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Abstract— As large amounts of data are circulated both
from users to a cloud server and between users, there is a
critical need for privately aggregating the shared data. This
paper considers the problem of private weighted sum ag-
gregation with secret weights, where an aggregator wants
to compute the weighted sum of the local data of some
agents. Depending on the privacy requirements posed on
the weights, there are different secure multi-party compu-
tation schemes exploiting the information structure. First,
when each agent has a local private value and a local pri-
vate weight, we review private sum aggregation schemes.
Second, we discuss how to extend the previous schemes
for when the agents have a local private value, but the ag-
gregator holds the corresponding weights. Third, we treat a
more general case where the agents have their local private
values, but the weights are known neither by the agents nor
by the aggregator; they are generated by a system operator,
who wants to keep them private. We give a solution where
aggregator obliviousness is achieved, even under collusion
between the participants, and we show how to obtain a
more efficient communication and computation strategy for
multi-dimensional data, by batching the data into fewer ci-
phertexts. Finally, we implement our schemes and discuss
the numerical results and efficiency improvements.

I. INTRODUCTION

THE recent technological advances in communication
speed and deployment of millions of devices have fos-

tered the adoption of distributed computing frameworks. In
turn, such frameworks require aggregating services in order to
utilize the data collected for specific causes. Even as a step in
distributed algorithms, aggregation shifts from a decentralized
nature that inherently guarantees more privacy, to a centralized
approach that poses severe privacy challenges.

Of particular interest is the general problem of weighted
sum aggregation, that we explore in this paper, in which an ag-
gregating party needs to collect and sum contributions from a
number of agents–the contributions consist of some local data
weighted by some other relevant quantities. There is a wealth
of examples spanning various research areas that require
the computation of weighted aggregates: (a) Decentralized
and cooperative linear control for multi-agent systems [1]–
[3]; (b) Graph neural networks [4], [5] and collaborative
inference [6], [7]; (c) Average consensus [8], [9]; (d) Federated
learning [10], [11], aggregation of linear inference results;
(e) Energy price aggregation and management [12], [13],
vehicle tolls collection [14], [15].

Each of the above examples can pose different privacy
requirements on the local data of the agents, as well as on

The authors are with the Department of Electrical and Systems
Engineering, University of Pennsylvania, Philadelphia PA 19105 USA
(e-mail: {aandreea,pappasg}@seas.upenn.edu).

the corresponding weights. For example, in the context of
federated learning, the model is locally trained by the agents
and the aggregating server needs to compute the mean model
without obtaining the local models. In some price collection
instances, the prices can depend on private information known
at the aggregator and can vary dynamically, so the aggregator
knows the price weights, while the agents do not. Finally, there
are cases where a system operator has invested resources into
computing the control gains for a distributed system and wants
to keep them private from both the agents and the aggregator,
who needs to compute a linear control without knowing
neither the local agent’s states nor the gains. Similar privacy
requirements are in place for secure inference, where a service
provider has trained a proprietary model on its own data and
wants to keep it private while allowing it to be deployed.

In the context of (a), linear distributed control with ho-
momorphically encrypted gains was addressed by [16]–[18],
with [18] touching also on (b). We will elaborate and improve
on these works in Section V. Concerning (c), there is a body of
research that targets the privacy of the local data of the agents
achieving consensus, using partially homomorphic encryption
or differential privacy: see [19]–[22] and the references within.
For (d) and (e), works such as [23]–[27] provide private
solutions for private sum aggregation, touching on a large
base of cryptographic tools, such as secret sharing, threshold
homomorphic encryption, differential privacy.

Given the wide spread of private weighted sum aggregation
problems with different privacy constraints, our first contribu-
tion is to review their solutions and give a unified formulation.
We intend for this paper to serve as a guide for choosing an ef-
ficient particular solution based on knowledge distribution and
privacy demands. Our second contribution is to offer a private
solution for the general case of weighted aggregation, where
weights are hidden from all parties, and propose three optimi-
zations. Our third contribution is to implement and extensively
demonstrate the runtime and communication improvements.

We first review existing solutions for private sum aggrega-
tion (when weights are known by the agents, but not by the
aggregator). Most of the previously mentioned literature falls
into this category. Second, we describe the private weighted
sum aggregation with centralized weights (when weights are
known at the aggregator, but not at the agents), which can be
solved from the lens of functional encryption for inner prod-
ucts. Third, we give a solution for the private weighted sum
aggregation with hidden weights (neither agents nor aggregator
know the weights) and improve it compared to the solution
proposed in [17] in terms of security: larger collusion thresh-
old, communication: fewer messages exchanged, and runtime:
fewer operations, in the case of multi-dimensional data. We
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also propose multi-dimensional extensions for the first two
schemes.

Notation: We use bold-face lower case for vectors, e.g., x,
and bold-face upper case for matrices, e.g., A. For a posi-
tive integer n, let [n] := {1, 2, . . . , n}. A quantity (·)i refers
to agent i and a quantity (·)a refers to the aggregator. By x[j],
we refer to the j-th element of vector x and by W[jl], to
the element of matrix W on the j-th row and l-th column.
Z denotes the set of integers, Z/NZ denotes the additive group
of integers modulo N and (Z/NZ)∗ denotes the multiplicative
group of integers modulo N . κ is the security parameter.
We denote the Paillier encryption primitive by E(·) and the
decryption primitive by D(·). A function η : Z≥1 → R is
negligible if ∀c ∈ R>0,∃nc ∈ Z≥1 such that for all integers
n ≥ nc, we have |η(n)| ≤ n−c. φ(N) denotes Euler’s totient
function; for N = pq, with p, q primes, φ(N) = (p−1)(q−1).
A value x ∈ Qli,lf represents a rational value x = xi.xf with
li bits for the integer part and lf bits for the fractional part.

II. PROBLEM STATEMENT

We investigate an aggregation problem of weighted con-
tributions, depicted schematically in Figure 1. We consider a
system with M agents and one aggregator. Each agent i ∈ [M ]
has some data xi(t) ∈ Rni at time t and the aggregator
wants to compute an aggregate of the data in the system
xa(t) ∈ Rna , where Wi ∈ Rna×ni are constant weights
designated for the local data of agent i:

xa(t) =

M∑
i=1

Wixi(t). (1)

At every time step, each agent i ∈ [M ] has access to its
local data xi(t), either by direct measurement (e.g., location,
energy consumption) or by computation (e.g., gradient of the
model, local prediction). We consider three types of privacy
requirements for private weighted sum aggregation.

Private Weighted Sum Aggregation with hidden weights: This
case requires the strongest privacy guarantees:

(a) Agent i should not infer anything about the other agents’
local data xj(t), j ∈ [M ] \ {i} or about the aggregator’s
result xa(t) or about the weights Wi, i ∈ [M ], including
partial information such as Wixi(t).

(b) The aggregator should only be able to compute xa(t)
and should not infer anything else about the agents’ local
data xi(t) or the weights Wi, i ∈ [M ], including partial
information such as Wixi(t).

Fig. 1. Diagram of the private weighted sum aggregation. Some of the
participants can be corrupted and disclose their private data.

Private Sum Aggregation: In this case, we replace (a) by:
(a) Agent i knows its corresponding weight Wi and should

not infer anything about the other agents’ local data
and weights xj(t),Wj , j ∈ [M ] \ {i}, including partial
information such as Wjxj(t), or about the aggregator’s
result xa(t).

Private Weighted Sum Aggregation with centralized weights:
In this case, we replace (b) by:

(b) The aggregator knows the weights Wi and should only
be able to compute xa(t) and should not infer anything
else about the agents’ local data xi(t), i ∈ [M ], including
partial information such as Wixi(t).

These privacy requirements should hold even under collu-
sion between the aggregator and at most M − 2 agents, or
between M − 1 agents, i.e., a coalition should not be able to
infer the private data of the remaining honest participants.

We consider computationally bounded adversaries that are
honest-but-curious, which means that an adversary wants to
learn the private data of the honest agents, without diverging
from the established protocol. Such a model is chosen because
the aggregator is interested in obtaining the correct result of
the computation, and for instance, in applications involving
pricing, the agents would be fined in they cheat.

The goal here is to protect the privacy of the inputs and
intermediary computations, but reveal the output to the aggre-
gator. As a side note, all the presented algorithms can support
differential privacy, in case the output should also be protected.

In describing the schemes in Sections III, IV and V, we
focus on scalar data wi, xi, xa ∈ Z≥0, for i ∈ [M ]. After
illustrating the functionalities, we provide methods for dealing
with multi-dimensional rational data in Sections VII, VIII.

III. PRIVATE SUM AGGREGATION

Private sum aggregation (pSA), introduced in [28], [29],
enables an untrusted aggregator to compute the sum of the pri-
vate data contributed by agents, without learning their indi-
vidual contributions. Improvements in terms of efficiency and
functionality of pSA have been proposed in [27], [30]–[34]
and the references within. The formal definition of aggregator
obliviousness that pSA schemes have to satisfy (informally
described in Section II) was introduced in [28] and is given as
a cryptographic game between an adversary and a challenger,
similar to the game we describe in Appendix C.

When the weights wi are known to the agents, equation (1)
can be computed privately with a pSA scheme. Specifically,
in every time step, denoted by t ∈ Z≥0, each agent i ∈ [M ]
holds a private value xi(t) and wi. Define vi(t) := wixi(t).
The aggregator wants to compute the aggregate statistics over
the private values: xa(t) =

∑
i∈[M ] vi(t).

Let l denote the maximum number of bits of xi(t), wi, ∀i ∈
[M ]. An assumption we make for the rest of the paper is:

Assumption 1: For each time step t, after discretization,
xi(t), wi, wixi(t), xa(t) < N , ∀i ∈ [M ], i.e., there is no
overflow for N specified in each scheme. �

The most intuitive pSA scheme involves secret sharing.
Each participant will be given by a trusted dealer at the onset
of scheme a secret share of zero for each time step. Each
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agent will use this share to mask its local data, like a one-
time pad–see Appendix B. The aggregator will then sum all
the contributions it receives and obtain the desired sum, as the
shares of zero will cancel out. The idea of using shares of zero
to additively mask private values in aggregation problems was
explored, e.g., in [27], [34]–[36].

A private sum aggregation scheme should consist of the
following algorithms, pSA1 = (Setup,Enc,AggrDec):
• Setup(1κ,M,wi∈[M ], T ): take as input the security param-

eter κ, the number of agents M and time period T , and
output public parameters prm, secret information for each
agent ski, i ∈ [M ] and for the aggregator ska. This happens
as follows: let N = max(κ, 2l + M), then, for each time
step t ∈ [T ], generate M + 1 shares of zero:∑

i∈[M ]∪{a}

si(t) = 0, si(t) ∈ Z/NZ.

Set prm = (κ,M), ski = (si(t), wi), ska = (sa(t)).
• Enc(prm, ski, t, xi(t)): take as input the public parameters,

agent i’s secret information, the time step and the local pri-
vate value. Set vi(t) = wixi(t) and compute the ciphertext:

ci(t) = vi(t) + si(t) ∈ Z/NZ.

• AggrDec(prm, ska, t, {ci(t)}i∈[M ]): take as input the pub-
lic parameters, the aggregator’s secret information, the time
step and the ciphertexts of the agents for that time step. The
aggregator obtains xa(t) =

∑
i∈[M ] vi(t), as follows:

xa(t) = sa(t) +
∑
i∈[M ]

ci(t) mod N.

The correctness of pSA1 is based on the correct generation
of the random shares of zero in Setup, that cancel out after
aggregation. Aggregator obliviousness is based on the perfect
security of masking the private data in Enc by a one-time pad.

The scheme pSA1 requires a different set of shares of
zero for every time step (otherwise, partial information such
as differences between private contributions at different time
steps is leaked), which can involve elaborate communication,
as we will see in Section VI. On the other hand, the pSA2 =
(Setup,Enc,AggrDec) scheme from [31], that we describe
next, only requires an initial set of shares of zero. This scheme
is based on the Paillier cryptosystem [37], see Appendix A.
• Setup(1κ,M, {wi}i∈[M ], T ): generate p, q to be two equal-

size primes and set N = pq with gcd(φ(N), N) = 1,
blog2Nc = κ. Define a hash function that acts as a random
oracle H : Z→ (Z/N2Z)∗. Generate M+1 shares of zero:

sa := −
∑
i∈[M ]

si, si ∈ (Z/N2Z)∗.

Set prm = (κ,N,H), ski = (si, wi), ska = (sa).
• Enc(prm, ski, t, xi(t)): set vi(t) = wixi(t) and output:

ci(t) = (1 +N)vi(t)H(t)si mod N2.

• AggrDec(prm, ska, t, {ci(t)}i∈[M ]): take as input the pub-
lic parameters, the aggregator’s secret information, the time

step and the ciphertexts of the agents for that time step. The
aggregator obtains xa(t) =

∑
i∈[M ] vi(t), as follows:

V (t) = H(t)sa
∏
i∈[M ]

ci(t) mod N2

xa(t) = (V (t)− 1)/N.

The correctness of this scheme follows from the generation
of the secret shares and from (17) in Appendix A. The aggrega-
tor obliviousness property is proved in [31]. Furthermore, [31]
shows that the security of the scheme is not impacted when the
hash function H takes values in Z/N2Z, not in (Z/N2Z)∗.

IV. PRIVATE WEIGHTED SUM AGGREGATION WITH
CENTRALIZED WEIGHTS

When the aggregator knows the weight corresponding to
each of the agents wi (and they are not identical), but the
agents do not know them, we cannot reuse the above private
sum aggregation schemes. We operate under the assumption
that the constant weights are not chosen in an adversarial way
and there is an auditor that checks them beforehand. In this
way, we ensure that, for instance, the weights are not chosen
to single out only one piece of local data.

There are two lines of work that investigate this problem.
First, in [38], the authors propose a distributed scenario for ag-
gregation in a graph of agents using a threshold cryptosystem.
This implies that after receiving contributions from the agents,
the aggregator would ask for help in decrypting the aggregate
value. The second line of work removes the extra communi-
cation required for decryption. Functional encryption [39] is a
generalization of homomorphic encryption and allows a party
to compute a functionality over the encrypted data of another
party and obtain the desired solution without decryption. One
of the few current practical implementations is the function-
ality of inner products, where one party holds one input and
the other party holds the other [40]. Here, we formulate our
problem of private weighted sum aggregation with weights
known by the aggregator in terms of functional encryption for
inner product: xa(t) = 〈[w1, . . . , wM ], [x1(t), . . . , xM (t)]〉.

The definition of aggregator obliviousness for this case can
be written as a cryptographic game formalizing the require-
ments in Section II. Stronger privacy definitions, from the
perspective of functional encryption, can be found in [40].

We modify pSA2 to get a private weighted sum with cen-
tralized weights scheme pWSAc = (Setup,Enc,AggrDec):
• Setup(1κ, {wi}i∈[M ], T ): given the security parameter κ,

generate two equal-size prime numbers p, q and set N = pq
such that blog2Nc = κ and gcd(φ(N), N) = 1. The public
key is pk = (N). Sample M values si ∈ (Z/N2Z)∗ and set:

sa = −
∑
i∈[M ]

wisi. (2)

Choose a hash function that acts as a random oracle H :
Z → (Z/N2Z)∗ (see [40]). Finally, set prm = (κ,N,H),
ski = (si) and ska = ({wi}i∈[M ], sa).

• Enc(prm, ski, t, xi(t)): For xi(t) ∈ Z/NZ, compute:

ci(t) = (1 +N)xi(t) ·H(t)si mod N2.
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• AggrDec(prm, ska, t, {ci(t)}i∈[M ], {wi}i∈[M ]): compute

V (t) = H(t)sa ·
∏
i∈[M ]

ci(t)
wi mod N2

xa(t) = (V (t)− 1)/N.

Correctness follows after expanding V (t):

V (t) = H(t)sa · (1 +N)
∑

i∈[M] wixi(t) ·H(t)
∑

i∈[M] wisi.

Using sa = −
∑
i∈[M ] wisi, we obtain that (V (t) − 1)/N =∑

i∈[M ] wixi(t) = xa(t), as needed. Aggregator obliviousness
follows from the proof in [31], where the secret of the aggre-
gator is now sa = −

∑
i∈[M ] wisi instead of −

∑
i∈[M ] si, and

the aggregator raises the ciphertexts of the participants to the
respective power wi. A different proof can be found in [40].

Notice that the keys are independent of the time period T .
The Setup step can be performed as follows by a third-party
dealer that does not need to know the weights of the aggre-
gator. The dealer generates M random secrets si and sends
one to each agent. The aggregator generates the public and
secret key of an additively homomorphic encryption scheme,
e.g., Paillier [37], encrypts the weights wi, for i ∈ [M ] and
sends them to the dealer. Then, the dealer computes (2) as:

E(sa) =
∏
i∈[M ]

E(wi)
−si ,

and sends it to the aggregator, which then simply decrypts sa.

V. PRIVATE WEIGHTED SUM AGGREGATION WITH HIDDEN
WEIGHTS

A private weighted sum aggregation scheme for weights un-
known to all participants is composed of algorithms pWSAh
= (Setup, InitW,Enc,AggrDec). The formal security defini-
tion of aggregator obliviousness is given in Definition A.1 in
Appendix C as a cryptographic game. This game mimics the
real execution of the scheme, but with a more powerful
adversary that can choose both the local data of the corrupted
participants and the local data of uncorrupted participants. If
even in this case, the adversary is not able to break the privacy
of the scheme, then the scheme is private also when multiple
participants collude and share their private information, but
cannot set the private data of the honest participants.

We first note that, in the context of cooperative control,
local control laws of the form (1) were considered in [16]–
[18]. Specifically, [16] introduces a private computation and
exchange of the “input portions” vi(t) := Wixi(t), that reveal
neither the exact local state xi nor the local controller matrix
Wi to the aggregator, but can at least reveal the relative rate of
decrease/increase of some signals of the agents over multiple
time steps. More details about the information leak can be
found in [17], where a solution to the pWSAh problem that
achieves aggregator obliviousness is proposed. The solution
in [17] required generating fresh secrets at every time step
and proposed an online decentralized method that reduced
the collusion threshold between participants. Finally, [18]
proposed a theoretical solution that addressed the two issues
of [17]: it reduced the number of generated secrets, kept the
collusion threshold at M−1 corrupted participants and reduced

the number of messages exchanged between the agents and
aggregator. This came at the cost of using a lattice-based
homomorphic encryption scheme and augmented learning with
error ciphertexts, which can be larger than Paillier ciphertexts
and might require more expensive operations.

Our current work extends the results in [17] (and avoids
the more complex cryptographic tools in [18]) in the following
way: we provide an online decentralized method of distributing
the secret shares of zero among the agents without reducing
the collusion threshold and we propose a more compact and
efficient private weighted sum aggregation scheme by packing
multiple values in one homomorphic Paillier ciphertext.

In pWSAh, the weight wi should be private from all par-
ticipants, so one solution is to encrypt it. Then, agent i has to
be able to send an encryption of the masked product wixi(t)
to the aggregator, and the latter has to be able to compute and
decrypt the result. This suggests the outline in Figure 2:
• wi should be encrypted with an additively homomorphic

encryption that the aggregator knows how to decrypt;
• the layer of encryption introduced in Enc should be com-

patible with the inner additively homomorphic layer;
• the aggregator should not be able to decrypt the individual

contributions it receives from the agents, despite having the
secret key of the homomorphic encryption scheme.

Fig. 2. Diagram of the pWSAh functionality and privacy requirements.

To achieve the solution, we use a combination of the two
schemes described in Section III. For the outer layer of encryp-
tion, we use one-time pads as in pSA1, which are compatible
with the additively homomorphic property. For the inner layer
of encryption, we use an asymmetric additive homomorphic
encryption scheme. We instantiate it with the Paillier cryp-
tosystem [37], due to its simplicity and popularity. More
details about this cryptosystem can be found in Appendix A.

Hence, the steps of the algorithms in pWSAh are:
• Setup(1κ,M, T ): given the security parameter κ, get a

pair of Paillier keys (pk, sk): generate two equal-size prime
numbers p, q and set N = pq such that blog2Nc = κ and
gcd(φ(N), N) = 1. Set:

pk = (N), sk =
(
φ(N), φ(N)−1 mod N

)
.

For every t ∈ [T ], generate M + 1 shares of zero:

sa(t) := −
∑
i∈[M ]

si(t), si(t) ∈ (Z/NZ)∗.

Finally, set prm = (κ, pk), ski = (si(t ∈ [T ])) and ska =
(sk, sa(t ∈ [T ])).

• InitW(prm,M, {wi}i∈[M ]): given the public key of the
Paillier scheme pk, encrypt wi for i ∈ [M ] and return
swi = E(wi) = (1 + N)wirN mod N2, for r randomly
sampled from Z/NZ and such that gcd(r,N) = 1.

• Enc(prm, swi, ski, t, xi(t)): for xi(t) ∈ Z/NZ, compute:

ci(t) = E(wi)
xi(t) · E(si(t)) = E(wixi(t) + si(t)).
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• AggrDec(prm, ska, t, {ci(t)}i∈[M ]): compute V (t) =∏
i∈[M ] ci(t) mod N2 and then set:

xa(t) =
(
D(V (t)) + sa(t)

)
mod N.

Correctness: D(V (t)) =
∑
i∈[M ] wixi(t) + si(t) follows

from the correct execution of Paillier operations in Enc. Then,
D(V (t)) + sa(t) =

∑
i∈[M ] wixi(t) mod N = xa(t) from the

generation of shares of zero.
Theorem 1: The pWSAh scheme achieves weighted sum

aggregator obliviousness w.r.t. Definition A.1. �
The proof is given in Appendix D.
Remark 1: Unlike in pSA2, in pWSAh the aggregator has

to know the secret key of the cryptosystem that encrypts the
weights. If we would use pSA2, which has a single share of
zero per agent for all time steps, an adversary that corrupts
the aggregator and selects equal contributions at different
time steps for an agent in the pWSAO game (described in
Appendix C) could learn that agent’s secret share. �

The above scheme is appealing due to its simplicity, but
involves demanding communication, because secret shares of
zero are required at every time step t for every participant, as
motivated by Remark 1. The Setup is executed by an incor-
ruptible trusted third-party, called dealer. This dealer cannot
be online at every time step to distribute the shares because,
otherwise, this party could act as a trusted aggregator. A more
reasonable assumption is that, prior to the online computations,
the dealer computes the shares for T time steps and sends
them to the agents, who have to store them. Alternatively, we
also offer a solution to generate the secret shares of zero in a
distributed way, without the need of a trusted third-party.

VI. DECENTRALIZED GENERATION OF ZERO SHARES

A. One communication round, lower collusion threshold

In [17], we offered a solution with one round of communi-
cation but lower collusion threshold. This solution is appealing
in the case where the agents are connected by a dense graph.
Specifically, at each time step, each agent would generate and
send shares to the agents in its neighborhood (including the
aggregator), then sum up the shares it received from its neigh-
bors. This guarantees that all participants will hold a share of
zero. However, if the communication graph between the agents
is sparse, the collusion threshold drops from M−1 participants
to the minimum number of neighbors that an agents has.

B. Two communication rounds, same collusion threshold

When agents are not sufficiently connected, there are ways
of remediating the problem, each with different trade-offs. If
we are able to enforce new communication links between the
agents, we can create dummy connections such that each agent
reaches a desired vertex degree. This keeps the same number
of communication rounds as before, but it is debatable whether
the cost of adding new communication links is reasonable.
For instance, if the connections are based on proximity, such
a solution is expensive. On the other hand, if we relax the
number of communication rounds such that each agent obtains
a valid share of zero in two rounds, we can retrieve the initial

collusion threshold of M − 1 participants. Instead of sending
the shares to each other, the agents will use the aggregator
as an intermediate relay to get to the agents that they are not
directly connected to. Specifically, each agent i ∈ [M ] will
generate M+1 shares and encrypt them with a key known the
agent l ∈ ([M ]\ i)∪a (with, e.g., a symmetric encryption like
AES). The aggregator will forward the corresponding shares
to its neighbors l 6= i.
1) At time t− 2, each agent and the aggregator i ∈ [M ] ∪ a

creates shares of zero σil(t) ∈ (Z/NZ)∗ for itself and for
the rest of the agents:∑

l∈[M ]∪a

σil(t) = 0. (3)

It encrypts them with a key known to agent l ∈ [M ]∪a\ i
and sends AES(keyl, σil(t)) to the aggregator.

2) At time t − 1, the aggregator batches the M shares for
agent i ∈ [M ] and sends them.

3) At time t, each agent l ∈ [M ]∪ a sums its own share and
the shares it received and decrypted from the aggregator:

sl(t) :=
∑

i∈[M ]∪a

σil(t) mod N. (4)

In order to reduce the load on the aggregator, an agent i
can communicate directly to agents l ∈ Ni ∩ [M ], where Ni
is the set of neighbors of agent i and only sends the encrypted
shares to the aggregator for the agents l /∈ Ni ∩ [M ].

There is a very small probability that si(t) ∈ Z/NZ \
(Z/NZ)∗, i.e., it is a multiple of p or q. In this case, the
aggregator might be able to retrieve the encrypted message
with a probability ≤ 1/N when the encrypted message spans
all Z/NZ and ≤ 1/min(p, q) when the encrypted message
is in a smaller space, e.g. on l bits. However, p, q,N have
over a thousand bits to ensure semantic security of the Paillier
scheme, so this probability is very small (≤ the probability
of brute force guessing the message). Nevertheless, we can
introduce an extra round of communication to ensure si(t) ∈
(Z/NZ)∗, i ∈ [M ]: agent i verifies if gcd(si(t), N) = 1 and
if not, it changes the values σii(t) and σai(t) such that (3)
is still satisfied and gcd(si(t), N) = 1, then sends the new
σai(t) to the aggregator. This works because sa(t) is not used
for masking, so it is not required to be in (Z/NZ)∗.

VII. PACKED PAILLIER SCHEME

Assume we have a vector y = [y[1],y[2], . . . ,y[m]], with
y[i] ∈ [0, 2l) ∩ Z≥0. We can take advantage of the fact that
N >> 2l, where N is the Paillier modulus by packing m
items of l bits into a plaintext in ZN in the following way:

py =

m∑
i=1

y[i]2l(i−1) = [y[1]|y[2]| . . . |y[m]].

Here, we depict the least significant bits on the left, to show
the elements in the order that they appear in the vector. If we
need to perform additional operations on py after packing, we
have to make sure we retrieve the correct elements. Hence, we
need to take into account possible overflows from one “slot”
of the ciphertext the another. We do this by padding with
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enough zeroes, where δ > l and will be determined based on
the computations performed on py afterwards:

py =

m∑
i=1

y[i]2δ(i−1) = [y[1]︸︷︷︸
l

0...0︸︷︷︸
δ−l

| y[2]︸︷︷︸
l

0...0︸︷︷︸
δ−l

| . . . |y[m]︸︷︷︸
l

0...0︸︷︷︸
δ−l

].

(5)
Note that we can perform (5) as long as mδ < N .

In (5), we require positive integers. For a value y ∈ Qli,lf ,
we first construct an integer y, where l := li + lf , and then
obtain a positive integer ỹ, for γ > l that we will specify later:

y := y2lf ⇒ ȳ ∈ [−2l−1, 2l−1) ∩ Z (6)

ỹ := y + 2γ ⇒ ỹ ∈ [0, 2γ+1) ∩ Z≥0. (7)

In Sections VIII-B and VIII-C.1, where we do not use pack-
ing, instead of (7) we use (assuming 2l−1 < N/2):

ỹ :=

{
ȳ if ȳ ≥ 0

ȳ +N if ȳ < 0
⇒ ỹ ∈ Z/NZ. (8)

Batching multiple entries into one Paillier ciphertext was
first proposed in [41]. Notice that after packing multiple plain-
texts into one Paillier ciphertext as in (5), we can still perform
the homomorphisms corresponding to element-wise addition
and scalar multiplication. In the following, we investigate a
more efficient way to compute an encrypted matrix-plaintext
vector multiplication, by using only packing, element-wise ad-
dition and scalar multiplication. Figure 3 depicts this method.
For a matrix W ∈ Rm×n, denote the jth column by wj , for
j ∈ [n]. Then, in order to obtain the product v := Wx, we
multiply each column wj by the corresponding element in the
vector x[j] and then sum over all the obtained vectors:

v =

n∑
j=1

wjx[j]. (9)

Fig. 3. Diagram of column-packed matrix-vector multiplication. The
entries with the same outer coloring are packed in the same ciphertext.

VIII. SCHEMES FOR MULTI-DIMENSIONAL DATA

A. Multi-dimensional pSA

In the case of pSA1, the messages have small sizes and
communication is less of a problem even for multi-dimensional
data. However, in the case of pSA2, messages (ciphertexts)
are larger and we propose a better method than sending a
different message for each element of the resulting vector, by
batching the elements in a single ciphertext. The aggregator
wants to obtain xa(t) =

∑
i∈[M ] Wixi(t) =:

∑
i∈[M ] vi(t).

In pSA2, the dealer generates the secret shares the same way

as previously, but each agent i ∈ [M ] computes v
[j]
i (t) and

uses (6) and (7) to obtain ṽ
[j]
i (t), then computes:

pi(t) =
∑
j∈[ni]

ṽ
[j]
i (t)2δ(j−1)

ci(t) = (1 +N)pi(t)H(t)si mod N2.

The aggregator computes V (t) as before, and retrieves:

x̃[k]
a = V (t)//2(na−k)δ mod 2(k−1)δ, k ∈ {2, . . . , na − 1}

and x̃
[1]
a = V (t) mod 2δ , x̃[na]

a = V (t)//2(na−1)δ , where by
// we mean the quotient operation. From the elements of
x̃a(t), the aggregator needs to subtract 2γM and divide by
22lf each element, in order to obtain xa(t).

Choosing γ = 2l + 1 and δ = 2l + 2 + dlog2Me ensures
the correctness of the decryption, as no overflow occurs.

B. Multi-dimensional pWSAc

Here, we cannot use packing to reduce the number of
ciphertexts because we would require rotations and element-
wise multiplications, which cannot be performed on packed
Paillier ciphertexts. Compared to the pWSAh scheme, pWSAc
has the advantage that only one set of secret shares are
needed for all time steps, hence, communication due to secret
generation and sharing only happens once.

In the multi-dimensional case, the algorithms change from
the ones in Section III as described next. The participants
prepare their data using (6) and (8). In Setup, naM secrets
si ∈ ((Z/NZ)∗)

na are generated and:

s[k]a = −
∑
i∈[M ]

∑
j∈[ni]

W
[kj]
i s

[j]
i , k ∈ [na].

In Enc, each agent i ∈ [M ] constructs na ciphertexts:

c
[j]
i (t) = (1 + x̃

[j]
i (t)N) ·H(t)s

[j]
i mod N2, j ∈ [ni].

Finally, in AggrDec, the aggregator computes for k ∈ [na]:

V[k](t) = H(t)s
[k]
a ·

∏
i∈[M ]

∏
j∈[ni]

c
[j]
i (t)W̃

[kj]
i mod N2

x̃[k]
a (t) =

(
V[k](t)− 1

)
/N.

The aggregator retrieves the elements of xa(t) from x̃a(t)
by subtracting N from the elements greater than N/2 and
dividing all of them by 22lf .

C. Multi-dimensional pWSAh

We consider values on l bits, with log2N >> l, for N
ensuring semantic security of the Paillier scheme. Sampling
a random value from a large Z/NZ is expensive, but also
redundant, since it masks a much smaller message. To this end,
we prefer to sample si(t) ∈ (0, 2λ+2l),∀i ∈ [M ], for λ the sta-
tistical security parameter and to set sa(t) := −

∑
i∈[M ] si(t)

in pWSAh. Masking by si(t) will guarantee λ-statistical
security rather than perfect security, see Appendix B. From
here on, we use this more efficient approach.
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1) Naive multi-dimensional scheme: This solution was pro-
posed in [17]. The algorithms change compared to Section V
as follows. In Setup, for every t ∈ [T ], M · na shares of zero
s
[k]
i (t) ∈ (0, 2λ+2l) are generated for i ∈ [M ], k ∈ [na]:

s[k]a (t) = −
∑
i∈[M ]

∑
k∈[na]

s
[k]
i (t).

In InitW, the weights Wi, i ∈ [M ] are processed as in (6) and
(8) and encrypted element-wise: E(W

[kj]
i ) = (1+N)W̃

[kj]
i rN

modN2, for r randomly sampled from Z/NZ and satisfying
gcd(r,N) = 1. In Enc, each agent i ∈ [M ] computes:

c
[k]
i (t) =

∏
j∈[ni]

E(W̃
[kj]
i )x̃

[j]
i (t) · E(s

[k]
i (t))

= E

 ∑
j∈[ni]

W
[kj]
i x

[j]
i (t) + s

[k]
i (t)

 ,∀k ∈ [na].

Finally, in AggrDec, the aggregator computes, for k ∈ [na]:

V[k](t) =
∏
i∈[M ]

c
[k]
i (t) mod N2

x̃[k]
a (t) = D(V[k](t)) + s[k]a (t).

2) Packed multi-dimensional scheme: We reduce the num-
ber of ciphertexts and the corresponding number of operations
by using packing and the more efficient encrypted matrix-
plaintext vector multiplication described in Section VII.

Assume at the moment that we can pack at least na values in
one ciphertext. The steps we take are: 1) Pre-process the values
to be positive and integer; 2) Pack and encrypt the columns
of the matrix Wi and obtain ni ciphertexts; 3) Perform a
scalar multiplication of one encrypted column c with the scalar
x
[c]
i (t); 4) Sum the ni ciphertexts to get the encryption of

Wixi(t); 5) Add the share of zero and mask the intermediate
results; 6) Sum the M ciphertexts to obtain the encryption of∑
i∈[M ] Wixi(t); 7) Decrypt, unmask and unpack the result.
Next, we detail these steps and depict the bit gains due to

the operations performed on the packed columns in Figure 4.
1) Prepare the values to be packed as per (6) and (7), with γ

to be determined later.
2) Construct the packed plaintext pci ; encrypt it in E(Wc

i ):

pci =

na∑
k=1

W̃
[kc]
i 2(k−1)δ.

3) Multiply the encrypted column E(Wc
i ) by a pre-

processed scalar x̃
[c]
i (t). One slot of the ciphertext will now

contain (10) and will be represented on 2γ + 2 bits:

(W
[kc]

i + 2γ)(x
[c]
i (t) + 2γ) =

= W
[kc]

i x
[c]
i (t) + 22γ + 2γ(W

[kc]

i + x
[c]
i (t)).

(10)

From (10), one can retrieve the desired result W
[kc]

i x
[c]
i (t) by

taking the lefthand side modulo 2γ . But one can also obtain:

W
[kc]

i + x
[c]
i (t) = b(W̃[kc]

i x̃
[c]
i (t)− 22γ)//2γc, (11)

which can reveal intermediate information to the decryptor.
In order to avoid this information leakage, we need to ar-
tificially add some noise z

[kc]
i (t) that still allows retrieving

W
[kc]

i x
[c]
i (t). It is more efficient to add this noise in step 5),

after performing the sum over ni.
4) Sum the ni ciphertexts to output a ciphertext that contains

the vector result of the matrix-vector multiplication product.
5) For each slot k ∈ [na], an agent i ∈ [M ] selects z[k]i (t) ∈

(0, 2l+1+λ+dlog2 nie), such that a statistical security of λ bits
is guaranteed for the private value

∑ni

c=1 W
[kc]

i + x
[c]
i (t).

Then, each agent constructs its ciphertext ci(t) by adding the
secret shares of zero such that the remaining private value∑ni

c=1 W
[kc]

i x
[c]
i (t) is concealed:

ci(t):=s
[k]
i (t)+2γz

[k]
i (t)+

ni∑
c=1

W̃
[kc]
i x̃

[c]
i (t)

(10)
= ni2

2γ+s
[k]
i (t)+

+

ni∑
c=1

W
[kc]

i x
[c]
i (t)+2γ

(
z
[k]
i (t)+

ni∑
c=1

W
[kc]

i +x
[c]
i (t)

)
. (12)

Due to the masking with 2γz
[k]
i (t), we can reduce the size

of the mask s
[k]
i (t). More specifically, s[k]i (t) can be sampled

uniformly at random from (0, 2γ), because it acts like a one-
time pad (perfect secrecy) on

∑ni

c=1 W
[kc]

i x
[c]
i (t) once the

decryptor takes equation (12) modulo 2γ . The whole quantity
s
[k]
i (t) + 2γz

[k]
i (t) is used for masking, but we only need to

ensure that
∑
i∈[M ]∪a s

[k]
i (t) = 0.

6) The aggregator obtains c(t) by taking the product of all
ciphertexts ci(t) it received.

7) The aggregator decrypts the ciphertext c(t), adds its own
secret share of zero sa(t). It then retrieves the na elements of
x̃a(t) by recursively taking the quotient and rest by 2δ , and
from each resulting element, it obtains the elements of xa(t)
by taking modulo 2γ and dividing by 22lf .

We now compute the number of bits and corresponding
padding one slot can have such that no overflow occurs during
the private weighted sum aggregation. We assume that the
values of ni, for i ∈ [M ] are similar and define n := max

i∈[M ]
ni.

The value that is packed in slot k ∈ [na] after step 6) is:

M∑
i=1

(
s
[k]
i (t) + 2γz

[k]
i (t) +

ni∑
c=1

W̃
[kc]
i x̃

[c]
i (t)

)
< 2δ,

from which we obtain that:

δ > max
(
γ + 1, l + λ

)
+ dlog2 ne+ dlog2Me+ γ + 2.

For the correct retrieval of the desired result, we require that:
M∑
i=1

ni∑
c=1

W
[kc]

i x
[c]
i (t) < 2γ . (13)

From (13), we choose γ = 2l+ 1 + dlog2 ne+ dlog2Me and:

δ = max
(
l + 2 + dlog2 ne+ dlog2Me, λ

)
+

+3l + 4 + 2(dlog2 ne+ dlog2Me).
(14)

Figure 5 indicates possible values for the number of rows,
columns and agents depending on the plaintext size and sta-
tistical security. Denote the maximum number of values we
can pack by m < N/δ. If na > m, we split the columns into
dna/me Paillier ciphertexts and follow the same operations as
before, and concatenate the resulting vectors after decryption.
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Fig. 4. The operations performed on the packed columns and the corresponding number of bits of the result, where on the third line ζi(t) =[
ζ
[1]
i (t) 0 . . . 0 ζ

[2]
i (t) . . . ζ

[na]
i (t) 0 . . . 0

]
and ζ[k]i (t) = s

[k]
i (t) + 2γz

[k]
i (t), for k ∈ [na].

Let pWSAh∗ = (Setup, InitW,Enc,AggrDec) be a
packed multi-dimensional scheme for private weighted sum
aggregation with hidden weights, where steps 1) and 2) are
performed by the dealer as part of InitW and the shares of
zero for step 5) are generated as part of Setup, steps 1), 3)–5)
are performed by each agent i ∈ [M ] in Enc and steps 6) and
7) are performed by the aggregator in AggrDec.

Theorem 2: The packed multi-dimensional scheme
pWSAh∗ is correct and achieves aggregator obliviousness.

Proof: The correctness follows from the appropriate
padding and packing to avoid overflow, as stated in (14). The
aggregator obliviousness proof follows from Theorem 1, along
with the intermediate values masking from (12).

D. Comparison between naive and packed method

In the naive version of the multi-dimensional pWSAh, each
agent receives nani ciphertexts for Wi at the initialization
of the protocol, then computes nani ciphertext–scalar mul-
tiplications (modular exponentiation), na(ni − 1) ciphertext
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Fig. 5. The number of rows m that can be packed in a plaintext of
N = 2048 bits, as a function of the number of columns n, number of
agents M , size of message l and statistical security of λ = 80 bits.

additions (modular multiplications) and sends to the aggregator
na ciphertexts. In the decentralized way of generating shares,
each agent will have to send out (2l+λ)na bits of randomness
to each of the M neighbors per time step.

Denote by m the number of elements we can pack in a
Paillier ciphertext. In the packed version pWSAh∗, each agent
receives dna/meni ciphertexts for Wi at the initialization
of the protocol, then computes dna/meni ciphertext–scalar
multiplications, dna/me(ni−1) ciphertext additions and sends
to the aggregator dna/me ciphertexts. In the decentralized
way of generating shares, each agent will have to send out
(2l + 1 + dne+ dMe)dna/me bits of randomness to each of
the M neighbors per time step.

IX. CASE STUDY: PRIVATE DISTRIBUTED CONTROL

For illustration purposes, we consider a distributed linear
control scheme for linear dynamics of M agents in a network:

xi(t+ 1) = Aixi(t) + Biui(t), xi(0) = xi,0, (15)

with xi ∈ Rni and ui ∈ Rmi , for every i ∈ [M ]. The agents
are part of an undirected connected communication graph G =
(V, E), with vertex set V = [M ] and edge set E ⊆ V ×V . An
edge (i, j) ∈ E specifies that agent i can communicate with
agent j, i.e., agent i and agent j are neighbors.

We can use the local control laws to stabilize the systems:

ui(t) = Kiixi(t) +
∑
j∈Ni

Kijxj(t), (16)

where Ni := {j ∈ V|(i, j) ∈ E} represents the set of
neighbors of agent i. The stabilizing local control feedback
gains Kij can be designed to take into account the structural
constraints of the communication graph, see, e.g. [3].

In this illustrative example, each agent i is the aggregator of
the contributions of its neighbors Kijxj(t). There is a system
operator that acts as the dealer, who designs and encrypts the
control feedback weights K. Specifically, consider a network
of 50 agents, with each agent having local states and local
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control inputs both of dimension 6. We simulate pWSAh∗

for various values of the average node degree in the network,
obtained by varying the probability of drawing edges between
agents. Simulations were run in Python 3 on a 2.2 GHz Intel
Core i7 processor. In the simulations, we choose the message
representation to be on l = 32 bits: 16 integer bits and 16
fractional bits, the statistical security size to be 80 bits and
the Paillier moduli for each agent to have 2048 bits. With
these chosen values, all 6 elements of the local contributions
can be encoded into a single Paillier ciphertext in pWSAh∗.

We present the simulation results for the solutions described
in Sections V, VI-A and VI-B, in both naive implementation
(Section VIII-C.1) and using packing (Section VIII-C.2). The
running times are averaged over 50 instances and represent
the total time it takes for an agent at a time step to generate
and distribute the secret shares for the computation for itself
and its neighbors and to aggregate the contributions of its
neighbors and to compute and send out its own contribution
to its neighbors. The shares are locally encrypted with an
AES cipher with 128-bit key–for the offline centralized phase,
each agent has an AES key with the dealer, and each pair of
neighbors has their own AES key for the online decentralized
phase. Figures 6, 7, 8 and 10 show the times for an agent with
the average connectivity degree, respectively the minimum and
maximum connectivity degree (represented by the arrows).

Figure 6 compares the running times for the local computa-
tion at each agent in a time step using the scheme with central-
ized offline generation of the secret shares, between naive and
packed encryption. This method has the smallest online run-
ning time for agents, but the largest offline time for the dealer
that generates the shares for all agents, for many time steps
(see Figure 9). Figure 7 compares the online running times
between naive and packed encryption in the case of the one-
step decentralized online generation of shares and Figure 8 for
the two-step decentralized online generation of shares. These
methods have roughly an eight-fold increase in the online time
compared to the method that makes heavy use of a trusted
dealer, but the dealer has less work to do in the offline phase.
As expected, less security, in terms of reducing the collusion
threshold, yields better online time (Figure 7 vs. Figure 8).

In the centralized offline share generation scheme, packing
decreases the maximum online time between 64% and 71%.
In the online decentralized cases, where the agents are also
responsible for generating, encrypting, sending and decrypting
the shares, packing reduces the maximum online running time
between 76% and 80%. Overall, we see that in the packed
version, the sampling time needs to be at most 1.1 seconds.

Second, the communication load is reduced when using
packing: one Paillier ciphertext of 0.256 KB is sent from the
neighboring agents to the aggregating agent, instead of six
ciphertexts amounting to 1.536 KB, and each agent sends four
batches of 16 bytes AES-encrypted shares to each neighbor,
instead of seven batches of 16 bytes.

A third substantial advantage of packing is decreasing the
offline time, consisting of the weights encryption and the share
generation and encryption at the system operator, depicted in
Figure 9. Specifically, we see up to 80% improvement in the
offline running time when using packing.
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Fig. 6. Average running times for the pWSAh∗ scheme with the steps
described in Section V in a network of 50 agents.
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Fig. 7. Average running times for the pWSAh∗ scheme with the steps
described in Section VI in a network of 50 agents.
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Fig. 8. Average running times for the pWSAh∗ scheme with the steps
described in Section VI-B in a network of 50 agents.

To further illustrate the efficiency of packing, we show in
Figure 10 how the performance improves with the number of
control inputs, i.e., the number of values that are packed into
one value, in the case of decentralized online share generation.
We simulate a network of 25 agents with an average network
connectivity degree of 10. Each agent has a local state of
dimension 10 and local control input of dimension varying
between 2 and 10, which are packed in one Paillier ciphertext.
The online running time remains almost the same in the packed
version, despite having more control inputs, compared to the
increasing online time in the naive case.
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Fig. 10. Average running times for the pWSAh∗ scheme with the steps
described in Section VI-B in a network of 25 agents.

X. FUTURE WORK

In this work, we presented solutions for the problem of
private weighted sum aggregation, where an aggregator has
to obliviously obtain the sum of the weighted data of some
agents. Depending on which participant has access to which
piece of information, we can use different efficient solutions
that exploit this information distribution. However, providing
privacy in the honest-but-curious model might not be enough.
We plan to investigate schemes that are private under more re-
alistic security assumptions, namely for malicious adversaries,
as well as under drop-out conditions.
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for inner products, from standard assumptions,” in Annual International
Cryptology Conference. Springer, 2016, pp. 333–362.

[41] T. Ge and S. Zdonik, “Answering aggregation queries in a secure system
model,” in Proceedings of the 33rd Intl. Conf. on Very Large Data Bases.
VLDB Endowment, 2007, pp. 519–530.
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APPENDIX

A. Paillier’s additively homomorphic encryption scheme
Consider the additive group of integers modulo N , Z/NZ,

where N = pq is a large modulus composed of two
prime numbers of equal bit-length, p and q, such that
gcd(φ(N), N) = 1. φ(N) = (p − 1)(q − 1) is the order of
(Z/NZ)∗. Now consider the multiplicative group of integers
modulo N2, (Z/N2Z)∗. The order of (Z/N2Z)∗ is Nφ(N).
An important subgroup of (Z/N2Z)∗ is:

ΓN :={(1 +N)α mod N2|α ∈ {0, . . . , N − 1}}
={1 + αN |α ∈ {0, . . . , N − 1}},

(17)

where the equality follows from the binomial theorem:
(1 +N)α = 1 +αN mod N2. Computing discrete logarithms
in ΓN is easy [31], [37]: given x, y ∈ ΓN , we can find β such
that y = xβ mod N2 by β = (y − 1)/(x− 1) mod N .

Another important subgroup in (Z/N2Z)∗ is:

GN :={xN mod N2|x ∈ (Z/NZ)∗}. (18)

GN has order φ(N). Computing discrete logarithms in GN is
as hard as computing discrete logarithms in (Z/NZ)∗ [31].

We also have the modular equalities for x ∈ (Z/N2Z)∗:

xφ(N) = 1 mod N, xNφ(N) = 1 mod N2. (19)

The Paillier scheme is defined using the previously de-
scribed concepts. Specifically, the plaintext space is Z/NZ and
the ciphertext space is (Z/N2Z)∗. The public key is (g,N),
where g is usually selected to be 1 + N , and the secret key(
φ(N), (φ(N))−1 mod N

)
. The encryption is:

E(x) = gxrN mod N2, r ∈ (Z/NZ)∗.

For a ciphertext c ∈ (Z/N2Z)∗, decryption uses (17) and (19):

D(c) = (cφ(N) − 1)/N · φ(N)−1 mod N.

The Paillier scheme allows for homomorphic additions and
multiplication by plaintexts, as follows:

D
(
E(x) · E(y)

)
= D

(
E(x+ y)

)
= x+ y mod N

D
(
(E(x))y

)
= D

(
E(xy)

)
= xy mod N.

Under the Decisional Composite Residuosity assumption
(i.e., distinguishing between an element from GN and an
element from (Z/N2Z)∗ is hard), the following holds:

Theorem A.1: The Paillier cryptosystem is semantically se-
cure [37]. �

B. Secret sharing
Secret sharing is a tool that distributes a secret message

to a number of parties, by splitting it into random shares.
Specifically, t-out-of-n secret sharing splits a secret message
into n shares and distributes them to different parties; then, the
secret message can be reconstructed by an authorized subset
of parties, which have to combine at least t shares.

One common scheme is the additive 2-out-of-2 secret shar-
ing scheme, which splits a secret message m in a message
space Z/QZ into two shares by: generating uniformly at
random an element s ∈ Z/QZ, adding it to the message
and then distributing the shares s and m + s mod Q. Both
shares are needed in order to recover the secret. In some
cases (see discussion in Section VIII-C), we prefer to sample
s ∈ (0, 2log2Q+λ), for a statistical security parameter λ.

Theorem A.2: Secret sharing is:
(a) perfectly secure when s ∈ Z/QZ [42];
(b) λ-statistically secure when s ∈ (0, 2log2Q+λ). �

The proof of (b) follows from computing the advan-
tage an adversary has for distinguishing between m + s ∈
(0, 2log2Q+1+λ) and a uniformly sampled random value r ∈
(0, 2log2Q+1+λ), which is 1/2 + 2−λ (the statistical distance
between Z/QZ and (0, 2log2Q+1+λ) is 2−λ).

C. Aggregator obliviousness for pWSAh

We give a formal description of the privacy requirements
from Section II as a cryptographic game between an adversary
and a challenger, where the adversaryA can corrupt agents and
the aggregator. The weights wi∈[M ] are constant over the time
steps, so the adversary is forced to specify constant weights;
in particular, the adversary will specify two sets of weights:
wA,0i∈[M ] and wA,1i∈[M ]. The security game pWSAO (private
Weighted Sum Aggregator Obliviousness) is as follows:
Setup. The challenger runs the Setup algorithm and gives the
public parameters prm to the adversary.
Queries. The adversary can submit compromise queries and
encryption queries that are answered by the challenger. In
the case of compromise queries, the adversary submits an
index i ∈ [M ] to the challenger and receives ski, which
means the adversary corrupts agent i. The set of the corrupted
agents is denoted by C. In the case of encryption queries,
the adversary is allowed one query per time step t and per
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agent i ∈ [M ]. The adversary submits (i, t, wAi , xi(t)), where
wAi = {wA,0i , wA,1i }, and the challenger first runs swA,0i =
InitW(prm, i, wA,0i ), swA,1i = InitW(prm, i, wA,1i ) and re-
turns Enc(prm, swA,0i , ski, t, xi(t)) and Enc(prm, swA,1i , ski,
t, xi(t)). The set of participants for which an encryption query
was made by the adversary at time t is denoted by E(t).
Challenge. The adversary chooses a specific time step t∗. Let
U∗ denote the set of participants that were not compromised
at the end of the game and for which no encryption query was
made at time t∗, i.e., U∗ = ([M ] ∪ {a}) \ (C ∪ E(t∗)).
The adversary specifies a subset of participants S∗ ⊆ U∗.
At this time t∗, for each agent i ∈ S∗ \ {a}, the adver-
sary chooses two plaintext series x0i (t

∗) and x1i (t
∗), along

with wA,0i and wA,1i , and sends them to the challenger.
If S∗ = U∗ and a /∈ S∗, i.e., the aggregator has been
compromised, then, the values submitted by the adversary
have to satisfy

∑
i∈S∗ w

A,0
i x0i (t

∗) =
∑
i∈S∗ w

A,1
i x1i (t

∗).
The challenger flips a random bit b ∈ {0, 1} and computes
Enc(prm, InitW(prm, i, wA,bi ), ski, t, x

b
i (t
∗)), ∀i ∈ S∗. The

challenger then returns the ciphertexts to the adversary.
Guess. The adversary outputs a guess b′ ∈ {0, 1} on whether
b is 0 or 1. The advantage of the adversary is defined as:

AdvpWSAO(A) :=

∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣ .
The adversary wins the game if it correctly guesses b.
Definition A.1: A scheme pWSAh = (Setup,Enc, InitW,

AggrDec) achieves weighted sum aggregator obliviousness
if no probabilistic polynomial-time adversary has more than
negligible advantage in winning this security game:

AdvpWSAO(A) ≤ η(κ). �

D. Proof of Theorem 1

Proof: We are going to treat two cases: I, the adversary
does not corrupt the aggregator and II, the adversary corrupts
the aggregator:

Pr[b′ = b] =
1

2
Pr[b′ = b|i /∈ C] +

1

2
Pr[b′ = b|i ∈ C].

We will consider the stronger case where S∗ = U∗; the
weaker case where S∗ ⊆ U∗ follows.
I. a /∈ C. From the compromise queries, the adversary holds the
following information {κ, pk, {si(t)}i∈C , {wi}i∈C}t∈[T ] and∑
i∈U si(t) = −

∑
i∈C si(t), for all t ∈ [T ]. From the

encryption queries at time t, the adversary knows {ci(t) =
E(wAi xi(t))+si(t))}i∈E(t). Then, the adversary chooses t∗ ∈
T and a series of {x0i (t∗)}i∈U∗ and {x1i (t∗)}i∈U∗ and receives
from the challenger {ci(t∗) = E(w∗,bi xbi (t

∗)) + si(t
∗))}i∈U∗ .

Because the adversary doesn’t have the secret key of the
Paillier scheme and does not have the individual secrets of the
uncorrupted agents, the following holds, where η1(κ), η2(κ)
are negligible functions, according to Theorems A.1 and A.2:

Pr[A breaks Paillier scheme] ≤ η1(κ),

Pr[A breaks secret sharing] ≤ η2(κ),

Pr[b′ = b|i /∈ C] ≤ 1

2
+ η1(κ)η2(κ).

(20)

II. a ∈ C. From the compromise queries, the adversary
holds the following information ∀t ∈ [T ]: {κ, pk, {si(t)}j∈C ,
{wi}i∈C , sk}t∈[T ], and

∑
i∈U si(t) = −

∑
i∈C si(t). From

the encryption queries, and after using sk to decrypt, the
adversary knows {pi(t) = wAi x(t) + si(t)}i∈E(t). Then, the
adversary chooses t∗ ∈ T and a series of {x0i (t∗)}i∈U∗
and {x1i (t∗)}i∈U∗ , such that

∑
i∈U∗ w

A,0
i x0i (t

∗) =∑
i∈U∗ w

A,1
i x1i (t

∗) and receives from the challenger
{ci(t∗) = E(wA,bi xbi (t

∗)) + si(t
∗)}i∈U∗ . The adversary uses

the secret key of the Paillier scheme to decrypt the individual
ciphertexts and obtains pi(t∗) = wA,bi xbi (t

∗)+si(t
∗) mod N ,

for i ∈ U∗. Because the secret shares of zero are different for
each time t 6= t∗, the adversary cannot infer information about
the challenge query from the previous encryption queries.

Then, the probability that the adversary wins is the proba-
bility that the adversary breaks secret sharing:

Pr[A breaks secret sharing] ≤ η2(κ),

Pr[b′ = b|i ∈ C] ≤ 1

2
+ η2(κ).

(21)

From (20) and (21): AdvpWSAh(A) ≤ η2(κ).
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