
1

Model-Predictive Control for Discrete-Time
Queueing Networks with Varying Topology

Richard Schoeffauer1 and Gerhard Wunder2

Abstract—In this paper, we equip the conventional discrete-
time queueing network with a Markovian input process, that, in
addition to the usual short-term stochastics, governs the mid- to
long-term behavior of the links between the network nodes. This
is reminiscent of so-called Jump-Markov systems in control theory
and allows the network topology to change over time. We argue
that the common back-pressure control policy is inadequate to
control such network dynamics and propose a novel control policy
inspired by the paradigms of model-predictive control. Specifically,
by defining a suitable but arbitrary prediction horizon, our policy
takes into account the future network states and possible control
actions. This stands in clear contrast to most other policies which
are myopic, i.e. only consider the next state. We show numerically
that such an approach can significantly improve the control
performance and introduce several variants, thereby trading
off performance versus computational complexity. In addition,
we prove so-called throughput optimality of our policy which
guarantees stability for all network flows that can be maintained
by the network. Interestingly, in contrast to general stability
proofs in model-predictive control, our proof does not require the
assumption of a terminal set (i.e. for the prediction horizon to be
large enough). Finally, we provide several illustrating examples,
one of which being a network of synchronized queues. This one
in particular constitutes an interesting system class, in which our
policy exerts superiority over general back-pressure policies, that
even lose their throughput optimality in those networks.

Index Terms—Predictive Network Control, Model Predictive
Control, Jump-Markov Systems, Throughput Optimality

I. INTRODUCTION AND RELATED RESEARCH

Discrete-time queueing networks are used to model a variety
of scenarios, ranging from traffic control over parallel com-
puting to wireless communication. They are closely related to
the canonical control system

xt+1 = Axt +Btvt +Dtwt (1)

with some significant differences: i) The controls vt are binary
in nature and linearly constrained by Cvt ≤ c, e.g. due to
the interference properties of wireless channels. ii) The state
lives on the discrete set xt ∈ Nn where it exhibits no inertia
(A = I). iii) And crucially, the matrices Bt and Dt behave
stochastically, implying that the effect of a control decision is
not certain. Together with the class of back-pressure control
policies, those systems form a well investigated subclass of
control problems.

The prototype back-pressure policy, that we will call the
max-weight policy (MW), was first introduced in [1], where
the authors also proved its much praised property of being

1 richard.schoeffauer@fu-berlin.de, 2 gerhard.wunder@fu-berlin.de
Both authors are members of the Heisenberg Communication and Informa-

tion Theory Group at Freie Universitt Berlin

throughput optimal. This means, that MW can manage any
load of traffic, provided this load can somehow be supported
by the network topology. Over time, many variations of MW
where developed, e.g. to allow for a generalized control objec-
tive [2] [3], or to increase its performance in special cases like
networks with input-queued switches or time-varying channels
[4] [5]. Specific shortcomings of MW, like e.g. high end-to-
end delay, where investigated in [6] [7] [8] and later partially
remedied by [5] [8] [9] [10], using e.g. shortest path algorithms
to reduce delay especially in low traffic scenarios.

In this paper, we propose a novel control policy that is
predictive in nature and that we will call predictive network
control (PNC). It can be regarded as a generalization of MW,
since it contains MW as a special case. But while MW and all
its derivations are myopic, i.e. only aim to improve the system
state for the immediate next time slot, PNC aims to improve
the system state for multiple time slots up until a prediction
horizon. This leads to the calculation of an entire optimal
trajectory of control vectors. However, instead of applying
the entire trajectory for the next few time slots, only the first
control vector is applied to the system and the process repeats
in the consecutive time slot. This allows the controller to react
to any unforeseen changes in the control system [11].

Such a control scheme is called model-predictive control
(MPC), and therefore PNC is a realization of MPC, tailored
specifically towards queueing networks. MPC itself is a well
established branch of control theory and can cope very easily
with hard constraints and non-linearities, making it particularly
suited for our control problem. However, its advantages are
payed for by high requirements on computational resources. So
far, there has only been one attempt to bring MPC to queueing
networks: In [12] the authors focus on a special case of the
standard model, in which only the arrivals to the system are
of stochastic nature. The investigation is limited to numerical
simulations, which show better system performance (smoother
time behavior) for a designed MPC controller compared to
simple feedback control laws. Since our queueing network will
include a much higher degree of stochastics, we will not follow
up on their work.

Because a queueing network misses any inertia (A = I), a
predictive control scheme can only tap into its full potential,
if the stochastics for Bt (or Dt) are complex enough. E.g. if
both matrices behave according to white-noise, prediction over
more than the next time slot yields close to no improvement
over myopic strategies. Hence, the benefit of a predictive con-
trol scheme usually increases with complexity of the system
model. Therefore, we let Bt (the matrix which is responsible
for the topology and the quality of the links between the nodes

ar
X

iv
:2

00
4.

01
98

5v
1

 [
ee

ss
.S

Y
]

 4
 A

pr
 2

02
0

2

of the network) be governed by a discrete-time Markov chain
(DTMC) and a Bernoulli trial. This gives the opportunity to
model long-term and short-term effects, respectively. Take e.g.
wireless relay networks with user mobility: here, short-term
interference leading to packet loss can be modeled by the
Bernoulli trial, while long-term change in channel quality due
to the mobility can be expressed by the DTMC [13].

Control systems, in which the model parameters change
according to a DTMC are called Jump-Markov systems (JMS).
(Since simple feedback controllers cannot detect this change,
JMS are usually controlled with MPC controllers). There exist
several control approaches towards JMS, covering cases with
linear [14] [15] [16] and even nonlinear system dynamics
[17] [18], where the referenced works mainly differ in the
choice of considered constraints. However, all these works
deal with conventional control systems, where the controller
usually tries to follow a reference trajectory and noise (wt)
represents a stochastic disturbance with zero first moment. In
contrast, from the perspective of queueing networks, the noise
term represents the arrival of packets/customers whose first
moment is strictly positive, and the controller tries to maintain
finite queues for any given arrival (hence, there is no need for
a reference trajectory). For that reason, prior work on JMS is
only partially applicable to our systems. To the best of our
knowledge, we are the first to consider both JMS and MPC
in the context of discrete-time queueing networks.

Our contribution is three-folded: i) We develop a JMS-
adapted discrete-time queueing network and introduce a family
of predictive control policies, based on the paradigms of MPC.
ii) We proof throughput optimality (the equivalent of stability)
for the most simple of our predictive control policies, thereby
implying the same for the rest. And iii) we show the benefit
of these policies over the conventional back-pressure control
(MW), using numerical simulation. In particular, our policies
seem to maintain their throughput optimality in networks with
synchronized queues, making them unique.

II. SYSTEM MODEL & PREREQUISITES

A. System Model
We begin by stating the constituting equation for our system

model and clarify its components afterwards. Similar to the
conventional control system, a discrete-time queueing network
can be expressed by its one-step evolution and associated
constraints

qt+1 = qt +RMtvt + at (2)

subject to(
Cvt ≤ c

−R−vt ≤ qt

)
and

 Mt ∼ B(W st)

W st ∈ {W 1, . . .Wns}
(st) ∼ DTMC({1, . . . ns}, P, s0)

The queue vector qt =

(
q1t . . . q

nq

t

)ᵀ ∈ Q = Nnq represents
the system- (or queue-) state, where qit counts the number of
packets, waiting in queue i = 1, . . . nq in time slot t. Each
queue itself is a node of the network.

In any time slot, packets can be transmitted from one queue
to another if there exists a directed link between the two and

the link is activated. There are nv links, each of which can be
represented by a vector rj ∈ {−1, 0,+1}nq (j = 1, . . . nv),
that, by superpositioning with qt, transfers a packet from one
queue ({−1}) to another ({+1}). All links are collected as
columns in the routing matrix R ∈ {−1, 0,+1}nq×nv which
therefore holds the topology.

[Remark: In conventional networks, a link has exactly one
{−1} entry (origin) and at most one {+1} entry (destination).
This implicit constraint is a prerequisite for all back-pressure
policies to develop their throughput optimality. Though we
will also use this constraint throughout the paper, our novel
control policies seem to maintain their throughput optimality
even when it is violated (see section V-B), allowing us to
control networks with synchronized queues.]

The controller may activate a link in a given time slot via
the binary control vector vt ∈ {0, 1}nv . If we could activate
all links simultaneously (vt = 1nv), the control problem
would become trivial. However, we are usually constrained
in the activation (e.g. due to interference properties) by the
constituency constraint Cvt ≤ c. The dimensions of C
and c are case dependent, their entries are from the set N.
Furthermore, a packet can only be scheduled for transmission,
if it is present at the corresponding queue, hence a packet may
only traverse a single link per time slot. We will refer to this as
the positiveness constraint, which is readily implemented by
considering the maximum one-step efflux of the system, which
is R−vt, where R− is equal to R without its positive entries.
Naturally, the maximum efflux cannot drain more packets than
are actually present: qt + R−vt ≥ 0. Note that this also
guarantees that qt ∈ Nnq .

For clarification, we refer to Fig. 1. Here, we stated topol-
ogy and constituency matrices and derived the corresponding
constraints. Given only C and c, both components of vt could
be active simultaneously. However, if q2 is empty (q2 = 0), it
is not possible to activate the second link r2.

Fig. 1: Minimal Example of a Queueing Network

Still, even an activated link rj might fail in its transmis-
sion, leaving source and destination queue unchanged. This
is modeled by a stochastic variable mj

t ∈ {0, 1} which is
Bernoulli distributed (coin-flip) with probability m̄j

t ∈ [0, 1].
I.e. mj

t ∼ B(m̄j
t). For a succinct notation, we collect all those

quantities in the diagonal matrices Mt = diagj=1,...nv
{mj

t}
and M̄t = diagj=1,...nv

{m̄j
t} respectively such that Mt ∼

B(M̄t) and of course E[Mt] = M̄t.
The Bernoulli trials on M̄t are intended to model short-term

stochastics. For long-term stochastics, we let M̄t be picked
from a predetermined set W = {W 1,W 2, . . . } of weight
matrices W i according to a DTMC (st). If S = {1, . . . ns} is

3

the index set of W , we have (st) ∼ DTMC(S, P, s0) where
P and s0 are transition matrix and initial state, respectively.
The entire selection process can therefore be expressed as
M̄t = W st . If σt describes a distribution for the DTMC, we
have limt→∞ σt = π, which we assume to be the only stable
distribution, with πs being the average probability of st = s.

The task for a controller is to steer the packets through the
network to their destination nodes. Once reached, the packets
leave the system, which can be modeled via links rj without
the {+1} entry. At the same time, new packets are created
directly at the queues through an arrival vector at ∈ Nnq of
possibly stochastic nature. We call ā = E[at] the arrival rate
and make the usual assumption, that there is an upper bound,
such that always at ≤ â.

Finally, we remark that if different packets are destined for
different final destination nodes, they are of different class
(or belong to a different flow). Each class has to have its
separate network of queues in order for the packets to be
distinguishable. Thus, for each class a new copy of the system
would have to be employed. While many authors model this by
adding an additional dimension (the dimension of all classes)
to all quantities, we will just assume, that the so far described
system model already consists of those copies, stacked in
a suitable way, thereby avoiding the introduction of another
dimension to the system model.

B. Control Policies and Throughput Optimality

We already defined qt ∈ Q and st ∈ S. Note that (st) is a
DTMC and qt−1 is not needed for a prediction of future states
once qt is known. If we further assume the arrival vector to
be independent of past realizations, there is no reason for a
controller to use any but the last known realizations of qt and
st for its decision making. If we also define the set of all
control vectors by

V =
{
v ∈ {0, 1}nv

∣∣ Cv ≤ c } (3)

then we can express a control policy φ as a mapping from
the set of relevant, observed quantities onto the set of control
vectors: φ : Q × S → V . In some cases, however, it makes
sense to incorporate a stochastic process into the policy itself,
in order to circumvent the discreteness of V . This way, given
a fixed pair of observations (q′, s′), we can not only access a
fixed v′ = φ(q′, s′) ∈ V , but on average any predetermined
element

∑
v∈V λ

vv of the convex hull conv(V). Hence we
define a control policy as

φ : Q× S × Ω→ V (4)

where Ω is the sample space of the underlying stochastic
process. (Remember that a control policy is only valid, if it
complies with R−φ(qt, st, ωt) ≤ qt.)

We say that a control policy φ stabilizes a system for a
given arrival rate ā if it can compensate the arrival rate on
average:

0 = lim
τ→∞

1

τ

τ∑
t=1

(
at +RMtφ(qt, st, ωt)

)
= ā +

∑
s∈S

πsRW sφ(qt, s, ωt)
(5)

Comparing with the system equation (2), this implies that the
average queue state remains bounded.

Finally, a control policy φ is throughput optimal, if it
stabilizes a given system for any arrival rate ā for which
at least one other (possibly unknown) policy stabilizes the
system. This can readily be expressed by noting that a policy
vt = φ(st, ωt) can on average, for every state of S sepa-
rately, excess any predetermined element in the interior of the
convex hull conv(V). Note that this excludes the boundary
of conv(V), because due to the positiveness constraints, no
policy can guarantee to never be forced to be idle (meaning
vt = 0). Naturally, there are no other options for the average
control vector than those in conv(V). Thus, φ is throughput
optimal, if it stabilizes the system for all ā with

ā+
∑
s∈S

πsRW s
∑
v∈V

λs,vv = −ε1nq

λs,v ≥ 0∑
v

λs,v ≤ 1 (6)

where ε > 0 is used to exclude the boundary of conv(V).

III. PREDICTIVE NETWORK CONTROL (PNC)

Inspired by the common MPC paradigms, our novel control
policy, PNC, works in 3 steps: i) An entire trajectory of
optimal control decisions from t up until t+H−1 is calculated
as the result of a minimization of an objective function J .
Here, J is a function of the next H future system states,
which we can only predict. H is called the prediction horizon.
ii) Only the first (i.e. the immediate) control decision in this
trajectory is actually applied to the system. iii) The process
repeats (discarding the rest of the just calculated trajectory).
W.l.o.g., for the rest of the paper, we assume the current time
slot to be t = 0.

The most often encountered objective is the sum of squares,
which in our case translates to

J(q0, s0) = E

[
H∑
t=1

qTt qt

∣∣∣∣∣ q0, s0
]

(7)

Using this definition, minimizing J means minimizing the
amount of packets in the network, which can only be done by
delivering the packets to their destinations. Over the system
evolution (2), J will be influenced by the choice of control
vectors via

E[qT | q0, σ0] = q0 +

T−1∑
t=0

∑
s∈S

(
σ0P

(t)
)s
RW svt + T ā (8)

where σ0 is the distribution corresponding to the initial state
s0 and

(
σ0P

(t)
)s

stands for the s-th entry of the predicted
distribution in time slot t.

Note, that the prediction can be implemented in three
different ways, varying in precision and required effort:

i) The first one is the true prediction, which assigns a control
vector to every time slot (up until H) and every possible set of
realizations of the quantities in the system evolution. Since the
ensemble of these realizations in time slot t forms qt+1 and
st+1, this would mean making vt a function of qt and st for
the remainder of the prediction. The number of control vectors,
required for such a prediction amounts to H ·ns ·kq , where kq

4

is the number of all possible queue states, that can be realized
in a single time slot (likely to depend itself on prior queue
state, realization of arrival and Bernoulli trial). This obviously
requires the maximum amount of computational resources
but allows us to truly find the optimal control trajectory that
minimizes J .

ii) In contrast, a relaxed prediction uses only a minimum
of control vectors. I.e. in every time slot, a single control
vector is chosen and thus vt is only a function of t for the
remainder of the prediction. (Using even less control vectors
would not constitute a meaningful prediction for our purposes.)
This amounts to only H control vectors being required for the
prediction, speeding up the calculation of an optimal control
trajectory to minimize J considerably. However, said trajectory
might be sub-optimal compared to the true prediction from
before and as a consequence the control performance might
be worse.

iii) Finally, a mixture of both cases could be implemented,
finding a balance between computational complexity and con-
trol performance. E.g. one could consider every future DTMC
state st (up until sH) leading to H · ns control vectors that
have to be determined in order to minimize J .

We will define or policy via case ii), i.e. the relaxed
prediction and explain the reasoning for this in the end of the
section. For what follows, we substitute the control vector vt
with ut to emphasize, that this is not the actual control of the
queueing network but rather the one used for the prediction.
Hence, ut is a quantity that is used internally to define the
PNC policy according to

E[qT | q0, σ0] = q0 +

T−1∑
t=0

∑
s∈S

(
σ0P

(t)
)s
RW sut+T ā (9)

If we define the trajectory

ũH−10 =

 u0
...

uH−1

 (10)

and substitute it together with (9) into (7), the objective can
be rewritten as

J(q0, s0) = J1(q0) +J2(q0, s0)ũH−10 +
(
ũH−10

)ᵀ
J3(s0)ũH−10

As can be seen, J1(q0) will not be influenced by the mini-
mization over ũH−10 , and J3(s0) will stay bounded, since it is
not dependent on q0. Therefore, for large enough q0, the linear
term J2(q0, s0)ũH−10 will always dominate the minimization
over ũH−10 , making it prudent to define our actual objective
only over this linear term. This simplifies the minimization
from a quadratic to a linear one. (Note that a similar step is
also taken in the definition of the MW policy.) Expanding the
remaining constraints from the original system in a straight
forward way, we end up with the following definition of the

PNC policy:

φPNC(q0, s0) = first arg min
ũH−1
0

J2(q0, s0)ũH−10

subject to

C̃ũH−10 ≤ c̃
ÃũH−10 ≤ b̃(q0)

ũH−10 ∈ {0, 1}Hnv

(11)

where first arg min() expresses that only the first argument of
the trajectory is used as output. An overview of the utilized
quantities can be found in Table I.

Choosing H = 1, we end up with the common MW
policy, which is not surprising, since its definition also involves
a quadratic objective. And indeed, PNC would merely be
the extension of MW over multiple time slots, if the PNC
controller would follow a once calculated optimal trajectory
to its end (i.e. for H time slots). However, PNC recalculates
this trajectory each time slot, thereby discarding its entire tail.
This results in a much improved behavior of PNC (see section
V-B) but also makes it impossible to infer any properties from
MW to PNC. For more comparisons between the two policies,
we refer to [19] and [20].

We continue with the main theorem of this paper, which
states throughput optimality of the PNC policy. Note that this
automatically implies throughput optimality for every other
MPC controller, that uses a more precise prediction (under
the same constraints and objective function).

Theorem 1. The PNC policy (11) is throughput optimal for
the system (2).

IV. PROOF OF THEOREM 1

We will now prove, that φPNC is throughput optimal. And
in contrast to the usual stability-related proofs employed for
MPC controllers, we will not rely on a terminal set.

A. Preliminaries

It will often become necessary to upper and lower-bound
certain expressions. We will use Ki ∈ R+, i ∈ N to denote
those bounds or variables, whose values are of no further
interest and are obvious to calculate. Crucially, any Ki will
be independent of the initial system state q0!

We will use gothic letters to express realizations of random
variables, such that e.g. st is a realization of st, hence st ∈ S.
And because the corresponding set of realizations will always
be very clear from the context, we will use the succinct
notation

∑
st

instead of
∑

st∈S for the sum of all realizations
(as is needed for e.g. expressing the expectation).

Given a trajectory x̃ of control vectors of certain length, we
use x̃ ∈ P(q0), to express that x̃ abides to the positiveness
constraints Ãx̃ ≤ b̃(q0), where Ã and b̃(q0) are defined as in
(15), expect for a possibly different value of H (depending on
the length of x̃). Analogue, x̃ ∈ C will express, that x̃ abides
to the constituency constraints as in (14).

Finally, we make the definitions ∆T
0 := qT − q0. Keep

in mind, that analogue to qt being a function of all prior

5

TABLE I: Extended Formulas for the Optimization Problem

Expected value of weight matrix W st Linear objective J2

W̄t(s0) = E[W st | s0]

=
(
σ0P

(t) ⊗ Ins

)
W 1

W 2

...
Wns

ᵀ

(12) J2 = 2qᵀ0R

HW̄0(s0)

(H − 1)W̄1(s0)
...

W̄H−1(s0)

ᵀ

+ āᵀR

(H + 1)(H − 0)W̄0(s0)
(H + 2)(H − 1)W̄1(s0)

...
2HW̄H−1(s0)

ᵀ

(13)

Constituency constraints Positiveness constraints

(
IH ⊗ C

)
︸ ︷︷ ︸

C̃

ũH−10 ≤ 1H ⊗ c︸ ︷︷ ︸
c̃

(14)

R−

R R−

...
. . .

R . . . R R−

︸ ︷︷ ︸

Ã

ũH−10 ≤

q0

q0 + ā
...

q0 + (H − 1)ā

︸ ︷︷ ︸

b̃(q0)

(15)

stochastics and controls, ∆T
0 is of course a function of all

stochastics and controls in the time slot 0, . . . T − 1. With the
definition ‖qt‖ := qᵀt qt (which is not meant to be a norm) this
gives raise to

‖qT ‖ =
∥∥∆T

0

∥∥+ ‖q0‖+ 2qᵀ0∆T
0 (16)

Note, that this decomposition corresponds to the one for the
objective function J and we can now restate the objective of
the PNC policy, J2, as

J2(q0, s0) = E

[
H∑
t=1

2qᵀ0∆t
0

∣∣∣∣∣ q0, s0
]

(17)

With this notation we formulate the next lemmas, needed for
the proof.

Lemma 2. The difference ∆T
0 between two queue states is

bounded (element-wise) by

− Tnv1nq ≤ ∆T
0 ≤ Tnv1nq + T â (18)

leading to

‖q0‖+ 2qᵀ0∆T
0 ≤ ‖qT ‖ ≤ ‖q0‖+ 2qᵀ0∆T

0 +K1 (19)

Proof. Between time slots 0 and T we have at best a constant
efflux of nv or at worst a constant influx of nv + â packets
per queue per time slot (since there are at most nv links to
fill or drain any given queue).

Lemma 3. The difference between the minimization that
originates from the definition of the PNC policy (using the

formulation from (17)), and the same minimization but without
considering any positiveness constraints can be bounded by

min
ũH−1
0 ∈C∩P(q0)

E

[
H∑
t=1

2qᵀ0∆t
0

∣∣∣∣∣ q0, s0
]

− min
ũH
0 ∈C

E

[
H∑
t=1

2qᵀ0∆t
0

∣∣∣∣∣ q0, s0
] (20)

≤
(
Hn2

v − nv
)

(H + 1) = K2

Proof. Clearly, the maximum deficit, that ∆t
0 can generate is

(element-wise) less than tnv1nq (all links drain a queue over
t steps). For a single queue, the most efflux in H time slots
is Hnv packets. Hence, if q0 ≥ Hnv1nq

, a control trajectory
cannot violate the positiveness. Conversely, if a link cannot
be activated due to the positiveness constraints, at least one
entry of q0 must be smaller than Hnv .

Due to the linearity, the largest difference in the minimiza-
tions will be found, if q0 = (Hnv − 1)1nq

(possibly denying
any activation for the minimization with the positiveness
constraints). This, together with the initial bound on ∆t

0 leads
directly to

H∑
t=1

2(Hnv − 1)1ᵀ
nq
tnv1nq =

(
Hn2

v − nv
)

(H + 1) (21)

which is an upper bound for the difference in question.

Finally, the following theorem will allow us to express our
definition of stability by the means of a Ljapunov function.

Lemma 4. A policy φ stabilizes the system (2) under a certain
arrival rate ā, if we can find a function f : Q×S → R+ with
the property

E[f(q1, s1)− f(q0, s0) | q0] ≤ K4 −K51
ᵀ
nq
q0 (22)

6

Proof. Without further ado, we take expectations and sum (22)
over multiple time slots to obtain the following sequence of
arguments

E[f(qT , sT)]− E[f(q0, s0)] ≤ TK4 −K5

T−1∑
t=0

E
[
1ᵀ
nq
qt

]
=⇒ −E[f(q0, s0)] ≤ TK4 −K5

T−1∑
t=0

E
[
1ᵀ
nq
qt

]
=⇒ 1

T

T−1∑
t=0

E
[
1ᵀ
nq
qt

]
≤ K4

K5
+

E[f(q0)]

TK5
(23)

=⇒ lim
T→∞

1

T

T−1∑
t=0

E[qt] ≤
K4

K5
1nq

Since E[qt] ≥ 0 always, and the difference between consecu-
tive states is bounded, all elements of the sequence (E[qt])
must be bounded. From there, the stability condition (5)
follows immediately. (Note that E[·] is the expectation of the
stochastic in the system model and not over time.)

B. Main Proof

We now start with the main part of the proof. We will define
a Ljapunov function f(qt, st) and show that if the system
is governed by the PNC policy, f fulfills Lemma 4 for any
possibly stabilizable arrival rate (see (6)).

For a PNC policy with horizon H + 1, we employ the
following Ljapunov function:

f(q0, s0) = min
z̃H−1
0 ∈Cz

E

[
H∑
t=1

‖qt‖

∣∣∣∣∣ q0, s0
]

(24)

A few remarks are in order: i) The minimization in f mimics
the PNC policy, but is in fact independent of it. ii) The horizon
of the minimization of f is chosen to be one step smaller
than that of the PNC policy. iii) The control vectors are now
denoted by z instead of v or u, because they run independent
of the actual control vt or the predicted control inside the
PNC controller ut. Crucially, the control trajectory z̃H−10 is
state sensitive regarding the DTMC (st) of the weight matrices
and is not constraint by the positiveness constraints P . I.e.

E[qT | q0, σ0] = q0 +

T−1∑
t=0

∑
s∈S

(
σ0P

(t)
)s
RW szt(s) +T ā

(25)

This last point is important: the minimization of the actual
PNC policy (with horizon H + 1) uses the control trajectory
ũH0 , which assigns to each time slot of the prediction a single
control vector ut ∈ V . In contrast and per definition, the
minimization in the Ljapunov function f uses the control
trajectory z̃H−10 , which assigns to each time slot and each
possible realization of st a control vector zt(st) ∈ V . For
succinct notation we define zst := zt(st = s). The trajectory

of the control vectors zst is defined by first stacking over all
realization of (st) and then over all time slots:

z̃H0 =

z′0
z′1
...
z′H

 , with z′t =

z1t
z2t
...
zns
t

 (26)

The constraint z̃H−10 ∈ Cz in the definition of f expresses,
that each single control vector zst is constraint by the con-
stituency in the usual way (Czst ≤ c), and therefore Cz is a
straight forward expansion of C.

We can now start expressing the first term of (22) (for now
conditioning on s0 as well) as

E[f(q1, s1) | q0, s0] = E

[
min
z̃H1 ∈C

E

[
H+1∑
t=2

‖qt‖

∣∣∣∣∣ q1, s1
] ∣∣∣∣∣ q0, s0

]
(27)

Note that this term is shifted in time. The control v0, that
leads from q0 to q1 is exactly the control, that is defined by
the control policy v0 = φPNC and that actually affects the
network. In contrast, the dummy controls z̃H1 are part of the
function f , do not affect the actual network and therefore are
independent of the chosen policy.

Using (16) the inner term of (27) can become

H+1∑
t=2

‖qt‖ =

H+1∑
t=2

(
‖q0‖+

∥∥∆t
0

∥∥+ 2qᵀ0∆t
0

)
≤ H ‖q0‖+K6 +

H+1∑
t=2

(
2qᵀ0∆t

0

)
The individual sums of ∆t

0 can be bounded according to (18)
by some constant K6 which is unaffected by the minimization
or the expectation from (27). The same holds for ‖q0‖ if we
notice, that conditioning on q1 is the same as conditioning on
q0 and ∆1

0, since q1 = q0 + ∆1
0. Hence, both terms can be

pulled to the left-hand-side of (27), as seen in the first two
lines of (28). In what follows, we will step by step dissolve
the outer expectation and expand the sum, which is possible,
since the minimization is linear in z̃H1 and the constraints act
on each control vector separately:

E[f(q1, s1) | q0, s0]−H ‖q0‖ −K6 (28)

≤ E

[
min
z̃H1 ∈Cz

E

[
H+1∑
t=2

2qᵀ0∆t
1

∣∣∣∣∣ q1, s1
] ∣∣∣∣∣ q0, s0

]

= E

[
min
z̃H1 ∈Cz

E

[
H+1∑
t=2

2qᵀ0∆t
1

∣∣∣∣∣ q0,∆1
0, s1

] ∣∣∣∣∣ q0, s0
]

=
∑
q0,s1

min
z̃H1 ∈Cz

E

[
H+1∑
t=2

2qᵀ0∆t
1

∣∣∣∣∣ q0, s1
]
P[q0, s1 | q0, s0]

=
∑
q0,s1

min
z̃H1 ∈Cz

E

[
H∑
t=1

H∑
τ=t

2qᵀ0 (RMtz
st
t + at)

∣∣∣∣∣ q0, s1
]

·P[q0 | q0]P[s1 | s0]

7

=
∑
s1

min
z̃H1 ∈Cz

E

[
H∑
t=1

H∑
τ=t

2qᵀ0 (RMtz
st
t + at)

∣∣∣∣∣ q0, s1
]

·P[s1 | s0]

=
∑
s1

min
z̃H1 ∈Cz

H∑
t=1

H∑
τ=t

∑
st

2qᵀ0 (RW stzstt + at)P[st | s1]

·P[s1 | s0]

= min
z̃H1 ∈Cz

∑
s1

H∑
t=1

H∑
τ=t

∑
st

2qᵀ0 (RW stzstt + at)P[st | s1]

·P[s1 | s0]

= min
z̃H1 ∈Cz

H∑
t=1

H∑
τ=t

∑
st

2qᵀ0 (RW stzstt + at)P[st | s0]

= min
z̃H1 ∈Cz

E

[
H∑
t=1

H∑
τ=t

2qᵀ0 (RMtz
st
t + at)

∣∣∣∣∣ q0, s0
]

= min
z̃H1 ∈Cz

E

[
H+1∑
t=2

2qᵀ0∆t
1

∣∣∣∣∣ q0, s0
]

= min
z̃H1 ∈Cz

E

[
H+1∑
t=1

2qᵀ0∆t
0 − 2qᵀ0∆1

0

∣∣∣∣∣ q0, s0
]

≤ min
z̃H1 ∈Cz

E

[
H+1∑
t=1

2qᵀ0∆t
0

∣∣∣∣∣ q0, s0
]
− min
z̃00∈Cz

E

[
2qᵀ0∆1

0

∣∣∣∣∣ q0, s0
]

(29)

Though ∆1
0 is steered by v0 (the actual control of the system),

every policy has to abide to the constituency, which allows for
the last term to be formulated over z̃00 ⇔ zs00 . Still, the first
term of (29) depends on v0 through ∆t

0 so that we can rewrite
it as

min
z̃H1 ∈Cz

E

[
H+1∑
t=1

2qᵀ0∆t
0

∣∣∣∣∣ q0, s0
]

=
(H + 1) (H + 2)

2
ā

+ min
z̃H1 ∈Cz

2qᵀ0R

[
H∑
0

W s0v0 +

H∑
t=1

H∑
τ=t

∑
st

W stzstt P[st | s0]

]
(30)

To interface the PNC policy (11), we need to incorporate
the positiveness constraints. To that end, we introduce a
transformation in variables, centered around the idea, that each
set {z1t , . . . z

ns
t } can be expressed by a common part µt, and

ns differences δit:

zit = µt + δit ∈ Cz
for t = 1, . . . H and i = 1, . . . ns

with µt, δ
i
t ∈ {0, 1}nv and Cµt ≤ c

(31)

We define a suitable stacking of these new variables in such
a way that z̃H1 = µ̃H1 + δ̃H1 and write δ̃H1 ∈ Cz \ µ̃H1 , to
express that δ̃H1 has to abide to usual constituency, if µ̃H1 has
already been chosen (i.e. for each δit separately it must hold
that Cδit ≤ c− Cµt).

Next, we substitute these variables into the last term of
(30).

min
z̃H1 ∈Cz

2qᵀ0R

[
H∑
0

W s0v0 +

H∑
t=1

H∑
τ=t

∑
st

W stzstt P[st | s0]

]

= min
µ̃H
1 +δ̃H1 ∈Cz

2qᵀ0R

[
H∑
0

W s0v0

+

H∑
t=1

H∑
τ=t

∑
st

W st (µt + δstt)P[st | s0]

]

= min
δ̃H1 ∈Cz\µ̃H

1

min
µ̃H
1 ∈C

2qᵀ0R

[
H∑
0

W s0v0

+

H∑
t=1

H∑
τ=t

(∑
st

W stP[st | s0]

)
µt

+

H∑
t=1

H∑
τ=t

∑
st

W stδstt P[st | s0]

]

= min
δ̃H1 ∈Cz\µ̃H

1

min
µ̃H
1 ∈C

2qᵀ0R

[
H∑
0

W s0v0

+

H∑
t=1

H∑
τ=t

W̄t(s0)µt

+

H∑
t=1

H∑
τ=t

∑
st

W stδstt P[st | s0]

]

≤ min
δ̃H1 ∈Cz\µ̃H

1

min
(0ᵀ

nv ,(µ̃H
1)

ᵀ
)
ᵀ∈C∩P(q0)

2qᵀ0R

[
·

]
PNC
= min
δ̃H1 ∈Cz\µ̃H

1

min
(vᵀ0 ,(µ̃H

1)
ᵀ
)
ᵀ∈C∩P(q0)

2qᵀ0R

[
·

]
Lemma 3
≤ K7 + min

δ̃H1 ∈Cz\µ̃H
1

min
(vᵀ0 ,(µ̃H

1)
ᵀ
)
ᵀ∈C

2qᵀ0R

[
·

]

≤ K7 + min
δ̃H1 ∈Cz\µ̃H

1

min
v0∈C

min
µ̃H
1 ∈C

2qᵀ0R

[
·

]

= K7 + min
z̃H1 ∈Cz

min
v0∈C

2qᵀ0R

[
H∑
0

W s0v0

+

H∑
t=1

H∑
τ=t

∑
st

W stzstt P[st | s0]

]

= K7 + min
z̃H0 ∈Cz

2qᵀ0R

H∑
t=0

H∑
τ=t

∑
st

W stzstt P[st | s0]

= K7 + min
z̃H0 ∈Cz

E

[
H+1∑
t=1

2qᵀ0R∆t
0

∣∣∣∣∣ q0, s0
]

(32)

Note that we used the fact that µt, once separated from the
δit in a suitable manner, can be identified with the dummy
control ut from the definition of the PNC policy (7). Hence,
the equality marked with the PNC label only holds under the
PNC policy, since it chooses v0 in such a way that the entire
first term is minimized over the trajectory z̃H0 instead of only
z̃H1 .

If we now combine the results of (28), (30) and (32) we get

E[f(q1, s1) | q0, s0]−H ‖q0‖ −K8 (33)

≤ min
z̃H0 ∈Cz

E

[
H+1∑
t=1

2qᵀ0∆t
0

∣∣∣∣∣ q0, s0
]
− min
z̃00∈Cz

E

[
2qᵀ0∆1

0

∣∣∣∣∣ q0, s0
]

8

which completes the derivation for the first term of (22).
In a similar but much easier fashion, the second term of

(22) can be reshaped into

E[f(q0, s0) | q0, s0]−H ‖q0‖

≥ min
z̃H−1
0 ∈Cz

E

[
H∑
t=1

2qᵀ0∆t
0

∣∣∣∣∣ q0, s0
]

(34)

Combining (33) and (34) results in

E[f(q1, s1)− f(q0, s0) | q0, s0]

≤ K8 + min
z̃H1 ∈Cz

E

[
2qᵀ0∆H+1

1

∣∣∣∣∣ q0, s0
]

To alleviate the outer conditioning on s0 we take the expecta-
tion E[· | q0] on both sides, conditioned only on q0, and swap
minimization and expectation operator:

E[f(q1, s1)− f(q0, s0) | q0]

≤ K9 + E

[
min
z̃H1 ∈Cz

E

[
2qᵀ0∆H+1

1

∣∣∣∣∣ q0, s0
] ∣∣∣∣∣ q0

]

≤ K9 + min
z̃H1 ∈Cz

E

[
2qᵀ0∆H+1

1

∣∣∣∣∣ q0
]

Finally, recall that for throughput optimality, this expression
has to be negative for each ā that can be expressed via (6).
Substituting this we obtain

E[f(q1, s1)− f(q0, s0) | q0]

≤ K9 + min
z̃H1 ∈Cz

2qᵀ0

(
H∑
t=1

∑
s

πsRW szst +Hā

)

≤ K9 + min
z′∈Cz

2Hqᵀ0

(∑
s

πsRW szs

− ε1nq −
∑
s

πsRW s
∑
v∈V

λs,vv

)
Because the minimization is linear, the optimum is found on
the boundary and thus the first term in the bracket (which is
subject to minimization) will at least cancel out the last term,
leaving us with

E[f(q1, s1)− f(q0, s0) | q0] ≤ K9 − 2Hεqᵀ01nq

≤ K9 −K101
ᵀ
nq
q0

which fulfills lemma 4 and therefore proves throughput opti-
mality of our PNC policy.

�

V. EXEMPLARY APPLICATIONS OF PNC

A. Dynamic Topology

We employ a scenario as depicted in Fig. 2, where a
mobile user equipment (UE) crosses multiple sectors, each
one designated to a specific access point (AP). In each sector,
the UE can only communicate with the corresponding AP.
The APs are connected to a global network from which
they receive packets that they are supposed to transmit to
the UE. The derived queueing network is shown in Fig. 3.

We use a most simplified model to yield easily interpretable
results: First, the DTMC is deterministic which allows us to
fix the time behavior of the transmission success probabilities
m̄j
t of the links. Second, we model this deterministic time

behavior as binary sequences which are depicted in Fig. 4.
This corresponds to the case, in which the UE travels with
constant velocity along a known path and the sectors do not
overlap. The UE remains in each sector for exactly 3 time
slots, where it experiences perfect channel quality (guaranteed
transmission success). Further we assume that a single packet
is created every second time slot at q1, which represents the
entire arrival to the system.

Fig. 2: Extension 1 - Scenario

Fig. 3: Example 1 - Queueing Network

Fig. 4: Example 1 - Link Probabilities

The simulation results in Fig. 5 depict the accumulated
amount of packets send (blue) and received by the UE (green
and red). For visualization purposes, we averaged the resulting
step functions, so that they are presented as lines. It can be
observed that only around 33% of the packets reach the UE for
the conventional back pressure policy, MW, (red). (Note that

9

MW can be expressed as a special case of the PNC policy,
in which the horizon is H = 1.) The other 66% remain at
already past base stations. This high packet loss is due to MW
requiring time to establish its throughput optimality. Indirectly,
MW functions by using misplaced packets as an indicator for
later control decisions. The presented example, however, is
based on a transient event where this indicator function of
misplaced packets is only of limited use.

As can be seen, using the novel PNC with horizon H = 2,
(the lowest green line) already nearly doubles the amount of
packets that arrive at the UE to 60%. For H = 5 we reach
80%, a significant performance boost.

Fig. 5: Example 1 - Simulation with Multiple Policies

B. Networks with Synchronized Queues

The following application is motivated by fact, that though
MW performs poorly in networks with dynamic topology, it
is still able to achieve throughput optimality in the long run,
if we assume MW to be sensitive to the current state of the
DTMC. And it is only fair to make this assumption, since
we assume the same for our PNC policy. Hence, throughput
optimality seems to be shared by both policies, if we talk
about conventional networks. However, in the next example,
we forgo conventional networks and introduce synchronized
queues. In networks with synchronized queues, only PNC
seems to maintain its throughput optimality while MW fails,
giving a strong incentive to employ the PNC policy.

Queues are synchronized (or paired), if they can only be
served at the same time. This can be useful, if one wants
to exploit constructive interference [21] or model parallel
processing tasks in computing [22] and social matchmaking
[23]. While synchronized queues have been studied on their
own [24] [25] [26] [27], there has not been any research on
how they behave in a network. Indeed, [19] presents a simple
example, proving that MW loses its throughput optimality
if the network contains only a single pair of synchronized
queues. The reason for that can be found equation A.18
from the original proof in [1], which loses its generality. In
layman’s terms, the original proof is based on the fact, that the
evolution of the queue vector constitutes a DTMC by itself.
And for conventional networks, there exists a finite set of

states (of that DTMC) which can be shown to be recurrent.
This makes the entire DTMC recurrent which corresponds
to throughput optimality. However, introducing synchronized
queues, the finite set grows to infinite size, invalidating this
correspondence. This leads to the questions, in how far back-
pressure policies are suited for such networks and if there
exists another policy, which guarantees throughput optimality.

To illustrate that PNC might be that policy, we refer to the
example, depicted in Fig. 6. Set-up and thereof derived queue-
ing network are shown on the left and right side, respectively.
The example consists of an access point (AP) q1 that can either
transmit solitary (link r1), or initiate synchronized transmis-
sion (link r3) with a neighboring AP q2. The synchronized
transmission uses constructive interference and thus achieves
higher throughput. However, before synchronized transmission
can be initiated, the data packets have to be shared (link r2),
i.e. copied from q1 to q2.

Fig. 6: Example 2 - Scenario and Queueing Network

For comprehensiveness, we use a constant success probabil-
ity matrix M̄ , i.e. we do not make use of an DTMC to select
different matrices from W . The m̄j (which are the diagonal
elements of M̄) are chosen in such a way, that it is beneficial
to copy (share) the data and then transmit together, instead of
broadcasting the data directly. Specifically, we set m̄1 = 1

4
and m̄2 = m̄3 = 1 and assume all links to be disjunct. Note,
that we can neglect q3 in all further discussions, since it only
symbolizes the destination queue.

For this simple example, it is prudent to forgo working in
terms of the control vector vt and instead use the control
option ut, which we define to be ut = RM̄vt (this ut is
not related to the one, that was used in the definition of the
PNC policy). We have ut ∈ U , which can be derived from the
system description without further ado to be

U =
{
u0, u1, u2, u3

}
=

{(
0
0

)
,

(
−1
0

)
,

(
0
4

)
,

(
−4
−4

)}
(35)

where we scaled all elements of U with the factor 4 to
simplify any calculations. We have u1, u2, u3 represent single
transmission, data sharing, and joint transmission, respectively
and in each time slot, the controller may only choose one
of these options to influence the expected queue state via
E[qt+1 | qt] = qt + ut + at.

Regarding (6), it is now very easy to express the set of all
arrival rates ā, for which there exists a policy that stabilizes
the system. We call this set the maximum stability region A

10

and have

A : =

{
ā : ā+

∑
u∈U

λuu = −1ε,
ε > 0∑
λu ≤ 1

}

=

{
ā : ā+

∑
u∈U

λuu = 0,
∑

λu < 1

} (36)

Remember that throughput optimality is accomplished, if a
policy can stabilize the system for all arrival rates in A. A
graphical representation of A is given in green on the left
side of Fig. 7.

Now, let us assume that there is no arrival at q2, i.e. ā2 = 0.
Using the control options u2 and u3 in alternating sequence
(given that there are enough packets in q1 to do so) would
yield an efflux of 4 packets every 2 time slot, thus an efflux
of 2 packets per time slot. The corresponding point is shown
on the right side of Fig. 7. It is easy to check, that no other
sequence of control options can match this efflux.

However, conventional back-pressure policies like MW are
not able to access the control option u2, resulting in the loss
of its throughput optimality in this example. The only arrival
rates, that MW can stabilize are those in the red triangle on
the right side of Fig. 7.

Fig. 7: Example 2 - Stability Regions

In contrast, PNC is able to select the missing control option
u2 and simulations suggest, that it stabilizes the example for
any strictly positive arrival rate ā from A. To substantiate this
claim we refer to Fig. 9. Here, we simulated the queue state
q1 over time t for 3 different arrival rates ā under 3 different
policies. The respective positions of those ā regarding A are
depicted in Fig. 8. As for the policies, we chose MW and
PNC. Also, we added a third control policy, labeled fPNC for
fixed PNC. This policy mimics the PNC policy, except that it
uses the entire calculated control trajectory before repeating
the optimization. In contrast, PNC repeats the optimization
every time slot again.

As predicted, we have MW not stabilizing the blue and
green arrival rates. Furthermore, it can be seen, that fPNC
loses some stabilizing properties with increasing horizon as
the green arrival rate cannot be stabilized with H = 3 (this is
related to the horizon not being an even number). This proves,

that the MPC paradigm of repeating the optimization in every
step (and thereby discarding the rest of the trajectory) is an
essential part in the PNC policy.

Fig. 8: Example 2 - Selected arrival rates for simulation;
Corresponding stability regions: (red – MW), (red+blue –
fPNCH=3), (red+blue+green – PNC, fPNCH=2)

Fig. 9: Example 2 - Queue state (system state) q1 as a function
of time t for various (color-coded) arrival rates

VI. CONCLUSION

We successfully modify a discrete-time queueing network
with a JMS, i.e. with an additional DTMC that changes
network parameters (even topology) on a mid- to long-term
time scale. We then introduce a novel family of predictive
control policies, PNC, based on the paradigms of MPC, and
devise a special implementation of the underlying predic-
tion, that allows the policy to be executed in the fastest

11

way possible. The policy is especially well suited to control
the mentioned systems and outperforms conventional control
approaches as is illustrated in numerical simulations. In our
main contribution, we prove throughput optimality of PNC.
Looking ahead, we see an intriguing application in networks
that consist of synchronized queues (e.g. found in parallel
computing or manufacturing chains). Those networks still
elude known control strategies but seem to be stabilizable
under PNC policies with suitably chosen prediction horizon.

ACKNOWLEDGMENT

This work is part of and thereby funded by the DFG Priority
Program 1914

REFERENCES

[1] L. Tassiulas and A. Ephremides, “Stability Properties of Constrained
Queueing Systems and Scheduling Policies for Maximum Throughput
in Multihop Radio Networks,” IEEE Transactions on Automatic Control,
1992.

[2] S. Meyn, “Stability and Asymptotic Optimality of Generalized
MaxWeight Policies,” SIAM Journal on Control and Optimization, 2009.

[3] M. Kasparick and G. Wunder, “Stable wireless network control under
service constraints,” IEEE Transactions on Control of Network Systems,
2018.

[4] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, “Achiev-
ing 100% Throughput in an Input-Queued Switch,” IEEE Transactions
on Communications, 1999.

[5] M. J. Neely, E. Modiano, and C. E. Rohrs, “Dynamic power allocation
and routing for time varying wireless networks,” IEEE Journal on
Selected Areas in Communications, 2005.

[6] W. Khan, L. B. Le, and E. Modiano, “Autonomous routing algorithms
for networks with wide-spread failures,” in MILCOM 2009 - 2009 IEEE
Military Communications Conference, 2009.

[7] V. G. Subramanian and D. J. Leith, “Draining time based scheduling
algorithm,” in Proceedings of the IEEE Conference on Decision and
Control, 2007.

[8] L. Ying, S. Shakkottai, A. Reddy, and S. Liu, “On combining shortest-
path and back-pressure routing over multihop wireless networks,”
IEEE/ACM Transactions on Networking, 2011.

[9] P. K. Huang, X. Lin, and C. C. Wang, “A low-complexity congestion
control and scheduling algorithm for multihop wireless networks with
order-optimal per-flow delay,” IEEE/ACM Transactions on Networking,
2013.

[10] H. Xiong, R. Li, A. Eryilmaz, and E. Ekici, “Delay-aware cross-layer
design for network utility maximization in multi-hop networks,” IEEE
Journal on Selected Areas in Communications, 2011.

[11] D. Q. Mayne, J. B. Rawlings, C. V. Rao, P. O. M. Scokaert, C. National,
and F. Telecom, “Constrained model predictive control : Stability and
optimality,” AUTOMATICA, 2000.

[12] J. S. Van Leeuwaarden, E. Lefeber, Y. Nazarathy, and J. E. Rooda,
“Model Predictive Control for the acquisition queue and related queue-
ing networks,” 5th International Conference on Queueing Theory and
Network Applications, QTNA 2010 - Proceedings, 2010.

[13] D. Guzman, R. Schoeffauer, and G. Wunder, “Predictive network control
in multi-connectivity mobility for URLLC services,” IEEE International
Workshop on Computer Aided Modeling and Design of Communication
Links and Networks, CAMAD, 2019.

[14] B. G. Park and W. H. Kwon, “Robust one-step receding horizon control
of discrete-time Markovian jump uncertain systems,” Automatica, 2002.

[15] S. Chitraganti, S. Aberkane, C. Aubrun, G. Valencia-palomo, and
V. Dragan, “Systems & Control Letters On control of discrete-time
state-dependent jump linear systems with probabilistic constraints : A
receding horizon approach,” Systems & Control Letters, 2014.

[16] J. Tonne and O. Stursberg, “Constraint robust model predictive control
for jump Markov linear systems with additive disturbances,” 2016
European Control Conference, ECC 2016, 2017.

[17] Y. Liu, Y. Yin, F. Liu, and K. L. Teo, “Constrained MPC design
of nonlinear Markov jump system with nonhomogeneous process,”
Nonlinear Analysis: Hybrid Systems, 2015.

[18] J. Tonne and O. Stursberg, “Fast Robust Model Predictive Control for
Nonlinear Jump Markov Systems,” IFAC-PapersOnLine, 2017.

[19] R. Schoeffauer and G. Wunder, “Predictive Network Control and
Throughput Sub-Optimality of MaxWeight,” 2018 European Conference
on Networks and Communications (EuCNC), 2018.

[20] R. Schoeffauer and G. Wunder, “A Linear Algorithm for Reliable
Predictive Network Control,” 2018 IEEE Globecom Workshops, GC
Wkshps 2018 - Proceedings, 2019.

[21] S. Timotheou, G. Zheng, S. Member, C. Masouros, and S. Member, “Ex-
ploiting constructive interference for simultaneous wireless information
and power transfer in multiuser downlink systems,” IEEE Journal on
Selected Areas in Communications, 2016.

[22] E. Evdokimova, K. D. Turck, and D. Fiems, “Coupled queues with
customer impatience,” Performance Evaluation, 2018.

[23] B. Büke and H. Chen, “Stabilizing policies for probabilistic matching
systems,” Queueing Systems, 2015.

[24] J. . M. Harrison, “Assembly-like Queues,” Journal of Applied Probabil-
ity, 1973.

[25] G. Fayolle and R. Iasnogorodski, “Two coupled processors: The reduc-
tion to a Riemann-Hilbert problem,” Zeitschrift für Wahrscheinlichkeit-
stheorie und Verwandte Gebiete, 1979.

[26] S. Borst, M. Jonckheere, and L. Leskelä, “Stability of parallel queueing
systems with coupled service rates,” Discrete Event Dynamic Systems:
Theory and Applications, 2008.

[27] E. De Cuypere, K. De Turck, and D. Fiems, “A Maclaurin-series
expansion approach to multiple paired queues,” Operations Research
Letters, 2014.

	I Introduction and related Research
	II System Model & Prerequisites
	II-A System Model
	II-B Control Policies and Throughput Optimality

	III Predictive Network Control (PNC)
	IV Proof of Theorem ??
	IV-A Preliminaries
	IV-B Main Proof

	V Exemplary Applications of PNC
	V-A Dynamic Topology
	V-B Networks with Synchronized Queues

	VI Conclusion
	References

