[i]

∥∥∥
2
≤
∥∥∥y[i] − x̂[i] − γiQ[i] (y − x̂)

∥∥∥
2

=
∥∥∥(I [i] − γiQ[i]

)
(y − x̂)

∥∥∥
2

≤ max
i∈[N]

∥∥∥(I [i] − γiQ[i]
)

(y − x̂)
∥∥∥
2

= ‖(I − ΓQ) (y − x̂)‖2,p

≤ ‖I − ΓQ‖2,p‖y − x̂‖2,p,

which follows from our definition of the block-maximum norm. From Lemmas 1 and 2 we know ‖I − ΓQ‖2,p ≤ q < 1,

and using the hypothesis that y ∈ X(s), we find∥∥∥θi(y)− x̂[i]
∥∥∥
2
≤ q‖y − x̂‖2,p ≤ qs+1Do,

which shows θi(y) ∈ Xi(s+ 1) and Assumption 5.4 is satisfied. �

APPENDIX D

Proof of Theorem 2: Theorem 1 shows the construction of the sets {X(s)}s∈N satisfies Assumption 5, and from

[28] and [14] we see this implies asymptotic convergence of Algorithm 1 for all i ∈ [N]. The total asynchrony

June 17, 2020 DRAFT

23

required by Problem 1 is incorporated by not requiring delay bounds, and agents do not require any coordination in

selecting stepsizes because the bound on γi depends only upon Q[i], which means that all of the criteria of Problem

1 are satisfied. �

APPENDIX E

Proof of Theorem 3: From the definition of Do, for all i ∈ [N] we have xi(0) ∈ X(0). If agent i computes a

state update, then θi(xi(0)) ∈ Xi(1) and after one cycle is completed, say at time k, we have xi(k) ∈ X(1) for

all i. Iterating this process, after c(k) cycles have been completed by some time k, xi(k) ∈ X(c(k)). The result

follows by expanding the definition of X (c(k)). �

APPENDIX F

Proof of Theorem 4: If γi ≤ 2

λmax

(
Q

[i]
i

)
+λmin

(
Q

[i]
i

) , then

qi = 1− γi

λmin (Q[i]
i

)
−

N∑
j=1
j 6=i

∥∥∥Q[i]
j

∥∥∥
2

 ,

and if γi ≥ 2

λmax

(
Q

[i]
i

)
+λmin

(
Q

[i]
i

) , then

qi = −1 + γi

λmax (Q[i]
i

)
+

N∑
j=1
j 6=i

∥∥∥Q[i]
j

∥∥∥
2

 .

That is, when γi ≤ 2

λmax

(
Q

[i]
i

)
+λmin

(
Q

[i]
i

) , the relationship between qi and γi is a line with negative slope, and

when γi ≥ 2

λmax

(
Q

[i]
i

)
+λmin

(
Q

[i]
i

) the relationship is a line with positive slope. Then qi is minimized at the point

where the slope changes sign, which occurs when

γi =
2

λmax

(
Q

[i]
i

)
+ λmin

(
Q

[i]
i

) . (12)

If every qi has been minimized, then by definition q has been minimized. �

APPENDIX G

Proof of Lemma 6: To facilitate this proof, we first present the following facts to which we will repeatedly refer:

Fact 1: If B is a square matrix such that 0 < λmin(B) ≤ λmax(B), then λmax(B−1) = λ−1min(B).

Fact 2: If B is a square matrix such that 0 < λmin(B) ≤ λmax(B), then λmin(B2) = λ2min(B).

Fact 3: If B is a square matrix, then −λmax(B) = λmin(−B).

Fact 4: If B is a square matrix and C is an invertible matrix of the same dimension, then λi(C−1BC) = λi(B)

for all i.

Fact 5: If B = BT � 0 and C is an invertible matrix of the same dimension, then λi(CTBC) ≤ 0 for all i.

June 17, 2020 DRAFT

24

Facts 1-3 can be easily shown, Fact 4 simply states eigenvalues are invariant under a similarity transform, and

Fact 5 is a corollary of Sylvester’s Law of Inertia [30, Fact 5.8.17].

Bearing these facts in mind, we first rearrange the condition in the lemma statement to find

1√
ε
− 1 ≤ λmin(A−1Q)

1√
ε
≤ 1 + λmin(A−1Q) = λmin(I +A−1Q)

= λmin(A−1(A+Q)) = λmin(A−1P)

λ−1min(A−1P) ≤
√
ε.

From Fact 1, it follows that λmax(P−1A) ≤
√
ε and λ2max(P−1A) ≤ ε. From Fact 2, λmax((P−1A)2) ≤ ε, which

implies −ε ≤ −λmax((P−1A)2). From Fact 3,

−ε ≤ λmin(−(P−1A)2)

1− ε ≤ 1 + λmin(−(P−1A)2) = λmin(I − (P−1A)2)

= λmin((I + P−1A)(I − P−1A)).

Note that I − P−1A = P−1(P −A) = P−1Q, therefore

1− ε ≤ λmin((I + P−1A)P−1Q)

1− ε ≤ λmin((P−1 + P−1AP−1)Q).

Note that P−1 +P−1AP−1 = P−1 +P−1(P −Q)P−1 = 2P−1−P−1QP−1, therefore 1− ε ≤ λmin((2P−1−

P−1QP−1)Q), which implies

0 ≤ −(1− ε) + λmin((2P−1 − P−1QP−1)Q)

0 ≤ λmin(−(1− ε)I + (2P−1 − P−1QP−1)Q).

From Fact 3, 0 ≤ −λmax((1− ε)I− (2P−1−P−1QP−1)Q) and λmax((1− ε)I− (2P−1−P−1QP−1)Q) ≤ 0.

From Fact 4, taking C = Q−
1
2

λmax((1− ε)I −Q 1
2 (2P−1 − P−1QP−1)Q

1
2) ≤ 0.

Note that the matrix above is symmetric. Therefore, from Fact 5, taking C = Q−
1
2 , we have

λmax((1− ε)Q−1 − 2P−1 + P−1QP−1) ≤ 0.

Note that the matrix above is still symmetric. Therefore, we can write (1 − ε)Q−1 − 2P−1 + P−1QP−1 � 0,

which implies Q−1 − 2P−1 + P−1QP−1 � εQ−1.

This means that for any arbitrary vector x of dimension n, xT (Q−1− 2P−1 +P−1QP−1)x ≤ xT (εQ−1)x, and

xTQ−1x− 2xTP−1x+ xTP−1QP−1x ≤ εxTQ−1x.

June 17, 2020 DRAFT

25

Assuming x 6= 0, xTQ−1x is a positive scalar. Dividing both sides by this term gives

xTQ−1x− 2xTP−1x+ xTP−1QP−1x

xTQ−1x
≤ ε.

Because this relation is true for any arbitrary vector, we can choose x = r and multiply by −
1
2

− 1
2

to find

− 1
2r
TQ−1r − (1

2r
TP−1QP−1r − rTP−1r)
− 1

2r
TQ−1r

≤ ε,

and substituting returns the desired result. �

June 17, 2020 DRAFT

