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Robust coalitional model predictive control with
predicted topology transitions

Eva Masero, José M. Maestre, Antonio Ferramosca, Mario Francisco, and Eduardo F. Camacho

Abstract—This paper presents a novel clustering model predic-
tive control technique where transitions to the best cooperation
topology are planned over the prediction horizon. A new variable,
the so-called transition horizon, is added to the optimization
problem to calculate the optimal instant to introduce the next
topology. Accordingly, agents can predict topology transitions to
adapt their trajectories while optimizing their goals. Moreover,
conditions to guarantee recursive feasibility and robust stability
of the system are provided. Finally, the proposed control method
is tested via a simulated eight-coupled tanks plant.

Index Terms—Model predictive control; Control by clustering;
Distributed control; Coalitional control; Networked control.

I. INTRODUCTION

MODEL predictive control (MPC) is an optimization-
control method that uses a model to predict the system

behavior through a given time horizon. At each time step, the
control sequence that minimizes a cost function based on the
system evolution is computed subject to a set of constraints.
Only the first control signal of the obtained sequence is
applied, and the rest is discarded. In the next instant, the
time window of the problem is displaced one step ahead
following a receding horizon strategy, and the same procedure
is repeated. Compared with other methods, MPC presents
major advantages, such as the ability to deal explicitly with
delays and dead times. It also handles the multi-variable, non-
minimum phase, and unstable systems [1]. For these reasons,
this method is widely applied in the process industry [2].

Nevertheless, the application of MPC in large-scale pro-
cesses is sometimes impossible due to the incapacity to
find a centralized model of the overall system and the high
computational requirements, to name two typical problems
in this context. In these cases, a distributed approach may
be required. Indeed, the improvements in computational and
communication technologies made distributed MPC (DMPC)
a popular framework with applications in large-scale systems
such as road traffic networks [3], power grids [4], gas networks
[5], irrigation canals [6], water distribution systems [7], supply
chains [8], and energy management in buildings [9], [10],
among others.
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The main idea of DMPC is to divide the overall system
into subsystems governed by local controllers or agents with
individual control goals that may cooperate to improve per-
formance; see [11], [12] for further details. Recently, it has
been proposed to adapt the cooperation burden in real-time
depending on the coupling between control tasks by pro-
moting the formation of coalitions or clusters of cooperating
controllers. This approach is useful for autonomous systems
that perform cooperative tasks and deal with saving energy,
such as UAVs and robots. For example, [13] proposed an
adaptive cluster formation scheme based on active coupling
constraints, and [14] presented hierarchical controllers that are
dynamically adapted to the operational conditions. Further-
more, the controller topology can be selected by a supervisory
controller (top-down approach) [15], [16], or be obtained
disabling communication links with a poor contribution to the
local performance (bottom-up architecture) [17], [18].

Time

𝑘

𝑁t

𝑁p

𝑘 − 1 𝑘 + 2 𝑘 + 𝑁t 𝑘 + 4 𝑘 + 5 𝑘 + 6 𝑘 + 7 𝑘 + 8 𝑘 + 9

𝑁p

𝑁p

𝑁p

𝑘 + 1

Current
Topology

Next
Topology

Fig. 1. Example scheme of the prediction horizon Np and the transition
horizon Nt.

This work presents a novel hierarchical coalitional MPC
method, where the information is exchanged between two
control layers. In the lower layer, local controllers optimize
their control and state sequences, and the upper layer evaluates
the information received from agents and chooses the best
cooperation topology to attain a global objective, including
performance and cooperation costs. Once the topology is
selected, it is sent to the lower layer, where local controllers
must follow it. The instant when they adopt the new topology
affects the results. Hitherto, the new topology was chosen and
abruptly implemented by local controllers at the same instant,
as presented in [17], [15]. In this work, the moment to switch
topology becomes a variable of the optimization problem, the
so-called transition horizon. Unlike the prediction horizon,
which is displaced toward the future at each time instant, the
transition horizon is not moved ahead but actualized at each
time instant as depicted in Fig. 1.

In other words, the optimization problem solved by the
upper control layer considers the cost over the prediction
horizon in a receding horizon fashion with the moment to
switch topology being also optimized. Hence, our approach
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provides more degrees of freedom for optimization, and the
resulting performance will always be no worse regarding
the MPC receding horizon objective. It also results in the
controller’s capacity to gradually prepare for a switch of
topology within the prediction horizon (see Fig. 1) and, hence,
adapt its control sequence accordingly.

Regarding robustness, several techniques can be found in
the literature to deal with constrained systems’ stability in
the presence of bounded additive disturbances. Some of them
are the input-to-state (ISS) property [19], widely used to
analyze non-linear systems; the min-max strategy, where the
optimization problem is solved for the worst-case disturbances
[20]; and the tube approach [21], [22], which is suitable for
linear systems, and based on computing a region around the
nominal trajectory that contains the system state under any
uncertainties. Our approach relies on the inherent robustness
of the predictive controllers due to the feedback nature of MPC
[23], [24], [25].

To illustrate the benefits of our strategy, an eight-coupled
tanks plant, which is an extension of the quadruple-tank
process proposed by [26], has been designed. The quadruple-
tank process has popularly been used as a benchmark, e.g, to
study the effects of multi-variable plants with dead times [27].

Finally, a much earlier and abridged version of the proposed
method was accepted for presentation at a conference [28].
There are significant differences between the current article
and the conference paper: i) the conference version does not
include proofs for its stability claims; ii) robustness is now
considered and guarantees are given and proved in this regard;
iii) we present here new improved methods for the selection
of topology; iv) several refinements in the main algorithm
have been introduced in the current version; v) the plant
configuration has been modified to couple subsystems by the
states; and vi) the experiments performed are new for the
article version and include the previously mentioned novelties.

Index of contents: Section II introduces the problem for-
mulation. Section III defines the control objective and the
coalitional MPC algorithm. Controllers are designed in Sec-
tion IV. Section V provides recursive feasibility and stability
guarantees. Section VI details the eight-coupled tanks used as
a benchmark, the control techniques assessed, and results via
simulation. Section VII provides conclusions and discussion.

Notation: N0` and N` are the sets of non-negative and
positive integers. Rn refers to an n-dimension set of real
numbers. For sets X ,Y Ď Rn, the Cartesian product is
X ˆ Y fi tpx, yq : x P X , y P Yu. If tXiuiPN is a
finite family of sets indexed by N , then the Cartesian product
Ś

iPN Xi is X1 ˆ X2 ˆ ¨ ¨ ¨ ˆ XN “ tpx1, x2, . . . , xN q : x1 P

Xi, . . . , xN P XNu. The set subtraction operator is z. The
image of set X Ď Rn under a linear mapping A : Rn ÞÑ Rm
is AX fi tAx : x P X u. For sets X ,Y Ď Rn, the Minkowski
sum is X ‘Y fi tx` y : x P X , y P Yu; and for Y Ď X , the
Pontryagin difference is X a Y fi tz P Rn : Y ‘ tzu Ď X u.
Matrix I is the identity matrix. The lz-norm defined in Rn is
represented as || ¨ ||z with z P N`.

II. PROBLEM SETTING

In this section, the problem formulation is provided. The
system dynamics are firstly introduced, and, subsequently, it
is explained how information is exchanged between agents.

A. System dynamics and constraints

The system is divided into N “ t1, 2, . . . , Nu coupled
subsystems whose discrete-time dynamics are modeled as

xipk ` 1q “ Aiixipkq `Biiuipkq ` wipkq,
wipkq “

ř

jPMi

`

Aijxjpkq `Bijujpkq
˘

` we
i pkq, (1)

where k P N` is the discrete-time index, xi P Rqi and
ui P Rri are, respectively, the state and input vectors of each
subsystem i P N , which are assumed to be constrained in
convex sets containing the origin Xi fi txi P Rqi : Axi xi ď
bxi u and Ui fi tui P Rri : Aui ui ď bui u. Moreover, Aii P
Rqiˆqi , Bii P Rqiˆri are matrices of the proper dimension for
each subsystem. The variable wi P Rqi comprises neighbor
coupling through state vector xj P Xj and input vector uj P Uj
with j P Mi fi tj P N ztiu : Aij ‰ 0 _ Bij ‰ 0u,
and the external disturbance we

i , which is assumed to be
bounded by the convex set We

i . Therefore, wi is bounded by
Wi fi

À

jPMi

`

AijXj ‘BijUj
˘

‘We
i , where Wi Ă Rqi .

Aggregating all the subsystems states and inputs as xN “

pxiqiPN and uN “ puiqiPN , the global system evolution is

xN pk ` 1q “ ANxN pkq `BNuN pkq ` wN pkq, (2)

where AN “ rAijsi,jPN , and BN “ rBijsi,jPN . Note that
only external uncertainties affect the system, i.e. wN “

pwe
i qiPN because disturbances by coupling are implicitly in-

cluded in the overall system dynamics. Thus, global addi-
tive disturbances are constrained in set WN “

Ś

iPN We
i .

Additionally, global states and inputs are constrained in sets
XN “

Ś

iPN Xi and UN “
Ś

iPN Ui, respectively.

B. Information exchange and network controllability

Each subsystem i P N is managed by a local controller
or agent with partial information of the overall system. Thus,
agents must communicate and cooperate to attain their control
goals. The cooperation network is described by the undirected
graph pN ,Lq, where the set of subsystems is N , and the set
of links is L Ď N ˆ N . Each link lij “ ti, ju “ tj, iu “
lji P L, which connects agents i and j, provides a bidirectional
information flow that can be enabled or disabled by the control
scheme. Each enabled link involves a fixed cooperation cost
clink P Rą0. As a result of the trade-off between performance
and cooperation costs, the set of active links at instant k defines
the network topology Λ Ď L. Considering L “ |L| the number
of links, there are 2L different topologies, which are grouped
in a set T fi tΛ1,Λ2, . . . ,Λ2Lu. For convenience, Λ1 denotes
decentralized topology, which corresponds to all cooperation
links being disabled, and Λ2L corresponds to the centralized
topology, i.e. when full network cooperation is established.

The disjoint set of cooperation clusters of subsystems,
referred to as coalitions, resulting from a given topology
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Λ P T is denoted by N {Λ fi tC1, C2, . . . , C|N {Λ|u. Coalitions
C are non-empty disjoint sets, and satisfy

Ť

CPN {Λ C “ N .
Each coalition C P N {Λ is described by the discrete-time

dynamics

xCpk ` 1q “ ACxCpkq `BCuCpkq ` wCpkq,
wCpkq “

ř

jPMC

`

ACjxjpkq `BCjujpkq
˘

` we
Cpkq, (3)

where xC “ pxiqiPC and uC “ puiqiPC are, respectively, the
aggregate state and input vectors of the subsystems in C, which
are constrained in the sets XC “

Ś

iPC Xi and UC “
Ś

iPC Ui.
The corresponding state matrix is AC “ rAijsi,jPC , and the
input matrix is BC “ rBijsi,jPC . The vector wC “ pwiqiPC ,
which is contained in the set WC “

Ś

iPC Wi, represents the
disturbances caused by the coupling with neighbors plus the
external disturbances we

C . The set of neighbors that affects
coalition C is MC fi tj P N zC : ACj ‰ 0_BCj ‰ 0u.

From a centralized viewpoint, coalitions dynamics can be
aggregated as (2) defining matrices AN “ diagpACqCPN {Λ,
BN “ diagpBCqCPN {Λ and the overall state and input vectors
as xN “ pxCqCPN {Λ and uN “ puCqCPN {Λ, respectively.

Assumption 1. Each coalition pAC , BCq, for C P N {Λ, is
controllable for any topology Λ P T .

Remark 1. The coalitions’ controllability matrices need to be
full rank for any topology as a necessary and sufficient network
controllability condition [29]. Although it is a conservative
assumption, the objective of this work is to evaluate the
performance when the controller can optimize the time instant
of topology changes.

III. CONTROL ALGORITHM

Coalitional control balances control performance and coop-
eration costs adapting the topology in real-time, enabling and
disabling links. The price per active cooperation link clink is a
tuning parameter in the design of the coalitional controller and
plays a significant role in deciding the new topology. Its value
needs to be selected properly to represent the cooperation
effort. The effect of this parameter was studied in [30].

A. Control goal
At time instant k, the goal of each coalition C P N {Λ is

the minimization of a function JΛ
C p¨q, which sums a stage cost

lCp¨q and a cooperation cost gΛ
C p¨q over a prediction horizon

Np, and also includes a terminal cost function fΛ
C p¨q, i.e.,

JΛ
C
`

xCpkq, uCp0 : Np ´ 1|kq,ΛCp0 : Np|kq
˘

“ fΛ
C
`

xCpNp|kq,ΛCpNp|kq
˘

`

Np´1
ř

t“0
lC
`

xCpt|kq, uCpt|kq
˘

`

Np
ř

t“0
gΛ
C
`

ΛCpt|kq
˘

,

(4)

with
fΛ
C
`

xCpNp|kq,ΛCpNp|kq
˘

“ xCpNp|kq
JPC

`

ΛCpNp|kq
˘

xCpNp|kq,
lC
`

xCpt|kq, uCpt|kq
˘

“ xCpt|kq
JQCxCpt|kq ` uCpt|kq

JRCuCpt|kq,
gΛ
C
`

ΛCpt|kq
˘

“ clink|ΛCpt|kq|,

where uCp0 : Np ´ 1|kq fi ruCp0|kq, . . . , uCpNp ´ 1|kqs
and ΛCp0 : Np|kq fi rΛCp0|kq,ΛCp1|kq, . . . ,ΛCpNp|kqs are,
respectively, the sequences of control actions and topologies
in the prediction horizon1; pt|kq indicates the prediction step

1The topology is also relevant for the terminal cost of the controller. For
this reason, its sequence is considered until the end of the prediction horizon.

t computed at instant k; QC ě 0 and RC , PC ą 0 are
weighting matrices; the cost per active link clink P Rą0 is
a tuning parameter; |ΛCpt|kq| represents the number of links
in coalition C at prediction step t; and superscript Λ denotes a
topology dependency. Note that the size of coalitions can range
from an agent C “ tiu to even the global system C “ N .
Thus, the overall cost can be calculated aggregating (4) as
JN p¨q “

ř

CPN {Λ J
Λ
C p¨q.

The optimization of (4) has to be performed subject to the
coalition dynamics and disturbances (3), constraints XC and
UC , and topology Λ Ď L. Furthermore, the final state of
coalition C must be constrained in a terminal region, which
is a polyhedron defined as XΛ

Cf fi txC P RqC : AXf

C xC ď bXf

C u,
and whose calculation will be detailed later. Finally, note that
since JΛ

C p¨q is convex by definition for any possible topology
sequence, we conclude the subsection with some properties of
interest of JΛ

C p¨q, which will become useful later.

Definition 1 (Np-step stabilizable set [23]). Let XΛ
Cf be a

terminal region for the nominal system xCpk`1q “ ACxCpkq`
BCuCpkq of coalition C P N {Λ, subject to XC and UC . The
Np-step stabilizable set SΛ

Np
pXC ,XΛ

Cfq is the set of states in
XC that evolves to XΛ

Cf in a trajectory of Np steps by feasible
control sequences.

Definition 2 (Robust positively invariant (RPI) set). Given
topology Λ, the set XΛ

Cf is an RPI set for xCpk ` 1q “
ACxCpkq ` BCuCpkq ` wCpkq if and only if there exists a
linear control law uC “ KΛ

C xC such that its evolution satisfies:
xCpkq P XΛ

Cf ÝÑ xCpk ` 1q “ pAC `BCK
Λ
C qxCpkq ` wCpkq P

XΛ
Cf , @wCpkq PWΛ

C and @k P N`.

Following [23], it can be proved that the perturbed coalition
C evolves to an RPI set w.r.t. disturbances wC . This fact is
summarized in the following lemma.

Lemma 1 (Robust Stability [23]).
1) Let the nominal model of coalition be xCpk ` 1q “

F
`

xCpkq
˘

, such that F p¨q is continuous, and the origin
is a fixed point. Let JΛ

C pxCq be a Lyapunov function of
the closed-loop system such that

aΛ
C ||xCpkq||

σ ď JΛ
C
`

xCpkq
˘

ď bΛC ||xCpkq||
σ,

JΛ
C
`

xCpk ` 1q
˘

´ JΛ
C
`

xCpkq
˘

ď ´cΛC ||xC ||
σ,

(5)

where aΛ
C , b

Λ
C , c

Λ
C are positive constants, and σ ě 1. Then,

there exists a positive constant ρΛ
C “ 1 ´ pcΛC {b

Λ
C q ă 1

that satisfies JΛ
C
`

xCpk ` 1q
˘

ď ρΛ
CJ

Λ
C
`

xCpkq
˘

.

2) Let JΛ
C p¨q be also Lipschitz in a neighborhood of the

origin ΩrC fi txC P XC : JΛ
C p¨q ď rΛ

C u and λΛ
C be the

Lipschitz constant of JΛ
C p¨q in ΩrC , i.e, JΛ

C pxCpkq`wCq ď

JΛ
C pxCpkqq ` λΛ

C ||wC ||. Then, there exists a constant
µΛ
C ą 0 that satisfies

µΛ
C ď

`

p1´ ρΛ
C q{λ

Λ
C
˘

rΛ
C , (6)

such that if wCpkq P BµC fi twC P RqC : ||wCpkq|| ă µΛ
C u

for all k, then the perturbed coalition xCpk ` 1q “
F
`

xCpkq
˘

` wC is asymptotically ultimately bounded
@xCp0q P ΩrC .
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As shown in Section V, our goal is to assure that the closed-
loop system stays asymptotically ultimately bounded when
tÑ8 despite the disturbances by the topology switchings.

B. Coalitional MPC algorithm

The coalitional method can be prohibitive for large-scale
systems since it solves a convex optimization problem for
every possible topology. Nevertheless, it can be employed a
subset of topologies Tnew Ă T to relieve this issue.

Let k P N` denote the time instant, Tup P N` indicate
how often the upper control layer is executed, Λcur P Tnewpkq
be the current topology, and Tnewpkq Ď T denote the set of
potential successor topologies at instant k according to a given
criterion, e.g., considering only the topologies whose links
differ in one with regard to the current topology.

At each time instant k, the proposed hierarchical coalitional
MPC algorithm, which is divided into upper and lower control
layers, is implemented as detailed in Algorithm 1. Every
Tup time instants, the upper control layer is executed, where
a centralized controller optimizes Problem 1 obtaining the
optimal control sequence, the new topology, and the transition
horizon to attain the global objective.

Algorithm 1 (Upper control layer)
Inputs: k, Tup, xN pkq, Λcur

Outputs: uN p0 : Np ´ 1|kq, Λnew, Nt

1: The upper control layer measures xC ,@C P N {Λ.
2: The upper layer solves the following mixed-integer
optimization problem:
Problem 1:

min
uN p0:Np´1|kq,Λnew, Nt

JN
`

xN pkq, uN p0 : Np ´ 1|kq,Λp0 : Np|kq
˘

,

subject to

xCpt` 1|kq “ ACxCpt|kq `BCuCpt|kq, t “ 0, . . . , Np ´ 1,
xCpkq “ x̃Cpkq, @C P N {Λ,
xCpt|kq P XC aWC

`

ΛCpt|kq
˘

, t “ 1, . . . , Np ´ 1,
uCpt|kq P UC , t “ 0, . . . , Np ´ 1,

xCpNp|kq P XCf

`

ΛCpt|kq
˘

,

for all C P N {Λ, and

Λpt|kq “

"

Λcur if t ă Nt

Λnew if t ě Nt
, t “ 0, . . . , Np,

Λnew P Tnewpkq,

where x̃Cpkq is the coalition state measurement; WC refers
to the disturbances received by coalition C; XCf is the
robust invariant terminal region computed offline and
imposed as a terminal state constraint (see Section IV for
details of its calculation); Λcur and Λnew are the current
and the next topology, respectively.
3: The resulting control sequence, the new topology, and
the transition horizon are sent to the lower layer.

In the lower control layer, each coalition solves Problem 2
to compute its control action in accordance with the last
information (i.e., the new topology and transition horizon)
received by the upper layer:

Algorithm 1 (Lower control layer)
Inputs: k, xCpkq, Λcur, Λnew, Nt

Outputs: k, Nt, xCpk ` 1q
1: The state xC is measured for each C P N {Λ.
2: Each coalition C calculates its control actions aware
of the topology will switch after Nt time instants, as
commanded by the upper layer. To this end, it is minimized
(4) as:
Problem 2:

min
uCp0:Np´1|kq

JΛ
C
`

xCpkq, uCp0 : Np ´ 1|kq,ΛCp0 : Np|kq
˘

,

subject to

xCpt` 1|kq “ ACxCpt|kq `BCuCpt|kq, t “ 0, . . . , Np ´ 1,
xCpkq “ x̃Cpkq,
xCpt|kq P XC aWC

`

ΛCpt|kq
˘

, t “ 1, . . . , Np ´ 1,
uCpt|kq P UC , t “ 0, . . . , Np ´ 1,

xCpNp|kq P XCf

`

ΛCpt|kq
˘

,

and ΛCpt|kq “

"

Λcur
C if t ă Nt

Λnew
C if t ě Nt

, t “ 0, . . . , Np,

where Λcur
C and Λnew

C denote coalition C in the current and
next topology, respectively.
3: Each coalition applies the first element of its
optimal control sequence uCp0 : Np ´ 1|kq to obtain
xCpk ` 1q @C P N {Λ.
4: Set k “ k ` 1, and update the transition horizon as
Nt “ Nt ´ 1 for the next time instant.

Remark 2. Since disturbances are non-manipulable inputs,
the feasibility of the state can be endangered. For that reason,
a tightened constraint set XC a WC is considered to avoid
violating the state constraints. Conversely, the input uC is an
optimization variable and, thus, the controller holds it in UC .

Remark 3. The transition horizon Nt does not appear ex-
plicitly in the cost but in the topology constraints of the
optimization problems. The problem solved by the upper layer
has an extra degree of freedom on choosing the moment to
switch topology. Hence, the resulting performance will always
be optimal for the MPC receding horizon objective.

Remark 4. This basic algorithm may be varied in the way
that the transition horizon is determined, e.g., Nt can be a
fixed value, computed in the upper control layer, or obtained
in the lower control layer. Note that, in the latter case,
feasibility guarantees may be endangered, as detailed later.
These alternatives will be assessed in the simulation section.

IV. CONTROLLER DESIGN PROCEDURE

This section provides requirements to ensure that the closed-
loop system is feasible and stable with the proposed coalitional
MPC scheme. Details regarding the controller design proce-
dure, based on linear matrix inequalities (LMI), are given.

A. Feedback design

Global sparse matrices KΛ and PΛ adapted to topology Λ
are designed to solve an LMI problem following [17]. These
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matrices are sufficient to guarantee stability and to find the
invariant terminal region, as shown later.

Lemma 2 (Coalitional feedback controller design [17]). Let
the global discrete system matrices be AN “ rAijsi,jPN
and BN “ rBijsi,jPN , with the stage cost matrices QN “

diagpQiqiPN and RN “ diagpRiqiPN . If there are matri-
ces HΛ “ HJΛ “ rHijsi,jPN , where Hij P Rqiˆqj , and
YΛ “ rYijsi,jPN , where Yij P Rriˆqj with Hij “ 0 and
Yij “ 0 if the link lij P Λ is disabled, i.e., if i P C and j R C,
such that the following constraint is satisfied
»

—

—

—

–

HΛ HΛA
J
N ` Y

J
Λ B

J
N HΛQ

1{2
N Y JΛ R

1{2
N

ANHΛ `BNYΛ HΛ 0 0

Q
1{2
N HΛ 0 I 0

R
1{2
N YΛ 0 0 I

fi

ffi

ffi

ffi

fl

ě 0,

(7)

then there exist feedback control law KΛ “ rKΛ
C sCPN {Λ “

YΛH
´1
Λ that stabilizes the closed-loop system, and a Lya-

punov function fN
`

xN pkq
˘

“ xN pkq
JPΛxN pkq, with PΛ “

rPΛ
C sCPN {Λ “ H´1

Λ that satisfies

fN
`

xN pkq
˘

ě

8
ÿ

t“0

lN
`

xN pk ` tq, uN pk ` tq
˘

. (8)

As proved in [17], if (7) remains true, then the nominal
system model xN pk ` 1q “ ANxN pkq ` BNuN pkq is
exponentially stable with the linear control law uN pkq “
KΛxN pkq, with PΛ satisfying

xN pkq
JPΛxN pkq ´ xN pk ` 1qJPΛxN pk ` 1q ě lN

`

xN pkq
˘

,

(9)

i.e., xN pkqJPΛxN pkq is a a Lyapunov function. Consequently,
(8) holds, and the exponential stability of the nominal system
is guaranteed.

Assumption 2. There exist matrices HΛ and YΛ such that
(7) holds for the decentralized topology, which presents the
highest disturbances due to couplings, and also provides a
feasible solution for any other topology.

In order to design the controller, we maximize the trace
of HΛ subject to (7) to indirectly minimize PΛ “ H´1

Λ and,
therefore, the control cost-to-go.

Remark 5. Feedbacks KΛ are defined for all cases ranging
from decentralized to centralized topologies. Nevertheless, this
method can be implemented with just a subset of topologies
Tnew Ă T to avoid combinatorial explosion issues in large-
scale systems.

B. Invariant set design

From the coalitions’ viewpoint, the effect of their neigh-
boring agents can be considered as unknown bounded dis-
turbances when calculating invariant set XΛ

Cf to decouple the
terminal regions and solve a more manageable problem.

Assumption 3. For each C in N {Λ, there exists an RPI set
XΛ

Cf (whose size depends on the disturbance set WΛ
C that relies

on the coupling with its neighbors in topology Λ) that satisfies

pAC`BCK
Λ
C qXΛ

Cf‘WΛ
C Ď XΛ

Cf , XΛ
Cf Ď XC , and KΛ

C XΛ
Cf Ď UC

under the linear control law uC “ KΛ
C xC . Hence, the robust

positively invariant set for the overall system is computed as

XN f “
ą

CPN {Λ

XΛ
Cf , (10)

which satisfies pAN`BNKΛqXN f‘WN Ď XN f , XN f Ď XN ,
and KΛXN f Ď UN under the linear control law uN “ KΛxN .

Theorem 1. The RPI set XN f “
Ś

CPN {Λ1
pXΛ1

Cf q correspond-
ing to the decentralized topology Λ1 can be used for any other
topology.

Proof. For topology Λ1, each coalition C “ tiu, @i P N
presents the highest disturbances set due to the highest cou-
pling with neighbors, i.e., WΛ

C ĎWΛ1

C , @Λ P T . Since greater
WΛ

C involves greater XΛ
Cf , it is satisfied that XΛ

Cf Ď XΛ1

Cf .

There are numerous procedures to find RPI sets given
unknown bounded disturbances [31]. The Multi-Parametric
Toolbox (MPT) of MATLAB® [32] can be employed to
compute the maximal RPI set for each coalition of topology
Λ P T taking into account its constraints and disturbances.

For a conservative approach, the RPI set for decentralized
topology can be generally used for any topology because it
is computed for the worst-case disturbances. Note that, since
an RPI set can be computed for each agent, the advantage
of this approach is to avoid combinatorial explosion issues in
large-scale systems.

V. CONTROLLER FEASIBILITY AND STABILITY

Hitherto, it has been proved the stability of the nominal sys-
tem for a fixed topology and its corresponding feedback in the
unconstrained case. In this section, recursive feasibility of the
system is ensured when the coalitional MPC is implemented.
Due to the persistent bounded disturbances, asymptotic stabil-
ity cannot be assured. Consequently, we desire the system to
converge to a bounded set around the origin [25].

A. Recursive feasibility

Assumption 4. At time instant k “ 0, Problem 1 has a feasible
control sequence for the centralized topology, i.e., Λcur “ Λ2L .

Theorem 2. Let Assumption 2, which implies the existence of
the most conservative KΛ and PΛ (feasible solution for any
topology), and Assumption 4 hold. Given topology Λ P T and
matrices KΛ, PΛ computed by maximizing the trace of HΛ

subject to the LMI problem (7), then recursive feasibility of
Algorithm 1 is always ensured.

Proof. First, the proof deals with the recursive feasibility
for a fixed topology Λ P T from the global and coalitions
viewpoints. Secondly, it is proved that the system is feasible
despite topology switching.

Part 1. Consider the state xN pkq P XN @k, the predicted
nominal state is xN p1|kq “ ANxN pkq ` BNuN pkq. We can
prove that xN p1|kq fulfills constraints despite disturbances.
Since xN pk`1q “ xN p1|kq`wN pkq, and due to the problem
constraints: xN p1|kq P XN aWN and wN pkq P WN , then
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xN pk ` 1q P XN . Thus, the recursive feasibility of the state
is guaranteed.

Under Assumption 4, at least a topology Λ has an overall
feasible control solution at instant k “ 0:

uN p0 : Np ´ 1|kq “ ruN p0|kq, . . . , uN pNp ´ 1|kqs, (11)

which fulfills constraints xN pkq P XN , uN pkq P UN , and
xN pNp|kq P XN f for all disturbance sequences. At next
instant k ` 1, a shifted feasible sequence us

N can be formed
as the tail of (11) as

us
N p0 : Np ´ 1|k ` 1q “ rus

N p0|k ` 1q, . . . , us
N pNp ´ 1|k ` 1qs “

“ ruN p1|kq, . . . , uN pNp ´ 1|kq,KΛxN pNp|kqs.

Since the overall feasible control solution uN p0 : Np ´ 1|kq
fulfills the terminal state constraint, the term xN pNp|kq P
XN f , and, at k ` 1 it holds

pAN `BNKΛqxN pNp|kq ` wN P XN f , @wN PWN .

It follows from applying this procedure recursively that the
feasibility of Problem 1 is guaranteed for topology Λ and @k.
Note that KΛ and XN f can be respectively dis-aggregated in
KΛ

C and XΛ
Cf for each C P N {Λ. Thus, there are also feasible

sequences for any C P N {Λ at instant k “ Tup, i.e.,

uCp0 : Np ´ 1|Tupq “ ruCp0|Tupq, uCp1|Tupq, . . . , uCpNp ´ 1|Tupqs,

subject to xCpTupq P XC , uCpTupq P UC , and xCpNp|Tupq P

XΛ
Cf for all disturbance sequences. At the following instant,

a shifted feasible sequence us
C can be composed with the

feedback gain KΛ
C as

us
Cp0 : Np ´ 1|Tup ` 1q “ ruCp1|Tupq, . . . , uCpNp ´ 1|Tupq,K

Λ
C xCpNp|Tupqs.

Given that xCpNp|Tupq P XΛ
Cf , at the next instant, it holds

pAC `BCK
Λ
C qxCpNp|Tupq ` wC P XΛ

Cf , @wC PWΛ
C .

Therefore, there are feasible solutions available for Problem 2
at time instant Tup ` 1. Recall that if the recursive feasibility
from the centralized viewpoint is assured, it can also be
guaranteed from the coalitional viewpoint because KΛ is
aggregated from the KΛ

C for any C P N {Λ and XN f is
computed by (10). Applying this procedure recursively, it can
be proved that coalitional feasibility holds for all k.

Part 2. Switching between different topologies requires that
the overall feasibility is not endangered. First, note that if a
change of topology occurs at instant kc, a feasible global input
sequence must exist according to the constraints of Problem 1.
Otherwise, the same topology Λcur could be used because it
is a feasible control sequence, as proved in Part 1. Secondly,
if global feasibility is not endangered when switching to
topology Λnew, neither is the coalitional one endangered. In
particular, global feasibility implicitly considers the dynamics
and constraints of all coalitions C P N {Λnew. Therefore,
feasibility is also guaranteed despite topology changes.

B. Robust stability

Here it is analyzed the asymptotic ultimate boundedness of
the constrained linear system in the presence of bounded ad-
ditive uncertainties for our proposed coalitional MPC scheme.
In particular, we consider the worst-case coupling between
subsystems. By using this conservative approach, we can
guarantee ultimate boundedness for any topology.

Assumption 5. The most disturbed case is bounded by the
constant µ̄N ď p1´ ρ̄N q{λ̄N r̄N , such that wipkq P Bµi fi

twi P Rqi : ||wipkq|| ă µ̄N u @k, for any i P N and Λ P

T . Here, ρ̄N , λ̄N , r̄N are calculated according the Lemma 1
based on a common upper bound of the cost function J̄N p¨q
for all system topologies, which is defined as

J̄N p¨q “ lN p¨q ` ḡN pΛ2Lq ` f̄N p¨q, (12)

where lN p¨q is the stage cost, ḡN pΛ2Lq is the cooperation cost
of the centralized topology (all cooperation links enabled),
and f̄N p¨q is the terminal cost, whose weighting matrix P̄ ą
PΛ @Λ is computed such that (7) is satisfied for any KΛ.2

Note that, although Assumption 5 is conservative, it is
needed to ensure robust stability and feasibility.

Theorem 3 (Asymptotic ultimate boundedness). Let xN pk`
1q “ ANxN pkq ` BNuN pkq be the global model of the
nominal system, subject to xN pkq P XN , uN pkq P UN , and
let the linear control law uN pkq “ KΛxN pkq stabilize the
nominal system exponentially in SNppXN ,XN fq. Considering
that its cost function JN p¨q is Lipschitz in SNppXN ,XN fq, and
Assumption 5 holds, then system (2) with the linear control
law uN pkq “ KΛxN pkq is asymptotically ultimately bounded
@xN p0q P Ω̄rN , with Ω̄rN fi txN P XN : J̄N p¨q ď r̄N u Ď
SNp

pXN ,XN fq Ď XN .

Proof. Firstly, given a fixed topology Λ P T , it is proved
exponential stability and asymptotic ultimate boundedness for
the nominal and the uncertain system, respectively. Secondly,
we prove that the system is asymptotically ultimately bounded
despite the switching of topologies.

Part 1. With respect to Lemma 1, the overall nominal system
is continuous, and we have to prove that J̄N p¨q is Lyapunov
function for the nominal system, i.e., a non-increasing MPC
cost. This upper-bound cost function decreases in time if

J̄N
`

xN pk ` 1q, us
N p0 : Np ´ 1|k ` 1q,Λp0 : Np|k ` 1q

˘

ď

J̄N
`

xN pkq, uN p0 : Np ´ 1|kq,Λp0 : Np|kq
˘

holds, which can be rewritten as
Np´1
ř

t“0
lN

`

xN pt|k ` 1q, uN pt|k ` 1q
˘

`

Np
ř

t“0
ḡN

`

|Λ2Lpt|k ` 1q|
˘

` f̄N
`

xN pNp|k ` 1q
˘

ď

Np´1
ř

t“0
lN

`

xN pt|kq, uN pt|kq
˘

`

Np
ř

t“0
ḡN

`

|Λ2Lpt|kq|
˘

` f̄N
`

xN pNp|kq
˘

.

Since in the nominal case xN pt`1|kq “ xN pt|k`1q, deleting
terms in common and rearranging terms, we have

lN
`

xN pNp|kq, uN pNp|kq
˘

` f̄N
`

xN pNp|k ` 1q
˘

´ f̄N
`

xN pNp|kq
˘

ď lN
`

xN p0|kq, uN p0|kq
˘

,

2It is straightforward to prove that such weighting matrix exists. A very
simple and conservative choice would be to take P̄ “

ř

ΛPT PΛ.
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where the left-hand side is lower than or equal to zero
according to (9). Likewise, the right-hand side is positive
definite by construction. Since J̄N p¨q is positive definite by
(12), it is proved that J̄N p¨q is a Lyapunov function and
fulfill the condition of Lemma 1. Moreover, since J̄N p¨q is
a quadratic function with QN ě 0 and RN , P̄ ą 0, and the
system is linear, we claim that Problem 1 ensures exponential
stability in SNppXN ,XN fq for the nominal model system (see
Theorem 2.24 (c) in [33]).

Nevertheless, when additive disturbances are considered,
exponential stability may be endangered. Regarding Lemma 1,
asymptotic ultimate boundedness can be assured for system
(2), which has bounded additive uncertainties, if J̄N p¨q is also
Lipschitz in SNp

pXN ,XN fq. Since the system is linear and
continuous, there exists a Lipschitz constant λ̄N of J̄N p¨q in
SNp

pXN ,XN fq such that J̄N pxN pkq`wN q ď J̄N
`

xN pkq
˘

`

λ̄N ||wN ||. Since previous conditions and Assumption 5 hold,
the overall perturbed system (2) is asymptotically ultimately
bounded for any xN p0q P Ω̄rN Ď SNppXN ,XN fq Ď XN .
Likewise, coalitions states are also ultimately bounded while
satisfying constraints of Problem 2.

Part 2. When a change from Λcur to Λnew is performed,
the disturbances that affect the subsystems change. Since the
asymptotic ultimate boundedness of the overall system and
coalitions are guaranteed for the most disturbed case and a
common Lyapunov function, we conclude that the closed-loop
system remains asymptotically ultimately bounded despite the
topology switchings.

VI. SIMULATION

This section presents the eight-coupled tanks plant and
describes the techniques used to assess the proposed algorithm.

?3·qb

1 2

43

5 6

7 8

h1 h2

h4
h3

h5

h7 h8

h6

qa qb qc qd

(1- ?1)·qa

(1-?2-?3)·qb

(1-?5)·qd

(1-?4-?6)·qc?6·qc

?1·qa ?2·qb ?4·qc ?5·qd

Subsystem 1 Subsystem 2 Subsystem 3 Subsystem 4

Fig. 2. Schematic diagram of the eight-coupled tanks plant.

A. Plant description

The plant is formed by eight interconnected tanks, as shown
in Fig. 2. The four upper tanks (#3, #4, #7, and #8)
discharge flows to the lower ones (#1, #2, #5, and #6), and
these, in turn into sinking tanks. Moreover, the third and the
fourth tanks are connected through a pipe, and also the fifth

and the sixth tanks. The plant is controlled by four pumps
that keep the water circulation between tanks. Additionally,
six three-way valves, whose task is to divide into two ways
the flow on arrival, are provided.

The overall system is divided into N “ 4 subsystems:
the first one is composed of tanks #1 and #3; the second
one by tanks #2 and #4; the third one by tanks #5 and
#7; and the last one by tanks #6 and #8. The control
objective is that the lower tanks reach target levels taking into
account control and cooperation costs subject to operational
constraints. Consequently, it is considered a multi-variable
control problem with four inputs (qa, qb, qc, qd) and four
outputs (h1, h2, h5, h6).

B. Plant model

The model used in the simulation is non-linear and can be
obtained applying mass balance and Bernoulli’s law. It is given
by the following equations:

S1
dh1

dt “ a3

?
2gh3 ´ a1

?
2gh1 ` γ1

qa
3600 ,

S2
dh2

dt “ a4

?
2gh4 ´ a2

?
2gh2 ` γ2

qb
3600 ,

S3
dh3

dt “ ´a3

?
2gh3 ´ a34

a

2gph3 ´ h4q ` p1´ γ2 ´ γ3q
qb

3600 ,

S4
dh4

dt “ ´a4

?
2gh4 ` a34

a

2gph3 ´ h4q ` p1´ γ1q
qa

3600 ` γ6
qc

3600 ,

S5
dh5

dt “ a7

?
2gh7 ´ a5

?
2gh5 ` a56

a

2gph6 ´ h5q ` γ4
qc

3600 ,

S6
dh6

dt “ a8

?
2gh8 ´ a6

?
2gh6 ´ a56

a

2gph6 ´ h5q ` γ5
qd

3600 ,

S7
dh7

dt “ ´a7

?
2gh7 ` p1´ γ5q

qd
3600 ` γ3

qb
3600 ,

S8
dh8

dt “ ´a8

?
2gh8 ` p1´ γ4 ´ γ6q

qc
3600 ,

(13)

where hn is the water level of tank n P t1, 2, . . . , 8u; Sn “
13.89 ¨ 10´3 m2 is its corresponding cross-section, which is
assumed to be equal for all tanks; an “ 50.265 ¨ 10´6 m2

stands for the cross-section of the outlet pipes; and a34, a56 “

50.265 ¨ 10´7 m2 refers to the cross-section of pipes which
are connecting tanks 3-4 and 5-6. The parameter γi P r0, 1s,
with i P t1, 2, . . . , 6u, refers to the opening of the six three-
way valves (γ1, γ4 “ 0.3; γ2, γ5 “ 0.4 and γ3, γ6 “ 0.1),
g “ 9.81 m{s2 corresponds to the gravity, and qm refers to
the caudal flow provided by pump m P ta,b, c,du.

In order to obtain the control model, let us define an operat-
ing point of each tank, measured in meters, by h0

1 “ 2.7831;
h0

2 “ 4.8066; h0
3 “ 1.3388; h0

4 “ 1.7346; h0
5 “ 2.5740;

h0
6 “ 2.6479; h0

7 “ 1.0317; h0
8 “ 1.2613, and the operating

point of each pump, measured in cubic meters per hour, by
q0
1 “ 1.2975; q0

2 “ 1.6663; q0
3 “ 1.4253; q0

4 “ 1.0113. Hence,
the discrete linear state-space model can be expressed as

x̄N pk ` 1q “ AN x̄N pkq `BN ūN pkq ` d̂N pkq, (14)

where x̄N “ rh1pkq´h
0
1, . . . , h8pkq´h

0
8s
J becomes the state

vector, and ūN “ rqapkq ´ q0
a , . . . , qdpkq ´ q0

ds
J is the input

vector. Note that the system is linearized around the operating
point. We have striven to minimize the linearization error using
offset free concept proposed in [34], where it is estimated
a disturbance term d̂N pkq “ xN pkq ´ x̄N pkq at each time
instant k. Note that the system-modeling error d̂N can also be
considered as an external disturbance wN “ d̂N .
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Likewise, the state evolution of each subsystem i P N “

t1, 2, 3, 4u is given by

x̄ipk ` 1q “ Aiix̄ipkq `Biiūipkq ` w̄ipkq ` d̂ipkq,
w̄i “

ř

jPMi

`

Aij x̄jpkq `Bij ūjpkq
˘

,
(15)

where w̄i refers to the coupling through states and inputs with
its neighbors j PMi, which is constrained in the convex set
Wi fi

À

jPMi

`

AijXj‘BijUj
˘

, and the subsystem-modeling
error is defined as d̂ipkq “ xipkq ´ x̄ipkq, @k.

The subsystem matrices are given by:

A11 “

„

0.9763 0.0336
0 0.9659



, A12 “

„

0 0
0 0.0062



, B11 “

„

0.0296
0.002



, B12 “

„

0.0008
0.0491



,

A22 “

„

0.9819 0.0297
0 0.9700



, A21 “

„

0 0
0 ´0.0062



, B21 “

„

0.0010
0.0689



, B22 “

„

0.0396
0



, B23 “

„

0.0001
0.0098



,

A33 “

„

0.9752 0.0382
0 0.9613



, A34 “

„

0.0144 0
0 0



, B32 “

„

0.0002
0.0098



, B33 “

„

0.0296
0



, B34 “

„

0.0014
0.0588



,

A44 “

„

0.9756 0.0346
0 0.9642



, A43 “

„

´0.0144 0
0 0



, B43 “

„

0.0008
0.0589



, B44 “

„

0.0395
0



,

Additionally, states and inputs are constrained by

0.02 m ă hn ď 5 m, @n P t1, 2, . . . , 8u,

0 m3{h ă qm ď 5 m3{h, @m P ta,b, c,du.

C. Control methods

Each agent i can cooperate through a network formed by
the edges L “

 

t1, 2u, t2, 3u, t3, 4u
(

, which can be enabled
or disabled. Since the number of links is L “ 3, there are
eight cooperation topologies T “ tΛ1,Λ2, . . . ,Λ8u, which
are determined by the set of active links as displayed in
Fig. 3. For example, all disabled links L “ t0, 0, 0u define the
decentralized topology Λ1, and all active links L “ t1, 1, 1u
refer to centralized topology Λ8.

Ʌ8

{1, 1, 1}

Ʌ7

{1, 1, 0}
Ʌ6

{1, 0, 1}
Ʌ4

{0, 1, 1}

Ʌ5

{1, 0, 0}
Ʌ3

{0, 1, 0}
Ʌ2

{0, 0, 1}
Ʌ5

{1, 0, 0}
Ʌ2

{0, 0, 1}
Ʌ3

{0, 1, 0}

Ʌ1

{0, 0, 0}

3 links2 links1 link0 links

Fig. 3. The partially ordered set containing the eight cooperation topologies.

In this work, the set of potential successor topologies
Tnew Ď T is formed by those topologies that only differ in
zero or one link with respect to the current topology Λcur, i.e.,
those Λ P T whose Hamming distance is 0 or 1, as follows

Tnew fi tΛ Ă Λcur : |Λ| “ |Λcur| ´ 1u
YtΛcur Ă Λ : |Λ| “ |Λcur| ` 1u Y tΛcuru.

The following five MPC control methods are assessed:

1) CEN consists of a centralized MPC scheme characterized
by full system information.

2) ABRUPT presents a coalitional MPC algorithm where
the topology Λcur is instantly switched to Λnew P Tnew,
i.e., Nt “ 0, which corresponds to schemes in [15], [35].
In this method, the topology Λ˚new is chosen every Tup “

20 samples after evaluating by exhaustive search |Tnew|

quadratic problems.
3) PRED10 implements a coalitional MPC scheme where

the transition to Λnew is made throughout a fixed transi-
tion horizon Nt “ 10. Every Tup “ 20 time steps from
k “ 10, the upper control layer assesses |Tnew| problems
and selects the optimal topology Λ˚new to make transitions
at the same time that ABRUPT.

4) PREDNtup is a coalitional MPC algorithm that every
Tup “ 20 samples solves |Tnew| ¨ |Nt| convex problems
and chooses that with the lowest cost to find the pair
tΛ˚new, N

˚
t u. The variable Nt P N` takes values between

0-10, and the considered number of topologies is |Tnew|.
5) PREDNtlow presents a coalitional MPC scheme where

the transition horizon Nt is defined as an optimization
variable of the lower control layer. The variable Nt can
take values between 0 and 10. Note that the new topology
Λ˚new is still chosen by the upper layer every Tup “ 20
time steps.

Table I displays a comparative summary of these methods.

Remark 6. Feasibility guarantees may be endangered in
PREDNtlow since the lower layer can delay the instant
in which the new topology, chosen by the upper layer, is
implemented. However, we did not have any feasibility problem
in the implementation of the PREDNtlow method.

The weighting Qi and Ri used for the controller design are

Qi “

„

1 0
0 0



, Ri “ 0.1, @i P N “ t1, 2, 3, 4u.

The global feedback gain KΛ “ rKisiPN and global weighting
matrix PΛ “ rPisiPN , which defines the terminal cost, are
obtained according to Lemma 2. As explained before, to
compute the RPI set XN f “

Ś

iPN Xif , standard methods [36]
have been implemented with the Multi-Parametric Toolbox
(MPT) of MATLAB® [32]. To reduce complexity, the RPI
set XN f employed is the one of the decentralized topology Λ1

because it is the most conservative (see Theorem 1). Fig. 4
shows its corresponding invariant sets Xif , @i P t1, 2, 3, 4u.

D. Results

The sampling time used in the simulation is Tm “ 5 s,
with a simulation length of Nsim “ 240 time steps. The
initial topology is the centralized one Λ8. Recall that the
topology will gradually change according Fig. 3. The MPC
methods consider a prediction horizon Np “ 20 samples, and
a cost per active cooperation link clink “ 2 ¨ 10´3. N.B.:
This value is chosen large enough to represent cooperation
costs, considering that a small value and a huge value will
always lead to a centralized and a decentralized network,
respectively. Further details about the effect of the tuning
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Fig. 4. Invariant sets of the four subsystems in topology Λ1.

parameter clink can be found in [30]. The computational time
τtotal has been measured by implementing all optimization
problems in one PC, using MATLAB® on Windows with a
PC Intel® Core™ i7-8700 CPU at 3.20 GHz and 16 GB
RAM. The computation time per average number of coalitions
is computed as

τC “
τtotal

C̄
, with C̄ “

řNsim

k“1

ř

CPN {Λ Cpkq
Nsim

,

to compare the schemes presented. The control goal of all
schemes is to regulate the state to a setpoint different from
the origin. Moreover, small reference changes are considered,
and RPIs corresponding to Λ1 are computed for each setpoint
to comply with the assumptions required for the methods.

The formation of clusters and the value of Nt are illustrated
in Fig. 5. For example, the scheme ABRUPT (Fig. 5 (a))
shows that the four agents have cooperated for the first 100 s
(centralized topology Λ8). Then, the topology changes to Λ6

at time instant t “ 105 s, i.e., agents #1 and #2 form a
coalition, and the same holds for agents #3 and #4 for 300 s.
At t “ 405 s, agents #1 and #2 start to work independently
in topology Λ2. From t “ 505 to t “ 600 s, topology
changes to Λ6, where there are two coalitions C1 “ t1, 2u and
C2 “ t3, 4u. Afterwards, centralized topology Λ8 is adopted
from t “ 605 s to t “ 700 s, and so on. In scheme PREDNtup

(Fig. 5 (c)), topology Λ5 is selected at t “ 305 s to be fully
implemented in Nt “ 6, i.e., t “ 30 s time instant head
because the sampling time is Tm “ 5 s. Moreover, this scheme
selects topology Λ5 at t “ 500 s, which will be completely
adopted in Nt “ 10 i.e., t “ 50 s time instant head.

Figures 6-7 show several outputs (h1, h2) and inputs (qa, qb)
of the plant for the five control schemes implemented. The
significantly different behavior of PRED10 can be explained
as follows. Let us focus on the system behavior between
t “ 850-950 s. At t “ 850 s, scheme PRED10 chooses
the centralized topology Λnew “ Λ8. In this case, the switch
of topology is not entirely implemented until Nt “ 10

(a) Scheme ABRUPT (b) Scheme PRED10

(c) Scheme PREDNtup (d) Scheme PREDNtlow

Fig. 5. Formation of coalitions and transition horizons Nt used in each
coalitional scheme. The transition horizon is depicted with a color linked to
a value between 0´ 10 as identified in the colorbar.

time instant later, i.e., after 50 s (recall that the sampling
time is Tm “ 5 s). In other words, there is a transition
from Λcur “ Λ4, where agent #1 works independently, to
Λnew “ Λ8, with agent #1 cooperating with the rest. This
situation generates a conflict with the values of qa and qb

to maintain h1 and h2 close to their references. As soon as
agent #1 starts to fully cooperate with the rest (at t “ 900 s),
this behavior is corrected. In particular, qa is increased to raise
water levels h1 and h4, and qb is simultaneously decreased not
to raise h2 and h3, which would increase h1 in consequence.
Finally, the centralized controller finds the appropriate control
sequences to reach both references conveniently.

Numerical results are shown in Table I. The method CEN
provides the best performance cost at the expense of keeping
all links enabled. Reducing cooperation costs and the size of
coalitions is crucial in some applications. Thus, the online
formation of coalitions permits to reduce cooperation costs
while satisfying the system requirements. Note that the upper
control layer of the coalitional methods establishes full com-
munication every Tup time instants to know the current state
of the overall system. Hence, the cooperative costs of these
centralized communications are also considered. With regard
to the total cost of the centralized MPC, ABRUPT provides
an improvement of 21.25 %, PRED10 of 6 %, PREDNtup

of 24 %, and PREDNtlow of 21.30 %. As shown, after
optimizing dynamically the moment of switch topology, the
lowest cost is achieved. Hence, our results show that it may
be interesting to anticipate the switching of topologies from a
global cost viewpoint. In particular, methods PREDNtup and
PREDNtlow outperform the control techniques with fixed Nt

when cooperation costs are considered.
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TABLE I
NUMERICAL RESULTS FROM APPLYING THE FIVE CONTROL METHODS

Control scheme N˚t Λ˚new # Problems to compute the topology τC Perform. cost Coop. cost Total cost

CEN ´ Fixed ´ 6.1172 s 1.0595 1.4400 2.4995

ABRUPT 0 Variable |Tnew| problems to choose Λ˚new 2.3610 s 1.0623 0.9060 1.9683

PRED10 10 Variable |Tnew| problems to select Λ˚new 1.4121 s 1.4121 0.9375 2.3496

PREDNtup Variable Variable |Tnew| ¨ |Nt| problems to choose tΛ˚new, N˚t u 5.3266 s 1.0661 0.8336 1.8997

PREDNtlow Variable Variable |Tnew| to set Λ˚new, and Λ˚new ¨ |Nt| to select N˚t 20.052 s 1.0632 0.9040 1.9672
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Fig. 6. Trajectories obtained from applying the MPC control methods.
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Fig. 7. Trajectories obtained from applying the MPC control methods.

VII. CONCLUSIONS AND DISCUSSION

A novel coalitional MPC algorithm with a hierarchical
architecture where local controllers can predict topology tran-
sitions over the prediction horizon was presented. A new
variable, the so-called transition horizon, is added to the opti-
mization problem to obtain the optimal time instant to switch
the topology. The proposed coalitional schemes promote co-
operation between agents to minimize costs and provide a
smoother system evolution. Conditions to assure the recursive
feasibility and asymptotic ultimate boundedness of the closed-
loop system are also considered in the controller design. Addi-
tionally, the algorithm employs a subset of network topologies
to mitigate scalability issues in large-scale systems.

Numerical results in an eight-coupled tanks plant show that
there are improvements in total costs after Nt is introduced as
a variable in the optimization problem. Our comparison shows
that, in the methods PREDNtup, and PREDNtlow where the
topology-switching time is optimized, the accumulated total
costs are lower than the control schemes with fixed switching
time and, in turn, are lower than the centralized MPC cost
when cooperation costs are explicitly considered. Therefore,
our results suggests that additional flexibility in introducing the
new topology plays an outstanding role in decreasing the total
cost. However, guaranteeing that our proposed methodology
always results in a lower cost-to-go of the infinite-horizon
problem is challenging due to the disturbances. Although
disturbances might occasionally benefit the closed-loop cost
of an abrupt change of topology, it is preferable to let the
controller have this additional degree of freedom because it
makes the optimization cost no worse. Additionally, it also
results in the controllers’ capacity to gradually prepare for a
topology switch within the prediction horizon and compute
their control actions accordingly. Coalitional MPC methods
with fixed switching time are likely to offer worse performance
in situations where its lack of flexibility becomes an issue,
e.g., when there is a forecasted event several time steps
ahead within the prediction horizon (for instance, a change
of reference or a disturbance that can be anticipated), but the
decision regarding the change of topology must be performed
at that specific time step. Consequently, topology changes
may be introduced too early or too late with the consequent
decrease of optimality. Hence, adjusting the switch of topology
within the prediction horizon allows the controller to benefit
more from future knowledge, which is a key point of the
proactive nature of MPC.
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Future research will deal with a fully distributed imple-
mentation of the proposed approach. Likewise, plug-and-play
features for the proposed scheme will also be explored.

ACKNOWLEDGEMENTS

This paper has received funding from the Spanish Ministry
of Science and Innovation under the Predoctoral Training pro-
gramme for University Staff (No. FPU18{04476), the Spanish
Ministry of Economy (project numbers DPI2017-86918-R and
DPI2015-67341-C02-01), the Samuel Solórzano Foundation
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