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Abstract—Time-synchronization attacks on phasor measurement
units (PMU) pose a real threat to smart grids; it was shown that
they are feasible in practice and that they can have a non-negligible
negative impact on the state estimation, without triggering the bad-
data detection mechanisms. Previous works identified vulnerability
conditions when targeted PMUs measure a single phasor. Yet, PMUs
are capable of measuring several quantities. We present novel vul-
nerability conditions in the general case where PMUs measure any
number of phasors and can share the same time reference. One is a
sufficient condition that does not depend on the measurement values.
We propose a security requirement that prevents it and provide a
greedy offline algorithm that enforces it. If this security requirement
is satisfied, there is still a possibility that the grid can be attacked, al-
though we conjecture that it is very unlikely. We identify two sufficient
and necessary vulnerability conditions which depend on the measure-
ment values. For each, we provide a metric that shows the distance
between the observed and vulnerability conditions. We recommend
their monitoring for security. Numerical results, on the IEEE-39 bus
benchmark with real load profiles, show that the measurements of a
grid satisfying our security requirement are far from vulnerable.

I. INTRODUCTION

Accurate system estimation is a crucial element for the control and
operation of smart grids. Such an estimation relies on measurements
of electrical quantities, taken at various grid locations. The advancing
technology of phasor-measurement units (PMU) enables the use of
synchrophasors with fast streaming rates [1], [2]. The precision of the
estimation from phasors depends on the time synchronization of the
PMUs [3], which can be achieved through either a space-based proto-
col such as GPS synchronization [4] or a network-based protocol [5]
such as White Rabbit [6]. In both cases, it is vulnerable to cyber
attacks [7]. The GPS synchronization of PMUs is vulnerable to GPS
spoofing attacks [8] and the network-based protocols are vulnerable
to the insertion of a delay box between the PMUs and their master
clocks [9]. Network-based protocols assume that the transmission time
of a packet between a PMU and its master clock is symmetric (i.e. the
time to send packets is the same in both directions), or has a known
asymmetry. A delay box breaks this symmetry and introduces a time
offset in the time reference of the targeted PMU. These are physical
attacks that are neither prevented nor detected by the cryptographic
tools used by the synchronization protocol. As a result, the phase of
phasor measurements is shifted, which can non-negligibly impact the
state estimation of the system, as it was shown in [10], [11].

In order to make the state-estimation process robust, it is customary
to couple the state-estimation algorithm with a bad-data detection
(BDD) algorithm such as the largest normalized residual test or the
chi-squared test [12]. However, it was shown in [13] that false-data in-
jection attacks can have a non-negligible impact on the state estimation,
without triggering any reaction from the BDD algorithms. Subsequent
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works focused on undetectable attack strategies [14], on vulnerability
identification [15], [16] and on the mitigation of such attacks [17], [18].

Another type of attack that can impact the state estimation without
triggering any reaction from the BDD algorithms, is to alter the time
reference of PMUs. Unlike with false-data injection attacks, the data
is never forged nor modified. This can be done remotely via GPS
spoofing [19] or with delay boxes [9]. The authors of [10] propose a
strategy to compute undetectable time-synchronization attacks (TSAs)
against vulnerable pairs of PMUs, each measuring a single phasor.
They also discuss how vulnerable pairs of PMUs can be targeted
simultaneously in order to maximize an attack. Their techniques
require that a specific attack-angle matrix is of rank equal to 1, we
refer to such attacks as rank-1 TSAs.

The authors of [11] give a similar technique to find and
undetectably attack a set of at least two vulnerable PMUs, each
measuring a single phasor. They also show that when targeting at
least three PMUs, the solution set of undetectable-attack offsets forms
a continuum. They use this property to overcome constraints posed
by clock controllers that prevents too large offsets. Their new attack
strategies are to target at least three PMUs with gradually increasing
offsets; this, in time, maximizes the attacker’s objective.

In [11] a sufficient and necessary vulnerability condition is
identified for sets of PMUs with different time references, each
measuring a single phasor. Their theory shows that rank-1 TSAs
are feasible on a set of PMUs if and only if the index of separations
(IoS) of the attack-angle matrices computed for each pair of PMUs
are equal to 1. The IoS is explained in Section II-D. This condition
depends on the measurement values and enables them to find all
vulnerable sets of PMUs that measure a single phasor. They also
identified a sufficient vulnerability condition that does not depend
on the measurements. They showed that if the infimum of the IoS,
over all possible measurement values, is equal to 1 for all pairs of
PMUs in the targeted set, then rank-1 TSAs are always feasible.

The attack strategies and vulnerability conditions proposed in [10]
and [11] require that each offset alters a single PMU that measures
a single phasor. Yet, PMUs are capable of measuring several phasors,
and several PMUs can share the same time-reference. In order to
understand and mitigate rank-1 TSAs on real grids, it is important to
generalize the theory established in [11] to sets of PMUs that possibly
share the same time reference and that measure an arbitrary number of
phasors. Also, the techniques in [11] all rely on a complex verification
matrix corresponding to the least squares (LS) residuals when in fact
the most commonly used state estimation technique is the weighted
least squares (WLS) estimator. For exact attackability, the conditions
are equivalent with the LS and the WLS matrices. However, for the
establishment of vulnerability metrics, the use of the WLS matrices is
more accurate because the WLS and LS residuals can be different. Due
to the fact that the noise of phasors does not have circular symmetry,
we cannot use the complex system model of [11] to compute the WLS
estimates, we introduce the system model in rectangular coordinates.
In this paper, we establish the exact attackability conditions of grids
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with sets of phasors measured by PMUs that share the same time refer-
ence. For these exact conditions, we use the system model in complex
form, i.e. the LS verification matrix, because it leads to a structural vul-
nerability condition that does not depend on the measurement values.
Such a structural condition cannot be derived using the WLS matrices.
We then use the system model in rectangular coordinates in order to
provide vulnerability metrics that are linked to the WLS residuals.

We group PMUs, each measuring one or more phasors, in sites
if they share the same time-reference. Hence, an offset on the
time-reference of a site impacts all of the corresponding phasor
measurements in the same manner. Our first contribution is to identify
a sufficient and necessary vulnerability condition for rank-1 TSAs
that target a single site that measures an arbitrary number of phasors:
item (b) of Theorem 4. We also provide a metric that reflects how
vulnerable a site is at a given time.

If two sites are not vulnerable by themselves, they could still
be vulnerable as a pair. Our second contribution is to identify
vulnerability conditions to rank-1 TSAs, for such pairs of sites. One
is a sufficient condition that does not depend on the measurements:
item (b) of Theorem 6. The other is a sufficient and necessary general
condition that depends on the measurement values: item (a) of
Theorem 6. We provide a second metric that reflects how vulnerable
a pair of sites is at a given time.

Our third contribution is to show that rank-1 TSAs, on a set of
more than two sites, are feasible if and only if they are feasible for
any pair of sites within the set.

Finally, our fourth contribution is to mitigate the feasibility of rank-
1 TSAs on a grid by combining our first three results. We establish a
security requirement to prevent vulnerabilities identified by item (b) of
Theorem 6. Hence, to prevent vulnerabilities that do not depend on the
measurements. We provide a greedy recursive algorithm that enforces
our requirement, it takes as input the measurement points of an
observable grid and it outputs a larger set of measurement points corre-
sponding to the input set and additional points. A grid satisfying our re-
quirement can still be vulnerable if it satisfies item (b) of Theorem 4 or
item (a) of Theorem 6. Although we conjecture that this is unlikely to
occur, we still recommend the monitoring of the two provided metrics.

The paper is structured as follows. Section II defines the system
model, the attack model and explains the undetectability conditions.
Sections III and IV give the exact undetectability conditions for single
sites and pairs of sites, respectively. They also provide vulnerability
metrics, discuss the feasibility of the vulnerability conditions and
compare our new conditions with the ones of previous papers.
Section V proves our third contribution. Section VI provides security
measures to mitigate the feasibility of rank-1 TSAs on any observable
grid. An algorithm to secure grids against structural vulnerabilities
is also provided in Section VI. Numerical results, on the IEEE-39 bus
benchmark with real load profiles from the Lausanne grid, are given
in Section VII. They show that the measurements of a grid satisfying
our security requirements are far from satisfying the identified
vulnerability conditions. Finally, Section VIII concludes the paper.

II. SYSTEM AND ATTACK MODELS

We now introduce the complex system model that is the same as
in [10], [11] and the system model in rectangular coordinates. We
then present the attack model and define TSAs and rank-1 TSAs.

A. System Model in Complex Form
We consider a grid consisting of n buses. The state estimation

is based on m PMU measurements. Therefore, they correspond to

TABLE I
NOTATION USED IN THIS PAPER

Indices
m Number of PMU measurements
n Number of buses
q Number of attacked time references
p Number of attacked measurements
Parameters
z=(z

[1,m]
2 +jz

[m+1,2m]
2 )T ∈Cm Complex measurement vector

z2=(Re(z),Im(z))T ∈R2m Measurement vector in rectangular
coordinates

x=(x
[1,n]
2 +jx

[n+1,2n]
2 )T ∈Cn Complex state vector

x2=(Re(x),Im(x))T ∈R2n State vector in rectangular coordinates
H∈Cm×n Complex measurement-to-state matrix
H2∈R2m×2n Measurement-to-state matrix in

rectangular coordinates
e∈Cm Complex error vector
e2∈R2m Error vector in rectangular coordinates
x̂∈Cn Estimated complex state vector
x̂2∈R2n Estimated state vector in rectangular

coordinates
ẑ∈Cm Estimated complex measurement vector
F ∈Cm×m Complex verification matrix to compute

the complex LS residuals
Id Identity matrix
Si Set of phasor indices at site i
FSi ∈Cm×|Si| Submatrix of F with column indices in

Si
zSi ∈C|Si| Complex measurements with indices in

Si
C2∈R2m×2m Covariance of the measurement noise in

rectangular coordinates
r(z2)∈R2m Residual vector in rectangular coordinates

G2=

[
G2,1 G2,2
G2,3 G2,4

]
∈R2m×2m Verification matrix to compute the

normalized WLS residuals in rectangular
coordinates

G2,1, G2,2, G2,3, G2,4∈Rm×m Blocks ofG2

R= 1
2

[
G2,1−jG2,2
G2,3−jG2,4

]
Matrix useful to compute
r(z2)=Rz+R̄z̄

α Attack angle in rad
za, za2 Attacked measurement vector
∆z, ∆z2 Difference between the attacked and

unattacked measurement vectors
ui=e

jαi Attack value
u∗i Specific computed ui value
ϕ∈Nm×q Attack indicator matrix
W ∈Cq×q LS attack angle matrix
(ni)i and (vi)i∈Cp Vectors that span the null space of

F [S1,...,Sq]

Ii, V i and Siinj∈C∗ Complex current, voltage and injected
power values at time instant i

l∈C∗ Colinearity coefficient between two
vectors

A∈Cq×q WLS rank-1 approximation attack angle
matrix

Metrics
IoSi,t(zi,zt)∈ [0,1] Index of Separation at sites i and t with

respect to measurement values zi and zj
IoS∗i,t∈ [0,1] Infimum of IoSi,t(zi, zt) over all

possible values of (zi,zt)
ERR(F [S1,..,Sq])∈ [0,1] Effective rank ratio of F [S1,..,Sq]

electrical phasors such as currents or voltages. We suppose that the
PMUs are placed at various sites of the grid. Each site is equipped with
an arbitrary number of PMUs, each simultaneously measuring an arbi-
trary number of phasors. By ’arbitrary number’, we mean 0 or more ac-
cording to the choices of the grid engineers. We suppose that the PMUs
within a single site share the same time reference and that the PMUs in
different sites have a different time reference. Note that by time refer-
ence, we refer to a site’s clock and not to the time source, which could
be space or network based. A same time source is used to synchronize
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the different time references (i.e. clocks) throughout the grid.
Because PMUs measure directly voltage and current phasors, the

measurement vector z∈Cm and the voltage state vector x∈Cn are
linearly linked by the following equation

z=Hx+e,

where e ∈ Cm is the measurement error and the topology matrix
H∈Cm×n is composed of admittance-matrix and binary values. We
say that the system is observable whenH is full rank and we say that
a set of measurements is critical when removing it renders the system
non-observable, i.e., the sub matrix ofH obtained by removing the
corresponding rows is not full rank.

The LS estimate of the state vector has a closed-form solution
x̂ = (H†H)−1H†z, where H† denotes the complex conjugate
transpose of H. From the estimated LS state vector x̂, we can
construct the LS estimated measurement vector ẑ=Hx̂ and compute
its difference with the observed measurement vector z. The result
of this difference is the LS residual vector. Define the verification
matrix F =H(H†H)−1H†− Id, where Id refers to the identity
matrix, then Fz=0 if and only if there exists a state vector x such
that z = Hx. In other words, Fz is the residual vector after the
LS estimation. For ease of explanation, we introduce Si as the set
of phasor indices in site i, FSi as the m× |Si| submatrix of F
corresponding to the columns of F with indices in Si and zSi as
the vector of measurements with indices in Si.

The following two theorems facilitate the understanding of the
link between the criticality of a set of measurements with the rank
of the verification matrix F , their proofs are given in appendix.

Theorem 1. For a set S of measurement indices, FS is full rank
if and only if measurements with indices in S forms a non-critical set.

Theorem 2. For a set S of measurement indices, if
rank(FS)= |S|−swith 0≤s≤|S|, then all subsets of size |S|−s+1
is critical and there is at least one set of size |S|−s that is non critical.

Theorem 2 implies that if a set of measurements with indices in
S is such that rank(FS)=1, then all pairs of measurement within
the set are critical and that at least one measurement is non critical.

B. System Model in Rectangular Coordinates

In previous papers [10], [11] undetectable TSAs are proposed
such that the LS residuals are unchanged. The formulation of the
system model in complex form facilitates the derivation of the theory.
However, in practice, it is the WLS estimator that is used for state
estimation. With the WLS estimator, the measurements are weighted
by their noise variance. In a phasor measurement, noise of different
standard deviation can appear in the phase and/or the magnitude.
According to [10], if the noise of the polar coordinates is Gaussian
and small, then the noise of the rectangular coordinates can also be
assumed to be small and Gaussian. However, we cannot assume that
the noise of the real and imaginary parts of a phasor measurement
are homoscedastic. Therefore, we cannot assume circular symmetry
in the measurement errors which means that we cannot easily express
the WLS estimates using complex matrix operations. To overcome
this, we use matrices and vectors in rectangular coordinates. The
measurement-to-state equation now becomes

z2=H2x2+e2,

where z2 = (Re(z),Im(z))T ∈R2m is the measurement vector in
rectangular coordinates, x2∈R2n is the state vector in rectangular
coordinates, H2 ∈ R2m×2n is the rectangular-measurements-

to-rectangular-state matrix and e2 ∈ R2m is the error vector in
rectangular coordinates. The corresponding WLS state estimate is

x̂2=(H†2C
−1
2 H2)−1H†2C

−1
2 z2,

where C2∈R2m×2m is the covariance matrix of the measurement
noise in rectangular coordinates. The computation of C2, from both
measurement values and measurement noise standard deviation, is
described in [20]. We express the rectangular coordinates of the WLS
measurement residuals as a complex relation, using the complex
conjugate of z as a variable:

r(z2)=

(
rre
rim

)
=G2z2=

[
G2,1 G2,2

G2,3 G2,4

](
Re(z)
Im(z)

)
=

1

2

[
G2,1−jG2,2 G2,1+jG2,2

G2,3−jG2,4 G2,3+jG2,4

](
z
z̄

)
=Rz+R̄z̄,

where z̄ is the complex conjugate of z, G2,1, G2,2, G2,3, G2,4∈
Rm×m are blocks of the 2m × 2m real verification matrix
G2 = H2(H†2C

−1
2 H2)−1H†2C

−1
2 − Id and where the complex

matrixR∈C2m×m is computed from blocks of the real matrixG2:

R=
1

2

[
G2,1−jG2,2

G2,3−jG2,4

]
.

As shown in [12] the WLS residuals are distributed according
to a Gaussian distribution centered in 0 and of covariance matrix
Ω=(Id−H2(H†2C

−1
2 H2)−1H†2C

−1
2 )C2.

Note that the verification matrix with respect to the LS estimation
F does not depend on measurement values but only on the topology
of the grid. In comparison, the verification matrix with respect to the
WLS estimationG2, depends on the covariance of the measurement
noise, which itself depends on the measurement values [20].

C. Attack Model
We suppose that an attacker can observe the measurement vector

z, that he knows the topology of the system (i.e. he knows H) and
that he is able to manipulate the time reference of q sites via a GPS
spoofing attack or a delay box insertion. The attack on q sites affects
a total of p≥q measurements. An injected time offset d in the time
reference of a site directly shifts the phase of all measured phasors
in this site by an angle of α=2πfd rad, where f≈50 or 60 Hz is
the instantaneous voltage frequency and the offset d is in seconds.
Therefore, a measurement zi affected by an attack angle α is of
the form zai =zie

jα: its phase is shifted by the attack angle and its
magnitude is unchanged. Note that the injection of an offset in the
time reference of a site shifts the phase of all phasors measured in
this site by the same attack angle. Such an attack is a TSA.

D. Undetectability Condition
An attack is said to be undetectable if it is not flagged by the BDD

techniques in place. The majority of such implemented techniques are
residual based, specifically, they analyze the difference between the
observed and estimated measurements [21]–[24]. To the best of our
knowledge, residual-based BDD techniques are mostly variants of the
largest normalized residual (LNR) test and the χ2-test. The first flags
abnormally large LNR values and the second flags an abnormal distri-
bution of the sum of the residuals. Hence, an attack carefully crafted to
ensure that the residuals are unchanged can have an impact on the state
estimation and not be detected by residual-based BDD techniques.
Thus, we say that an attack is undetected if and only if r(∆z2) =
G2∆z2 = 0, where ∆z2 = za2−z2 is the difference between the
attacked and unattacked measurement vectors. The following lemma
shows that for exact attackability, the use of F andR is equivalent.
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Theorem 3. For a measurement vector z,
r(z2)=0⇐⇒ Fz=0⇐⇒Rz=0.

Proof. r(z2)=0⇐⇒ ∃x2 =(x2,1,x2,2)
T ∈R2n s.t x2,1,x2,2∈

Rn and z2 =H2x2 ⇐⇒ z =Hx, with x= (x2,1 + jx2,2)
T ∈

Cn⇐⇒ Fz=0.
If r(z2)=0, then Rz+R̄z̄=0, hence Rz=−R̄z̄. Furthermore,

if r(z2)=0 then there exist a state vector x∈Cn such that z=Hx.
Hence, for any λ∈C, λz =H(λx) and thus r(λz2) = 0. Taking
λ= j, we get r(z2) = jRz−jR̄z̄= 0, hence Rz= R̄z̄. Because
Rz=−R̄z̄=R̄z̄, we conclude thatRz=0.

IfRz=0, then r(z2)=Rz+R̄z̄=0.

We choose to use F to establish exact vulnerability conditions be-
causeR depends on the measurement values and F does not. This en-
ables us to provide a structural vulnerability condition that we cannot
derive fromR. In contrast, we useR for vulnerability metrics because
it is linked to the WLS residuals. Thus it enables us to measure how
detectable an attack is, or how vulnerable to attacks a set of sites is.

Suppose that the attacker introduces q time offsets to q sites,
following the notation in [10], define the attack vector

u=(u1,···,uq)T =(ejα1,···,ejαq)T ∈Cq,
and them×q indicator matrix ϕ such that

ϕt,i=

{
1 if measurement of index t is affected by angle αi,
0 otherwise.

It was proven in [10] that the attacks are absolutely undetectable
if and only if

∑q
i=1(ui − 1)Fdiag(z)ϕ:,i = 0, where ϕ:,i is

the ith column of ϕ and diag (z) is the diagonal matrix with
measurement values along the diagonal. For scalability, the authors
of [10] introduced the q×q attack-angle complex hermitian matrix
W=ϕTdiag(z)†F †Fdiag(z)ϕ. They showed that an attack vector
u is undetectable if and only if W(u−1) = 0. To the best of our
knowledge, all known techniques to compute undetectable attack
offsets require that the rank of W is equal to 1. We refer to such
attacks as rank-1 TSAs.

If for a pair of sites, that each measures a single phasor, the rank
of W is not equal to 1, the authors of [10] and [11] show that it is
sometimes possible to use a rank-1 approximation ofW for rank-1
TSAs. This is possible when the index of separation (IoS), defined
in [10] as the largest eigenvalue of W over the sum of both its
eigenvalues, is close to 1. This occurs if the largest eigenvalue is
significantly larger than the remaining one. In [10], the infimum of the
IoS over all measurement values is introduced as IoS∗. This quantity
does not depend on the measurements. If it is equal to or close to
1, then the IoS is always equal to or close to 1. This condition is used,
in [10] and [11], to find vulnerable sets of PMUs, that each measures
a single phasor, from the verification matrix only. For sites measuring
an arbitrary number of phasors we are required, in Section IV, to study
the effective rank of rectangular matrices with possibly more than
two singular values. For this purpose, we introduce the effective rank
ratio (ERR) of a matrix as its largest singular value over the sum of all
its singular values. The ERR is close to 1 if the largest singular value
is significantly larger than the others, in which case the effective rank
of the matrix is close to 1. We use this condition to find vulnerable
sets of sites that each measure an arbitrary number of phasors.

III. VULNERABILITY CONDITIONS FOR A SINGLE SITE

We now provide a novel sufficient and necessary condition for
rank-1 TSAs that target a single site. We then propose a vulnerability
metric to measure how vulnerable a site is. Finally, we discuss the
feasibility of the identified condition.

A. Vulnerability Condition
We assume that an attacker injects an offset in the time reference of

q=1 site; this affects pmeasurements. The remaining measurements
are not affected by the attack. Note that an attack on a site with all
pmeasurements equal to zero does not have any effect because the
attacks create only phase shifts and a phase shift on 0 is still equal
to 0. Hence, we study the vulnerability of sites that measure at least
one non-zero synchrophasor. The following theorem gives necessary
conditions in order to mount a rank-1 TSA.

Theorem 4. Consider a rank-1 TSA on a single site measuring p≥1
phasors with indices in S1, such that no measurement alone is critical
and at least one measurement is not equal to 0.

(a) If p=1: such an attack is never feasible.
(b) If p≥2: such an attack is feasible if and only if zS1 is in the null

space of FS1 .

Proof. When q= 1, notice that by definition W corresponds to a
single complex value:W=

(∑
i∈S1

F:,izi
)†(∑

i∈S1
F:,izi

)
. In this

case, a rank-1 TSA corresponds to a single complex value u such
that W(u−1) = 0. As mentioned in [10], non-trivial attacks exist
in this case if and only ifW=0. Thus, if and only if∑

i∈S1

F:,izi=0. (1)

(a) If p=1, then Eq. (1) is equivalent to F:,1z1=0. In other words,
because z1 is non-zero, a rank-1 TSA on a single site that
measures a single phasor is feasible if and only if its corresponding
column of F is equal to the null vector. Hence, such an attack
is feasible if and only if the phasor is critical. As we assume that
no single measurement is critical, we conclude that if p=1, then
no rank-1 TSA is feasible.

(b) If p ≥ 2, observe that the left-hand-side of Eq. (1) is equal to
FS1zS1 . Therefore, Eq. (1) is satisfied if and only if the targeted
measurement vector is in the null space of FS1 .

Observe that if a site is vulnerable to rank-1 TSAs, then any attack
angle will be undetected.

B. Vulnerability Metric: distance to item (b) of theorem 4
If a site is not vulnerable to rank-1 TSAs, it might still be close

to it. In other words, if the residuals obtained after an attack are
different but very close to the residuals obtained without an attack,
the attack is undetectable in practice. The following theorem shows
that ‖RS1zS1‖ is a reliable vulnerability metric for single sites. The
closer this metric is to 0, the more vulnerable the site is.

Theorem 5. ‖r(∆z2)‖= cst‖RS1zS1‖, 0≤cst≤4 ∀u1∈C such
that |u1|=1.

Proof. Values of the complex vectorRS1zS1
2 can be written in polar

form ρie
jφi and any u1∈C such that |u1|= 1 can also be written

in polar form u1=ejα. Hence,
‖r(∆z2)‖=‖R∆z+R̄∆̄z‖=‖2Re(R∆z)‖=‖2Re((u1−1)RS1zS1)‖

=

√√√√4

m∑
i=1

ρ2i (cos(φi+θ)−cos(φi))2

= cst

√√√√ m∑
i=1

ρ2i = cst‖RS1zS1‖, with 0≤cst≤4.
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C. Feasibility of the Vulnerability Condition: item (b) of theorem 4
If a rank-1 TSA is feasible, then there exists a relation among

the measurement values with coefficients computed from values of
vectors spanning ker(FS1). For example, in the case where p= 2,
an attack is feasible if and only if the two involved measurements
(z1,z2) are such that they satisfy the relation

z1
z2

=
n1
n2
, (2)

where (n1,n2)
T is a fixed vector that spans ker(FS1). This is because

FS1 is an m by 2 matrix, hence its rank is at most equal to 2. As
none of the measurements are critical by themselves, its rank cannot
be equal to 0 and as zS1 is in the null space of FS1 , its rank cannot be
equal to 2. Hence, its rank is equal to 1. By the rank theorem, ker(FS1)
is of dimension equal to 1. Hence, zS1 must be a non-zero complex
multiple of any vector that spans ker(FS1), which leads to Eq. (2).

Intuitively, such a relation seems unlikely to occur as measurement
values depend on independent loads. For example, if z1 is a voltage
value V and z2 a current value I, then at all time instant i, a rank-1
TSA is feasible if and only if

zi1
zi2

=
V i

Ii
=
V iI†i

|Ii|2
=
Siinj
|I|2

=
n1
n2
.

Hence, at all time instants the phase of the complex injected power
Sinj must remain constant and equal to argn1

n2
.Also, observe that the

relation implies that |V
i|
|Ii| = |n1|

|n2| .As the magnitude of voltage values is
always close to 1, the magnitude of the current values is approximately
invariant and close to |n2|

|n1| . In practice, the injected current and power
depends on the loads that vary in time due to external factors. Hence, it
seems unlikely that they could be of constant magnitude or phase and
even less likely that such constant values could be equal to specific
values computed from the verification matrix only. Therefore, we
conclude that the necessary conditions for a rank-1 TSA on a single
site that measures two phasors are unlikely to occur on a realistic grid.

We present numerical values of the metric ‖RS1zS1‖ obtained
through realistic simulations in Section VII. In our simulations, we
always encountered large values far from 0, which corroborates our in-
tuition that necessary conditions to mount a rank-1 TSA on a single site
seem unrealistic; but we still recommend to monitor it on a real grid.

IV. VULNERABILITY CONDITIONS FOR A PAIR OF SITES

If two sites are not vulnerable by themselves to rank-1 TSAs, they
could still be attackable together. We identify two novel conditions to
simultaneously mount rank-1 TSAs on such two sites. One of them is a
sufficient vulnerability condition that is structural as it depends on the
LS verification matrix only. The other is a general necessary and suffi-
cient condition that depends on the measurement values. We then pro-
vide a vulnerability metric to measure the vulnerability of any pair of
sites. We also discuss the feasibility of the identified general vulnerabil-
ity condition. Finally, we establish the relation between our novel con-
ditions and the vulnerability conditions presented in [10], [11] for the
special case where both sites measure only a single phasor (i.e. p=2).

A. Vulnerability Conditions
We suppose that an attacker injects different offsets in the

time reference of q = 2 sites, hence affecting a total of p phasor
measurements with indices listed in S1 and S2 for the first and
second sites, respectively. The following theorem gives necessary
conditions in order to mount a rank-1 TSA.

Theorem 6. Consider a rank-1 TSA on q = 2 sites measuring
phasors with indices in S1 and S2, respectively, such that

|S1|+ |S2|= p, no measurement is critical by itself, neither site is
vulnerable to rank-1 TSAs by itself and at least one measurement
in each site is not equal to zero.

(a) Such an attack is feasible if and only if FS1zS1 and FS2zS2 are
colinear.

(b) If rank(F [S1,S2])=1, i.e. if all pairs of measurements in S1∪S2
are critical: such an attack is always feasible.

(c) If rank(F [S1,S2]) =p, i.e. if the combined set of measurements
S1∪S2 is not critical: such an attack is never feasible.

Proof. Rank-1 TSAs are feasible if and only if rank(W) = 1. By
the rank properties of complex matrices, we have that rank(W)=
rank ((Fdiag(z)ϕ)†(Fdiag(z)ϕ)) = rank (Fdiag(z)ϕ). Hence,
rank-1 TSAs are feasible if and only if

rank

([∑
i∈S1

F1,izi
∑
i∈S2

F1,izi
...

...

])
=1. (3)

(a) Eq. (3) is satisfied if and only if either
• one of the columns of the matrix is equal to the null vector.

According to Theorem 4 this is equivalent to saying that a
rank-1 TSA can be mounted directly on the corresponding site.
However, this case is excluded because we suppose that no
rank-1 TSA can be mounted on a site by itself.

• or the two columns of the matrix are colinear. Specifically
FS1zS1 and FS2zS2 are colinear.

Since FS1zS1 and FS2zS2 are non-zero, they are colinear if and
only if there exists an l ∈C∗ such that FS1zS1 = lFS2zS2 ⇐⇒
F [S1,S2](zS1, lzS2)T = 0 ⇐⇒ (zS1, lzS2)T ∈ ker(F [S1,S2])
⇐⇒ dim(EZ ∩EN)≥ 1, with EZ = span{(zS1,0)T ,(0,zS2)T}
and EN = ker(F [S1,S2]). According to Grassmann’s formula,
this is equivalent to dim(EZ) + dim(EN)− rank([Z|N ]) ≥ 1,

where [Z|N ] =

[
zS1 0 N

0 zS2
...

]
and where N is a matrix with

independent columns that span ker(F [S1,S2]). Therefore, rank-1
TSAs are feasible if and only if

2+p−rank(F [S1,S2])−1≥rank([Z|N ])

⇐⇒ 1+p−rank(F [S1,S2])≥rank([Z|N ]). (4)
(b) If rank(F [S1,S2]) = 1, then Eq. (4) ⇐⇒ p ≥ rank([Z|N ]).

Observe that in this case, [Z|N ] is a p by p+1 matrix. Hence,
it is always the case that the rank of [Z|N ] is at most equal to
p. In other words, a rank-1 TSA is always feasible.

(c) If rank(F [S1,S2])=p, then Eq. (4) ⇐⇒ 1≥rank(Z), which is
never satisfied as Z is a matrix of rank equal to 2. In other words,
a rank-1 TSA is never feasible.

Interestingly, Theorem 6 implies that if three different sites Si, Sj
and Sk, that are not vulnerable by themselves, are such that two pairs
(Si,Sj) and (Si,Sk) are vulnerable, then (Sj,Sk) is also vulnerable.
In other words, item (a) of theorem 6 defines an equivalence relation
over the set of sites that are not vulnerable by themselves.

As mentioned previously, Theorem 6 establishes two novel
vulnerability conditions:
• a general vulnerability condition defined by item (a) of Theorem 6:

this condition is necessary and sufficient for vulnerability to rank-1
TSAs. It depends on the measurement values.

• a structural vulnerability condition defined by item (b) of
Theorem 6: this sufficient vulnerability condition depends on the
LS verification matrix only. In other words, if two sites satisfy this
condition, then they are vulnerable but it is also possible that two
sites that do not satisfy this condition are vulnerable.
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If a pair of sites is not exactly structurally vulnerable to rank-1 TSAs,
it can be practically so. Specifically, if the rank ofF [S1,S2] is not equal
to 1, its effective rank can be close to 1. This distance is captured
by the ERR of F [S1,S2]. Numerically, it can occur that a column of
F [S1,S2] has significantly larger values than the remaining columns,
in which case the effective rank is smaller than the computed rank. As
a result, ERR(F [S1,S2]) can be very close to 1. In this case it is likely
that a rank-1 TSA computed from a rank-1 approximation ofF [S1,S2],
is feasible in practice irrespective of the measurement values.

We present numerical results through realistic simulations in
Section VII. Our simulations show that when the rank of F [S1,S2]

is not equal to 1, its ERR is sometimes very close to 1, in which case
the corresponding pair of sites is practically vulnerable.

B. General Vulnerability Metric: distance to item (a) of theorem 6

As in the single-site analysis, when a pair of sites is not exactly
vulnerable to rank-1 TSAs, it can still be close to vulnerable. Theo-
rem 3 implies that item (a) of theorem 6 can be equivalently written
using the general WLS notations introduced in Section II-B as: a pair
of sites is vulnerable if and only ifRS1zS1 andRS2zS2 are colinear.
The details of this proof are given in appendix C. In other words, an
undetectable attack requires that the rank of them×2 complex matrix[
RS1zS1|RS2zS2

]
is equal to 1. If it is not the case, the metric of

vulnerability that we propose is the ERR of
[
RS1zS1|RS2zS2

]
. This

metric shows how vulnerable a set of measurements corresponding
to a pair of sites is. If the metric is equal to or approximately equal
to 1, then the pair of sites is vulnerable in practice.

C. Feasibility of the General Vulnerability Condition: item (a) of
theorem 6

If a pair of structurally non-vulnerable sites satisfy the general
vulnerability condition, there exists a relation between the
measurements with coefficients computed from the verification
matrix. Specifically, if rank(F [S1,S2]) 6= 1 but zS1 and zS2 are
such that FS1zS1 and FS2zS2 are colinear, then at least one of the
measurements is directly determined by a combination of the other
measurements and values of the vectors spanning ker(F [S1,S2]).

For example if phasors (z1,z2) and (z3,z4) are measured at the
first and second sites, respectively, then a rank-1 TSA on the two
sites is feasible if and only if either

z1
z2

=
n1
n2

and
z3
z4

=
n3
n4
,

where (n1,n2,n3,n4)
T is a fixed vector that spans the null space of

F [S1,S2]; or
z3
z4

=
z1(v3n2−v2n3)+z2(v1n3−v3n1)

z1(v4n2−v2n4)+z2(v1n4−v4n1)
,

where (n1,n2,n3,n4)
T and (v1,v2,v3,v4)

T are independent vectors
that span the null space of F [S1,S2]. The proof of this is not given
here but is similar to the one given in Section III-C. As for the
single-site vulnerability condition discussed in Section III-C, we
conjecture that such relations are unlikely to occur on real grids, as
measurement values depend on independent loads.

In our simulations presented in Section VII, the observed values
of ERR(

[
RS1zS1|RS2zS2

]
) for pairs of sites that do not satisfy the

structural vulnerability condition are far from 1. This corroborates
our intuition that the general vulnerability condition seems unlikely
to occur for pairs of sites that are not already structurally vulnerable
to rank-1 TSAs.

D. Relation with the Vulnerability Conditions of [10], [11]

We now show that if each site measures a single phasor (i.e. p=2),
then our vulnerability conditions are equivalent to the vulnerability
conditions identified in [10], [11]. The following theorem gives the
equivalence for the general vulnerability condition.

Theorem 7. Consider a rank-1 TSA on q=2 sites, each measuring
a single phasor z1 and z2, respectively, such that no measurement
is critical by itself or is equal to zero. Then IoS1,2(z1,z2)=1 if and
only if FS1z1 and FS2z2 are colinear.

Proof. As there are only 2 involved measurements, W is a 2 by 2
matrix. As no measurement is critical by itself, the rank ofW is equal
to either 1 or 2. By definition, the IoS ofW is equal to 1 if and only if
its smallest eigenvalue is equal to 0, which is equivalent to rank(W)=
1. Recall from the proof of Theorem 6 that the rank ofW is equal to
1 if and only if Eq. (3) is satisfied. As no measurement is critical by
itself, this is equivalent to the colinearity of FS1z1 and FS2z2.

Similarly, the following theorem gives the equivalence for the
structural vulnerability condition.

Theorem 8. Consider a rank-1 TSA on q=2 sites, each measuring
a single phasor z1 and z2, respectively, such that no measurement
is critical by itself or is equal to 0. Then IoS∗1,2 = 1 if and only if
rank(F [S1,S2])=1.

Proof. We show both directions:

• IoS∗1,2 =1→rank(F [S1,S2])=1: By definition of IoS∗, if it is
equal to 1, then the IoS is equal to 1, whatever the values of z1
and z2. Therefore, Eq. (3) is satisfied even if z1 =z2 =1, which
is equivalent to rank(F [S1,S2])=1.

• IoS∗1,2 = 1← rank(F [S1,S2]) = 1 : It was shown in [10] that if
p=2, then

IoS∗1,2=
1

2
+

|f12|
2(f11f22)1/2

, (5)

with fit=
∑
l,m

∑
nϕl,iϕm,tF̄n,lFn,m. Notice that

|f12|2=
(∑m

i=1F̄i,1Fi,2
)(∑m

i=1F̄i,2Fi,1
)
,

f11=
∑m
i=1F̄i,1Fi,1 and f22=

∑m
i=1F̄i,2Fi,2.

If rankF [S1,S2]=1, then there exists l∈C∗ such that F:,1=lF:,2

because no measurement is neither equal to 0 nor critical. Hence,
f11= |l|2f22 and |f12|2= |l|2f222. By plugging them into Eq. (5),
we get that IoS∗=1.

Note that IoS1,2(z1, z2) is the IoS of the attack-angle matrix
W computed from measurements (z1, z2). Also, IoS∗1,2 is the
infimum of IoS1,2(z1,z2) over all possible values of (z1,z2). Both
ERR(F [S1,S2]) and IoS∗1,2 are independent of measurement values.
Theorem 8 implies that one of them is equal to 1 if and only if the
other is also equal to 1. Therefore, they are both equal to 1 for an
exactly structurally vulnerable pair of sites measuring a single phasor.
However, as we show next,ERR(F [S1,S2]) may be close to 1 when
IoS∗1,2 is not. In other words, our structural vulnerability condition
is better than the one in [10] and [11] as it identifies more sets that
are practically vulnerable. The following claim is proven in appendix.

Claim 1. For any pair of sites, 1≥ERR(F [S1,S2])≥ IoS∗1,2 and
ERR(F [S1,S2]) can be close to 1 when IoS∗1,2 is not if FS1 has
much larger values than FS2 or vice-versa.
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V. VULNERABILITY
CONDITIONS FOR AN ARBITRARY NUMBER OF SITES

We now show that a rank-1 TSA targeting an arbitrary number of
sites q≥2 that are not vulnerable by themselves, is feasible if and only
if for every pair of sites among the targeted set of sites, a rank-1 TSA
is feasible. As a result, the vulnerability analysis of a grid reduces to
the vulnerability analysis of each site and each pair of sites. We then
establish the relation between our result and those identified in [11] for
the special case where all targeted sites measure only a single phasor.

A. Vulnerability Conditions
The following theorem establishes the general vulnerability

condition for an arbitrary number of sites that are not vulnerable by
themselves to rank-1 TSAs.

Theorem 9. A set ofm≥q≥2 sites, each measuring an arbitrary
number of phasors, such that none of the sites are vulnerable to
rank-1 TSAs by themselves, are vulnerable together if and only if
each pair of sites within the set is vulnerable to rank-1 TSAs.

Proof. Define S1, S2, ..., Sq to be the set of measurement indices
corresponding to phasors measured in the first, second, up to qth
targeted sites, respectively. Then, the rank of the attack-angle matrix
W corresponds to the rank of the following matrix

T=

[∑
i∈S1

F1,izi ···
∑
i∈Sq

F1,izi
...

...

]
.

The rank of thism by q matrix is equal to 1 if and only if all columns
of T are dependant. As none of the sites are vulnerable to rank-1
TSAs by themselves, no column of T is equal to the null vector.
Therefore, all sub matrices consisting of two columns of T must be
of rank equal to 1. This means that the attack-angle matrix W that
corresponds to the attack targeting the corresponding two sites is of
rank equal to 1. In other words, if a set of q sites is vulnerable to
rank-1 TSAs, then any two sites within the set of targeted sites are
also vulnerable to rank-1 TSAs.

Similarly, if there is a set of q sites such that all pairs of sites
within the set are attackable undetectably, then all columns of T are
dependant, which means that its rank is equal to 1. Therefore the
large set of q sites is vulnerable to rank-1 TSAs.

Theorem 9 implies that a site is vulnerable to rank-1 TSAs either
if it is vulnerable by itself or if its combination with at least one
other site forms a vulnerable set where all pairs of sites are vulnerable
together. Hence, mitigating the feasibility of rank-1 TSAs for each
site and each pair of sites is sufficient to mitigate the attack feasibility
of the grid. Table II recapitulates the vulnerability conditions and
distance to vulnerability metrics for a site and for a pair of sites with
non-critical measurements.

B. Relation with the Results of [11]
The authors of [11] show that measurements can be grouped in

equivalence classes, when the IoS values of the attack-angle matrices
of all pairs of measurements are equal to 1. Then, they show that
a set of measurements is vulnerable to rank-1 TSAs if and only if
the set of measurements belong to the same equivalence class. In
other words, they show that a set of sites, each measuring a single
phasor, is vulnerable to rank-1 TSAs if and only if all pairs of sites
within the targeted set is vulnerable. Recall that item (a) of theorem 6
defines an equivalence relation over the set of sites that are not
vulnerable by themselves. Hence, Theorem 9 shows that a set of

non-vulnerable sites is vulnerable if and only if the sites belong to
the same equivalence class. Therefore,Theorem 9 applied to sites
measuring a single phasor coincides with the result of [11].

VI. MITIGATING RANK-1 TSAS

To minimize the feasibility of rank-1 TSAs, we now combine
results from Sections III, IV and V. We propose a greedy offline
algorithm to ensure that no pair of sites is structurally vulnerable.
Even if a grid is not structurally vulnerable, there is still an unlikely
possibility that measurement values are such that some sites or pairs
of sites are vulnerable. In order to check the non-vulnerability of the
system, we recommend the monitoring of the vulnerability metrics.

A. Securing against the Structural Vulnerability Condition
Apart from vulnerability conditions, Theorem 6 also identifies

a structural non-vulnerability condition. Item (c) of Theorem 6
states that if the combined set of measurements from the two sites
does not form a critical set, then they are not vulnerable to rank-1
TSAs, irrespective of their measurement values. Hence, a natural
idea to secure all pairs of sites is to ensure that none of them forms
a critical set of measurements. However, from an engineering
perspective, it is not realistic to impose this security measure, as it
would either be impossible to enforce or require much redundancy in
the measurements. This would require substantially more PMUs than
what is required for observability of the system, which would be costly.
For example, by placing PMUs on every bus of the grid used for
simulations in Section VII, we obtain that 34% of pairs are still critical.

In contrast, it is possible to carefully increase the measurement
redundancy of an observable grid’s PMU allocation such that no pair
of sites are structurally vulnerable. Specifically, a security requirement
is that the ERR of F [S1,S2] cannot be close to 1 for all pairs of sites.

Recall that theorem 2 implies thatERR(F [S1,S2])=1 if and only
if all pairs of measurements in S1∪S2 are critical. In an observable
system, if a pair of sites is such that no measurement is critical and
all pairs are critical, by adding one phasor measurement in one of the
two sites, at least one pair of measurements will be non-critical. As a
result, the ERR of F [S1,S2] will no longer be equal to 1. However, the
practical security requirement is stronger and requires that the ERR is
not close to 1. Therefore, to secure an observable but vulnerable grid,
we propose to identify vulnerable pairs of sites such that the ERR of
F [S1,S2] is close to 1 and to iteratively increase the number of phasors
that they should measure until no critical pair of sites has a high
ERR(F [S1,S2]) value. A greedy strategy is to increase the number
of measured phasors at sites that appear most frequently in the list of
vulnerable pairs of sites. Algorithm 1 implements this greedy strategy
by recursively building the secured set of measurement points. It
takes as input the set of measurement points of the observable grid
and it outputs a larger set of measurement points which includes the
input set and the additional phasors required for structural security.
Note that this algorithm only secures against structural vulnerabilities,
it can thus be performed offline at each change of topology.

The authors of [11] present a rank-1 TSA targeting q = 5
structurally vulnerable sites. In Section VII, we secure the grid using
Algorithm 1 and show that the attack is no longer feasible.

B. Monitoring the General Vulnerability Metrics
Once the grid is secured against structural vulnerabilities, the

measurements of sites or of pairs of sites can still satisfy the general
vulnerability conditions identified by item (b) of Theorem 4 and by
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structural vulnerability general vulnerability distance metric
single site none FS1zS1

=0 ‖RS1zS1
‖≈0

pair of sites ERR(F [1,2])≈1 FS1zS1 and FS2zS2 colinear ERR(
[
RS1zS1 |RS2zS2

]
)≈1

TABLE II
VULNERABILITY CONDITIONS AND DISTANCE TO VULNERABILITY METRIC FOR EACH SITE AND PAIR OF SITES OF A GRID WITH NON-CRITICAL MEASUREMENTS.

Algorithm 1 Secure-Grid(M)
Input: M (set of measurement points for an observable grid)
Output: Mnew (updated set of measurement points for an observable and

structurally non-vulnerable grid)

H← Create topology matrix from admittance andM
Vulnerable←∅
F←H(H†H)−1H†−Id
for site i in grid do

Si=M(i)
for j 6=i in grid do

Sj=M(j)
Λ←Singular-Values(F [Si,Sj])
if max(Λ)∑

Λ
≥η then

V ulnerable←V ulnerable∪(i,j)
end if

end for
end for
if V ulnerable 6=∅ then

while V ulnerable 6=∅ do
freq← Get the most frequent index in V ulnerable
M←M∪freq
for tuple∈V ulnerable do

if freq∈tuple then
V ulnerable← Remove tuple from V ulnerable

end if
end for

end while
M←Secure-Grid(M)

end if
Mnew←M
returnMnew

item (a) of Theorem 6. As discussed in Sections III-C and IV-C, we
conjecture that such conditions are unlikely to be satisfied in reality. By
precaution, we propose to compute, at every estimation of the system’s
state, ‖RS1zS1‖ for every site and ERR(

[
RS1zS1|RS2zS2

]
) for

every pair of sites. If over time it can be observed that a site or a pair
of sites is frequently close to vulnerability, then the measurements
satisfy either exactly or approximately a dangerous relation. In this
case, we recommend breaking this relation by modifying the PMU
allocation around the corresponding site or pair of sites.

VII. SIMULATIONS

We validate our results with simulations on the IEEE 39 bus
benchmark with real load profiles taken from the Lausanne grid at 50
Hz. We apply the security requirements, established in the previous
section, and show that they achieve the desired security.

A. Electrical Model
The PMU allocation we consider is depicted in Figure 1.

Specifically, there are 12 zero-injection buses, PMUs
measuring both voltages and currents, are placed at buses
{30,37,28,38,18,39,12,16,7,31,32,34,33,20,25,26,29} and PMUs
measuring only currents are placed at buses {24,35,15,21,4,23,36}.
We define sites to be groups of buses separated by transformers
only: {2, 30}, {6, 31}, {10, 32}, {11, 12, 13}, {19, 20, 33, 34},

Fig. 1. PMU allocation on the IEEE-39 bus benchmark. Buses separated by a
transformer are grouped in a site: PMUs in a site share the same time reference.

{22,35},{23,36}, {25,37}, {29,38}, the other buses correspond
to one-bus sites. With this allocation, no measurement is critical by
itself, no PMU is critical by itself but some sites are critical.

Our simulations are done every 20ms over 700s, thus at 35′000
different time instants. At each time instant, we create a measurement
vector by computing the load flow. This results in the true state of
the system. We then add randomly generated Gaussian noise to the
true state, which results in the simulated measurement vector z.

B. Securing a Grid against Structural Vulnerabilities
The grid described above features pairs of sites such that all pairs

of measurements are critical, i.e. such that rank(F [S1,S2]) = 1. In
other words, they are structurally vulnerable to rank-1 TSAs. It is the
case for all pairs of sites among {21}, {22,35}, {23,36} and {24},
which means that a rank-1 TSA can be mounted on any combination
of these sites. In fact, the authors of [11] present rank-1 TSAs on
various combinations of the involved buses. Therefore, the grid needs
to be secured from this structural vulnerability.

In order to gain insights on how vulnerable the other pairs of
sites are in practice, we compute the ERR of their corresponding
matrix F [S1,S2]. The results given in Figure 2 reflect how close to
1 the ERR of F [S1,S2] matrices are. We observe that the median of
ERRvalues is at 0.556 and that all values are between 0.2114 and
0.9939. The closer the ERR of F [S1,S2] is to 1, the more vulnerable
the pair of sites is. Clearly, we can observe that several pairs of sites
are vulnerable to rank-1 TSAs in practice, even though they have
a non-critical pair of measurements.

Secure-Grid applied to this grid outputs a set of measurement
points that includes additional phasor measurements. Specifically,
buses 4, 15, 21, 24, 35 and 36 are required to measure an additional
phasor. We observe on Figure 3 that there are no longer any pair of
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0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 2. Distribution of ERR values of F [S1,S2] matrices for all pairs of sites before
applying Secure-Grid: some values are close to 1, the corresponding pairs of sites
are structurally vulnerable in practice.

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
IoS of FS1,S2       for all pairs of sites

0.5 0.55 0.6 0.65 0.7 0.75 0.8
IoS of W for all pair of sites at all 35000 time-instants

Fig. 3. Distribution of ERR values of F [S1,S2] and IoS values of W matrices for
all pairs of sites after applying Secure-Grid: none are close to 1, no pairs of sites are
structurally vulnerable in practice.

sites such that the ERR of F [S1,S2] is close to 1. Also on Figure 3,
we observe that the IoS of the attack-angle matrixW , at all 35′000
time instants is always much smaller than 1; i.e., there are no grid
locations that are structurally vulnerable to rank-1 TSAs.

The authors of [11] also present an attack on a set of three buses
with different time references, which involves a total of 5 measure-
ments. This attack is performed on a grid with a slightly different
PMU allocation. Specifically, only one phasor is measured at bus 26
and no phasors are measured at bus 29. In this setting, they presented
an attack on buses 26, 28 and 38. Notice that buses 28 and 38 both
measure two phasors simultaneously. This successful attack was found
by trials and errors but was not explained by the theory of [11]. We
now understand that this set of buses was in fact structurally vulnerable
because the rank of the corresponding sub matrix of F is equal to
1. We are now also able to secure the grid against this attack by
adding phasors to measure at buses 26 and 29. Figure 4 compares the
servo-aware attack impact and LNR values before using Secure-Grid
(i.e. the results presented in [11]) and after using Secure-Grid. It shows
that the undetectable attack from [11] becomes clearly detectable once
additional phasors are measured at the buses identified by Secure-Grid.
The change of values in the middle of the simulation is due to a sudden
increase of factor 2 in the active power introduced at a nearby bus.
All attacks presented in [10] and [11] targeted sets of PMUs which
were in fact structurally vulnerable to rank-1 TSAs. Our new security
requirement therefore prevents all of them.

Even though the resulting grid is not structurally vulnerable, it is
still possible that measurement values satisfy the general vulnerability
conditions for a site or a pair of sites. We show that such specific
conditions are far from appearing on our realistic grid.

C. General Vulnerability Condition for Single Sites
At each of the 35′000 time instants of the simulation, we compute

the metric ‖RS1zS1‖ introduced in Section III-B. Recall that this
metric is equal to 0 if and only if the site is vulnerable. The distribution
of the obtained values of all sites are shown in Figure 5. We observe
that the metric is never equal to 0, the most vulnerable site has a metric
that is on average equal to 0.664. To illustrate that 0.664 reflects that
the site is far from vulnerable in practice, we perform an attack on
the corresponding site {31} with a constant offset of 20µs, which is

the maximum offset allowed by the PMU clock controllers in [11].
Recall that a vulnerable single site can be attacked undetectably with
any attack-angle, including 20µs. The obtained largest normalized
residuals are approximately 6 times larger than those obtained without
an attack. Such a difference is easily identified. In other words, the site
that is the closest to satisfying the single-site vulnerability condition
is far from vulnerable in practice. As a result, we observe that the
measurement values of all sites of the grid are always far from
satisfying the conditions necessary to mount a rank-1 TSA.

D. General Vulnerability Condition for Pairs of Sites

At each of the 35′000 time instants of the simulation we
compute the vulnerability metric introduced in Section IV-B for
each pair of sites. Specifically, for each pair of sites we compute
ERR(

[
RS1zS1|RS2zS2

]
). Recall that the closer the metric is to 1,

the more vulnerable the pair of sites is. The distribution of the obtained
values for every pair of sites at all time instants are given in Figure 6.
We observe that the maximum value is 0.843, which is not close
enough to 1 for undetectable attacks. Figure 7 shows that an attack on
the corresponding pair of sites (i.e. the one with the highest vulnerabil-
ity metric values) is detectable. All the other pairs have vulnerability
metric values that are even further from satisfying the vulnerability
conditions. As a result, we observe that at each time instant of the sim-
ulation, the measurement values of all pairs of sites of the secured grid
are far from satisfying the conditions necessary to mount rank-1 TSAs.

VIII. CONCLUSION

We showed that the analysis of the vulnerability of a grid to rank-1
TSAs reduces to the vulnerability analysis for every site and every
pair of sites. We identified a sufficient vulnerability condition for pairs
of sites that measure an arbitrary number of phasors. This condition
does not depend on the measurement values. We established a security
requirement to prevent this vulnerability. We also provided an offline
greedy algorithm that enforces our security requirement. If our security
requirement is satisfied, it is still possible that measurement values are
such that attacks are feasible, although we conjecture that it is unlikely.
We identified sufficient and necessary vulnerability conditions for
single sites and for pairs of sites, each measuring an arbitrary number
of phasors. We recommend the monitoring of two metrics associated
to these conditions in order to check the non-vulnerability of the grid.
Numerical results, on the IEEE-39 bus benchmark with real load
profiles from the Lausanne grid, show that the measurements of a
grid satisfying our security requirement are far from vulnerable to
rank-1 TSAs. Finally, our results, applied to sites measuring a single
phasor, coincide with the results of [11]. Our new theory aslo enables
us to better understand and thus prevent attacks presented in [11].
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APPENDIX

A. Proof of theorem 1
Proof. • S non-critical → FS full rank:Assume that FS

is not full rank and that |S| = p, hence there exists a
y ∈ Cp such that

[
FS
] (
y
)

= 0. Thus, by construction[
F
] (
y1 ... yp 0 ... 0

)T
= 0. Hence, by definition of

F , vector v= (H†H)−1H†
(
y
0

)
∈CN is such that Hv=

(
y
0

)
.

Hence, the submatrix ofH obtained by removing it’s first p rows
is not full rank, which implies that S is critical. We have shown
that if FS is not full rank, then S is critical. This is equivalent to
showing that if S is non-critical, then FS is full rank.

• S non-critical←FS full rank:If S is critical, then there exists a
v∈CN such thatHv=

(
h1v ... hpv 0

)T
. BecauseH is full

rank, it must be that at least one value hiv for 1≤i≤p is non-zero.
Hence, vector

(
h1v ... hpv 0

)T
is in the range of H, this

means that its orthogonal projection on Im(H) is equal to itself.
By definition of F it must be that

[
F
](
h1v ··· hpv 0

)T
=[

FS
](
h1v ··· hpv

)T
=0. Therefore, FS is not full rank. We

have shown that if S is critical, then FS is not full rank. This is
equivalent to showing that if FS is full rank, then S is non-critical.
We conclude thatFS is full rank if and only ifS is non-critical.

B. Proof of theorem 2
Lemma 1. If the set of measurements with indices in S is critical
minimal, then rank(FS)=p−1.

Proof. If S is critical, then theorem 1 implies that FS is not full rank
and hence the p columns are dependent: rank(FS)≤p−1.Also, if S
is critical minimal, then any subset of p−1 measurements included in
S is non-critical. From theorem 1, this means that any submatixFS−1,
obtained by removing a column of FS, is full rank. Hence, any subset
of p−1 columns of FS is independent, this implies that rank(FS)≥
p−1. Therefore the bound is tight: rank(FS)=p−1.

Lemma 2. If rank(FS)=p−1, then the set of measurements with
indices in S is critical but not always minimal.

Proof. If rank(FS) = p− 1, then there exists x ∈ Cp such that
FSx = 0 with non-all zero xi for 1≤ i≤ p. By definition of F ,

vector u=(H†H)−1H†
(
x
0

)
is such that Hu=

(
x
0

)
. Hence, the

set of measurements {z1,...,zp} is critical. However, the constraint
on vector x is that it can have some zero values but it cannot be the
zero vector, thus the set S is not necessarily critical minimal.

By using the results of Lemmas 1 and 2 on subsets of S of size
p−s+1 with 0≤ s≤ p, we obtain that if rank(FS) = p−s, then
all subsets of size p−s+1 is critical and there is at least one set of
size p−s that is non critical. This proves theorem 2.

C. Proof of the Vulnerability Condition for Pairs of Sites using
rectangular notations
Theorem 10. A pair of sites S1 and S2 with non-zero and
non-critical measurements that are not vulnerable by themselves, are
vulnerable together to undetectable TSAs if and only if there exist
an l∈C∗ such thatRS1zS1 =lRS2zS2 .

Proof. Undetectability is equivalent to r(∆z2) = 0

with ∆z =
(
(u1−1)zS1 (u2−1)zS2 0

)T
. Hence, by

theorem 3, the vulnerability condition is equivalent to
(u1 − 1)RS1zS1 + (u2 − 1)RS2zS2 = 0. In other words, the
pair of sites is vulnerable if and only if there exist an l=−u2−1

u1−1 ∈C
∗

such that |u2|= |u1|=1 andRS1zS1
2 = lRS2zS2

2 . Note that we can
devide by (u1−1) because u1=1 is the non-attack solution.

D. Proof of Claim 1
Proof. Recall the structure of the attack-angle matrix:

W=

[
|z1|2f11 z̄1z2f12
z1z̄2f21 |z2|2f22

]
,

where fit = (FSi)†FSt . Using this notation, it was shown in [10]
that IoS∗1,2 = 1

2 + |f12|
2
√
f11f22

. Our metric ERR(F [S1,S2]) is

equal to IoS(X) and X = (F [S1,S2])†F [S1,S2] =

[
f11 f12
f21 f22

]
.

According to [10], IoS(X) = 1
2 + 1

2

√
1−4det(X)

tr(X)2 , where
det(x)=f11f22−|f12|2 and tr(X)=f11+f22 are the determinant
and trace ofX, respectively. Hence,

IoS(X)=
1

2
+

1

2

√
1−4

f11f22−|f12|2
(f11+f22)2

=
1

2
+

1

2

√
(f11+f22)2−4f11f22+4|f12|2

f11+f22
.

Denoting P =f11f22∈R+, D= |f12|∈R+ and S=f11+f22, we
have

IoS∗1,2=
1

2
+

1

2

√
D2

P
and

IoS(X)=
1

2
+

1

2

√
S2−4P+4D2

S2
.

Given P and S, values f11 and f22 exist if and only if S2≥4P . De-
fine function φ(x)= x−4P+4D2

x =1−4P−D
2

x ≤1 because P≥D2.
Because S2≥4P , the lowest value of the definition domain of φ(x)

is 4P : φ(4P) = D2

P . The derivative φ′(x) = P−D2

x2 being positive
implies that S

2−4P+4D2

S2 ≥ D2

P , hence 1≥ IoS(X)≥ IoS∗1,2. The
inequalities are equalities if D2 =P . If P is much larger than D2,
then IoS∗1,2 is much smaller than 1 and if S is much larger than 2

√
P ,

then IoS(X) is close to 1. In that case, an attack is feasible, IoS∗1,2
doest not enable the detection of the vulnerability but IoS(X) =
ERR(F [S1,S2]) does. This happens when S>>2

√
P , thus when

f11+f22>>2
√
f11f22

(f11+f22)
2>>4f11f22

f211−2f11f22+f222=(f11−f22)2>>0

f11>>f22 or f22>>f11
In other words, if the values of FS1 are much larger than the values
of FS2 or vice-versa, thenERR(F [S1,S2]) is close to 1 but IoS∗1,2
is not.
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