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Distributed Online Convex Optimization with an

Aggregative Variable
Xiuxian Li, Xinlei Yi, and Lihua Xie

Abstract—This paper investigates distributed online convex
optimization in the presence of an aggregative variable without
any global/central coordinators over a multi-agent network,
where each individual agent is only able to access partial infor-
mation of time-varying global loss functions, thus requiring local
information exchanges between neighboring agents. Motivated by
many applications in reality, the considered local loss functions
depend not only on their own decision variables, but also on an
aggregative variable, such as the average of all decision variables.
To handle this problem, an Online Distributed Gradient Tracking
algorithm (O-DGT) is proposed with exact gradient information
and it is shown that the dynamic regret is upper bounded by
three terms: a sublinear term, a path variation term, and a
gradient variation term. Meanwhile, the O-DGT algorithm is
also analyzed with stochastic/noisy gradients, showing that the
expected dynamic regret has the same upper bound as the exact
gradient case. To our best knowledge, this paper is the first to
study online convex optimization in the presence of an aggregative
variable, which enjoys new characteristics in comparison with the
conventional scenario without the aggregative variable. Finally,
a numerical experiment is provided to corroborate the obtained
theoretical results.

Index Terms—Distributed algorithms, online convex optimiza-
tion, aggregative variable, dynamic regret, multi-agent networks.

I. INTRODUCTION

Online optimization/learning is a sequence of decision mak-

ing processes, where a sequence of time-varying (and possi-

bly adversarial) loss functions are revealed gradually to the

decision maker. Online optimization has numerous practical

applications such as in machine learning, auctions, dictionary

learning, portfolio management, and neural networks [1]–[4],

to name just a few.

With the development of advanced communication and

computing technologies and the emergence of large-scale

datasets, distributed online optimization has become a hot

topic in recent two decades, where a finite group of agents,

such as robots, computing units, processors, autonomous ve-

hicles, and sensors, aim to solve a global online optimiza-

tion problem in a cooperative manner by local information

exchanges between neighboring agents. It should be noted

that each individual agent can access only partial information

on the global problem, and the partial information may be
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private to each agent who is unwilling to expose the in-

formation to others. Usually, there exists a global (central)

coordinator/master in centralized online optimization, while it

is not practical in distributed online optimization. In contrast to

centralized online optimization, the distributed case has over-

whelming advantages, including lower cost, better robustness,

and privacy preservation, etc.

The studied problem in distributed online optimization is

generally in the form of
∑N

i=1 fi,t(xi) subject to xi = xj
for all i, j ∈ [N ] and possible equality/inequality constraints,

where N is the number of agents in the network, from which

one can observe that each local loss function fi,t depends

only on its own decision variable xi. However, in many

realistic applications, such as warehouse location problem,

transportation systems, signal processing, target surrounding

by robots and unmanned aerial vehicles (UAVs), the local

loss functions usually rely on other agents’ decision variables

besides its own variable. For example, in target surrounding,

a collection of agents (such as robots, UAVs, or autonomous

vehicles) desire to surround a target in order to protect the

target from the attack of intruders, and in this case, local

loss functions will rest not only on its own decision variable

(such as position), but also on the average of the decision

variables of all agents. Theoretically, no existing algorithms

are available to the case with an aggregative variable, thus

making it a challenging problem.

Motivated by the above facts, this paper is concerned with

the scenario where each local loss function depends not only

on its own variable, but also on an aggregative variable, which

is a global variable and not known to any individual agent.

A. Related Works

Online convex optimization (OCO) was firstly studied in

a centralized setup, including the case with only feasible set

constraints [1], [4], [5] (having the optimal static regret bound

O(
√
T )), the case with static inequality constraints [6]–[8],

and the case with time-varying inequality constraints [9]–[13].

As for distributed OCO, which is our main focus in this

paper, various scenarios have been addressed in the literature,

such as [14]–[23], to quote a few. For instance, distributed

online unconstrained optimization problems have been in-

vestigated in [15] and [16], where an online subgradient

descent algorithm and a distributed online subgradient push-

sum algorithm are proposed, respectively. Meanwhile, many

algorithms have been developed for the case with global/local

set constraints in the literature, such as, a variant of the

Arrow-Hurwicz saddle point algorithm [18], Nesterov based

primal-dual algorithm [17], dual subgradient averaging algo-
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rithm [20], distributed primal-dual algorithm [21], and mir-

ror descent algorithm [19]. Moreover, local static inequality

constraints have been addressed in [22] by a consensus-

based adaptive primal-dual subgradient algorithm. Smart grid

networks have been discussed as an application of distributed

online optimization in [24]. Furthermore, a general constraint,

i.e., a static coupled inequality constraint, has been considered

in [23] and [25], where a sublinear static regret is ensured

by distributed primal-dual algorithms. More recently, time-

varying coupled inequality constraints have been studied in

[26] and [27] with full gradients and bandit feedback, respec-

tively.

It can be found that all aforementioned works focus on the

case where each local loss function is dependent only on its

own decision variable. Inspired by the practical applications,

this paper investigates the case where an aggregative variable,

building upon all agents’ decision variables, is involved in each

local loss function, thus requiring new techniques for dealing

with this new problem.

B. Our Contributions

To our best knowledge, this paper is the first to investigate

online optimization with an aggregative variable. To tackle

this problem, a novel algorithm with full gradients, called

online distributed gradient tracking algorithm (O-DGT), is

developed. It is rigorously proved that the dynamic regret is

upper bounded by three terms: a sublinear term O(
√
T ), a path

variation term, and a gradient variation term, thus obtaining a

sublinear dynamic regret when the path and gradient variation

terms are both sublinear. Note that even in the conventional

case without the aggregative variable, it is necessary for the

dynamic regret to be bounded by the path variation, since

achieving a sublinear dynamic regret is impossible if the path

variation is too large [26]. Also, the gradient variation is a

new term required for the dynamic regret bound, which is

generally unnecessary for the case without the aggregative

variable. The reason behind this phenomenon is that the

current online optimization with the aggregate variable also

needs to estimate the gradients of other agents’ loss functions.

Moreover, when using a constant stepsize, the upper bound

on dynamic regret for the distributed online optimization can

be established which is almost the same as the centralized

algorithms, except that it requires to know the information

on T , the path variation, and the squared gradient variation

beforehand, which are also used in centralized algorithms.

On the other hand, instead of true gradient information,

we further study the O-DGT algorithm with stochastic/noisy

gradients. It is shown rigorously that the expected dynamic

regret has the same upper bound as the full gradient case.

As by-products, the aforementioned two results can be

applied to the case when all loss functions are static, that

is, all functions are independent of time. In this case, the

O-DGT algorithm is renamed a distributed gradient tracking

algorithm (DGT). For DGT with true gradients, it is shown

that the algorithm is convergent to an optimizer at the rate

of O(1/
√
T ). Meanwhile, as for DGT with stochastic/noisy

gradients, the algorithm can also be proved to be convergent to

an optimizer in the sense of expectation with a rate O(1/
√
T ).

In comparison, the static case here is studied in the general

convex setting, while [28] only addressed the strongly convex

case.

Notations: Let R
n be the set of vectors with dimension

n > 0. Define [k] = {1, 2, . . . , k} for an integer k > 0. Denote

by col(z1, . . . , zk) the column vector formed by stacking up

z1, . . . , zk. Let ‖ · ‖, x⊤, and 〈x, y〉 be the standard Euclidean

norm, the transpose of x ∈ R
n, and standard inner product

of x, y ∈ R
n, respectively. Let 1 and 0 be column vectors

of compatible dimension with all entries being 1 and 0,

respectively, and I be the compatible identity matrix. ⊗ is

the Kronecker product. Let ∇f and Id denote the gradient of

a function f and the identity map, respectively.

II. PRELIMINARIES

The projection of a point x ∈ R
n onto a closed convex

set S ⊆ R
n is defined by PS(x) := argminy∈S ‖x − y‖,

satisfying:

‖PS(x)− PS(y))‖ ≤ ‖x− y‖, ∀x, y ∈ R
n. (1)

A. Problem Formulation

This paper considers a sequence of decision making prob-

lems, where there exist a sequence of time-varying (and maybe

adversarial) loss functions {ft}∞t=0, which are called global

loss functions and are separable. To be specific, ft consists of

a sum of local loss functions fi,t’s, i.e.,

ft(x) =

N
∑

i=1

fi,t(xi, ν(x)),

ν(x) :=
1

N

N
∑

i=1

ψi(xi) (2)

for x = col(x1, . . . , xN ), where xi ∈ Xi ⊆ R
ni , N is the

number of agents involved in the problem, ψi : Xi → R
d is

a differentiable function for i ∈ [N ], and ν : Rn → R
d is

called an aggregative variable with n :=
∑N

i=1 ni, since ν(x)
represents an aggregative information of all decision variables,

including the average
∑N

i=1 xi/N as a special case.

In this problem, fi,t’s are revealed gradually, that is, for each

i ∈ [N ], fi,t will be revealed to agent i at time slot t ≥ 0 only

after agent i has made its decision xi,t. Also, each agent i is

only privately accessible to fi,t (along with its true/stochastic

gradients) after making its decision xi,t, without awareness

of other local loss functions fj,t’s for j 6= i. Moreover, ψi is

only privately known to agent i for all i ∈ [N ], and each agent

i ∈ [N ] only realizes its own decision variable xi without any

knowledge of other agents’ decision variables xj ’s for j 6= i.
The objective is to minimize the total loss over a time

horizon T > 0, i.e.,

min
x1,...,xT∈X

T
∑

t=1

ft(xt), (3)

ft(xt) :=
N
∑

i=1

fi,t(xi,t, ν(xt)),



3

where X :=
∏N

i=1Xi is the Cartesian product of Xi’s, and

xi,t is the decision variable of agent i made at time t ≥ 0.

In doing so, a performance metric, called dynamic regret,

is conventionally employed for online optimization, i.e.,

RT :=
T
∑

t=1

ft(xt)−
T
∑

t=1

ft(x
∗
t ), (4)

where xt := col(x1,t, . . . , xN,t), and x∗t := argminx∈X ft(x)
is the best decision variable at time step t. Then, an algorithm

is announced “good” if the dynamic regret RT is sublinear

with respect to T , i.e., RT = o(T ). It should be noted that

many works have employed the static regret as a performance

metric, which makes use of x∗ = argminx∈X

∑T
t=1 ft(x) as

a comparator, instead of x∗t ’s. Obviously, the dynamic regret

is more meaningful as the global loss function is time-varying.

Remark 1. It is worth mentioning that the dependence on the

aggregative variable for local loss functions has been studied

in aggregative games [29], [30], which is however different

from the scenario in this paper. The main difference lies in that

all agents/players in aggregative games aim to minimize their

own local loss/payoff functions in a noncooperative manner,

while all agents in problem (3) desire to minimize the sum of

their local loss functions in a cooperative fashion. As a result,

their solution sets and optimality conditions are distinct, as

shown in a simple example below.

Example 1. Consider a simple time-invariant case, i.e., ft =
f for all t ≥ 0, where f is some function in the form f(x) =
∑N

i=1 fi(xi, ν(x)). Let N = 2, ni = 1, ψ1 = ψ2 = Id,

f1 = x21 + 4ν2(x), and f2 = (x2 − 2)2 + 4ν2(x), and in this

case, ν(x) = (x1+x2)/2. For distributed online optimization,

the objective is to minimize f = f1+f2, and by ∇x1
f = 0 and

∇x2
f = 0, one can obtain the optimal decision x1 = 1.2 and

x2 = −0.8. On the other hand, for aggregative games, the aim

is to minimize fi for agent i, respectively, and the optimality

conditions are ∇x1
f1 = 0 and ∇x2

f2 = 0, which lead to the

Nash equilibrium x1 = −2/3 and x2 = 4/3. Apparently, the

Nash equilibrium is different from the optimal decision x1 =
1.2 and x2 = −0.8, since all agents in aggregative games

are selfish who generally cannot collaborate as in distributed

online optimization.

To move on, for notation simplicity, let ∇1fi,t(xi, ν(x))
and ∇2fi,t(xi, ν(x)) respectively denote ∇xi

fi,t(xi, ν(x))
and ∇νfi,t(xi, ν(x)) for all i ∈ [N ]. And for x ∈ R

n and y =

col(y1, . . . , yN ) ∈ R
Nd, define ft(x, y) :=

∑N
i=1 fi,t(xi, yi),

∇1ft(x, y) := col(∇1f1,t(x1, y1), . . . ,∇1fN,t(xN , yN )) and

∇2ft(x, y) := col(∇2f1,t(x1, y1), . . . ,∇2fN,t(xN , yN )).
To proceed, it is necessary to postulate some standard

conditions for the regret analysis.

Assumption 1. The following hold for problem (3):

1) Xi’s are nonempty, convex and compact, that is, there

exists a constant B > 0 such that ‖xi‖ ≤ B for all

xi ∈ Xi and all i ∈ [N ];
2) ft : R

n → R is convex for all t ≥ 0;

3) ∇1ft(x, y) and ∇2ft(x, y) are uniformly L1-Lipschitz

continuous, i.e., ‖∇1ft(x, y)−∇1ft(x
′, y′)‖ ≤ L1(‖x−

x′‖ + ‖y − y′‖) and ‖∇2ft(x, y) − ∇2ft(x
′, y′)‖ ≤

L1(‖x−x′‖+ ‖y− y′‖) for all x, x′ ∈ X , y, y′ ∈ R
Nd,

and all t ≥ 0;

4) ∇1ft(x, y),∇2ft(x, y) and ∇ψi(xi) are uniformly

bounded by a constant G > 0;

5) ∇ψi is L2-Lipschitz continuous, i.e., ‖∇ψi(x) −
∇ψi(x

′)‖ ≤ L2‖x − x′‖ for any x, x′ ∈ Xi and all

i ∈ [N ].

It is worth pointing out that fi,t’s are not necessary to be

convex, instead it is sufficient for ft to be convex. Moreover,

it should be noted that the convexity and compactness of Xi’s

have been utilized in lots of existing works on (distributed)

online optimization, such as [1], [2], [4], [18], [25], [26], to

just name a few.

B. Graph Theory

Each agent must send its information to its out-neighbors

in order to solve the global problem (3). The communication

pattern among all agents is described by a simple time-varying

graph, denoted by Gt = (V , Et) with the node/agent set V =
{1, . . . , N} and the edge set Et ⊂ V ×V . An edge (j, i) ∈ Et
means that agent j can send information to agent i at time

step t, where j (resp. i) is called an in-neighbor (resp. out-

neighbor) of i (resp. j). Denote by Ni,t = {j : (j, i) ∈ Et}
the in-neighbor set of node i at time t. The graph Gt is called

undirected if and only if (i, j) ∈ Et amounts to (j, i) ∈ Et for

all t ≥ 0, and directed otherwise. The communication matrix

A = (aij,t) ∈ R
N×N is defined by: aij,t > 0 if (j, i) ∈ Et,

and aij,t = 0 otherwise.

A few frequently used assumptions in the literature are listed

below.

Assumption 2. The following hold for the communication

graphs:

1) Gt is Q-strongly connected for a constantQ > 0, i.e., the

union graph (V ,∪l=0,...,Q−1Ek+l) is strongly connected

for all k ≥ 0;

2) At is doubly stochastic, i.e.,
∑N

j=1 aij,t = 1 and
∑N

i=1 aij,t = 1 for all i, j ∈ [N ];
3) There exists a constant a ∈ (0, 1) such that aij ≥ a

whenever aij > 0, and aii ≥ a for all i ∈ [N ].

III. MAIN RESULTS

This section provides the proposed algorithms and theo-

retical analysis, including two parts: 1) the case with true

gradients, and 2) the case with stochastic/noisy gradients.

A. The Case with True Gradients

To handle problem (3), the centralized projected gradient

descent algorithm can be given as

xt+1 = PX(xt − αt∇ft(xt)), (5)

where xt = col(x1,t, . . . , xN,t) and αt is the stepsize. For

each agent i ∈ [N ], (5) can be written as

xi,t+1 = PXi

[

xt − αt

(

∇1fi,t(xi,t, ν(xt))

+∇ψi(xi,t)

∑N
i=1 ∇2fi,t(xi,t, ν(xt))

N

)]

. (6)
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However, it is easy to observe that ν(xt) and
1
N

∑N
i=1 ∇2fi,t(xi,t, ν(xt)) are global information, which

cannot be accessed by any individual agent. Thus,

auxiliary variables must be introduced to track ν(xt)
and 1

N

∑N
i=1 ∇2fi,t(xi,t, ν(xt)) in a distributed manner.

To do so, we introduce νi,t and yi,t to track ν(xt) and
1
N

∑N
i=1 ∇2fi,t(xi,t, ν(xt)), respectively, for each agent i.

Then, (6) can be modified as (7a). Moreover, inspired by the

idea of gradient tracking [23], [25], the updates of νi,t and

yi,t are given in (7b) and (7c), respectively.

The developed online distributed algorithm is shown in

Algorithm 1. At time step t + 1 ≥ 1, each agent makes

a decision xi,t+1 according to (7a), and the function fi,t+1

will be then revealed to agent i along with its true gra-

dients, followed by the update of νi,t+1 and yi,t+1. Please

note that the terms
∑N

j=1 aij,tνj,t and
∑N

j=1 aij,tyj,t involve

only local information exchanges, that is, agent i has used

the information νj,t and yj,t received from its in-neighbors

{j : j ∈ [N ], aij,t 6= 0}.

Algorithm 1 Online Distributed Gradient Tracking (O-DGT)

with True Gradients
1: Initialization: Stepsize αt in (8), and local initial con-

ditions xi,0 ∈ Xi, νi,0 = ψi(xi,0), and yi,0 =
∇2fi,0(xi,0, νi,0) for all i ∈ [N ].

2: Iterations: Step t ≥ 0: update for each i ∈ [N ]:

xi,t+1 = PXi
[xi,t − αt(∇1fi,t(xi,t, νi,t)

+∇ψi(xi,t)yi,t)], (7a)

νi,t+1 =

N
∑

j=1

aij,tνj,t + ψi(xi,t+1)− ψi(xi,t), (7b)

yi,t+1 =
N
∑

j=1

aij,tyj,t +∇2fi,t+1(xi,t+1, νi,t+1)

−∇2fi,t(xi,t, νi,t). (7c)

We are now in a position to present the main result on

Algorithm 1.

Theorem 1. Under Assumptions 1 and 2, let α0 = 1 and

αt =
1√
t
, for t ≥ 1, (8)

then there holds

RT = O(
√
T ) +O(V p

T,α−1

t

) +O(max{V g
T , V

g
T,αt

}), (9)

where

V
p

T,α
−1

t

:=
T
∑

t=1

1

αt

‖x∗

t+1 − x
∗

t‖, (10)

V
g

T :=
T
∑

t=1

N
∑

i=1

max
xi∈Xi

zi∈R
d

‖∇2fi,t+1(xi, zi)−∇2fi,t(xi, zi)‖, (11)

V
g

T,αt
:=

T
∑

t=1

αt

(

N
∑

i=1

max
xi∈Xi

zi∈R
d

‖∇2fi,t+1(xi, zi)−∇2fi,t(xi, zi)‖
)2

,

(12)

are called α−1
t -weighted path variation, gradient variation, and

αt-weighted squared gradient variation, respectively.

Proof. The proof can be found in Appendix A.

Remark 2. To our best knowledge, this paper is the first to

investigate problem (3) with an aggregative variable. An algo-

rithm has been devised for handling this problem with guaran-

teed dynamic regret. Besides, it is well known that achieving

a sublinear bound on the dynamic regret is impossible in the

worst case, unless some regularity measure is introduced for

the sequence of loss functions [31], which is why V p

T,α−1

t

, V g
T

and V g
T,αt

are introduced, all representing the difference of ft’s
or fi,t’s. Here, the gradient variation V g

T and V g
T,αt

are new

terms needed to bound the dynamic regret, which is generally

unnecessary for the case without the aggregative variable

[26]. The reason behind this phenomenon is that a sequence

of global time-varying gradients 1
N

∑N
i=1 ∇2fi,t(xi,t, νi,t) are

unavailable to all agents and thus need to be estimated by all

agents, i.e., yi,t’s. Notice also that V p

T,α−1

t

≤
√
TV p

T,1.

Remark 3. Note that all other parameters independent of T
have been omitted in Theorem 1. In fact, some parameters

pertinent to the communication graph can be established, that

is, (9) can be more specifically provided as

RT = O
(N2

√
NB1γξ

1− ξ

√
T
)

+O
(
√
NV p

T,α−1

t

)

+O
(

√
Nγξ

1− ξ
V g
T

)

+O
( γ2

(1− ξ2)2
V g
T,αt

)

, (13)

where B1 := Nγmaxi∈[N ] ‖yi,1‖ + 2NGγξ
1−ξ

+ 4G, γ :=
(

1−
a

2N2

)−2
, and ξ :=

(

1− a
2N2

)
1

Q .

As a special case, let us consider the scenario where all ft’s
are time-invariant, i.e., ft = f for some function f : Rn → R

for all t ≥ 0. In this case, Algorithm 1 is renamed a distributed

gradient tracking algorithm (DGT) with true gradients. Then

the following convergence result can be concluded.

Corollary 1. For the case with ft = f for all t ≥ 0, if

Assumptions 1 and 2 hold, along with αt given in (8), then

there holds

f(x̄T )− f(x∗) = O
( 1√

T

)

, (14)

where

x̄T :=
1

T

T
∑

t=1

xt, x∗ := argmin
x∈X

f(x). (15)

Proof. It is easy to see that V p

T,α−1

t

, V g
T , and V g

T,αt
vanish in

this case. Therefore, by Theorem 1, one has that

RT = O(
√
T ). (16)

In view of the definition of RT , it can be obtained that

RT

T
=

T
∑

t=1

1

T
f(xt)− f(x∗) ≥ f(x̄T )− f(x∗), (17)

where the inequality has used the convexity of f . Combining

(16) with (17) can yield (14), thus ending the proof.
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It should be noted that a diminishing stepsize (8) has been

leveraged in Theorem 1, and thus the upper bound in (9) is not

optimal. As seen in [31], [32], the optimal bound on dynamic

regret is O(
√
T )+O(

√
TV p

T,1). Along this line, a better result

is provided below when using a constant stepsize.

Theorem 2. Under Assumptions 1 and 2, let

αt =

√

1 + V p
T,1

T + V g
T,1

, for t ≥ 0, (18)

then there holds

RT = O(
√
T ) +O(

√

TV p
T,1) +O(V g

T ) +O(
√

V p
T,1V

g
T,1),

(19)

where V p
T,1, V g

T , and V g
T,1 are defined in (10)-(12).

Proof. When setting αt = α for all t ≥ 0, where α > 0 is a

constant, invoking the same arguments as that of Theorem 1

can yield that

RT = O
( 1

α

)

+O(αT ) +O
(V p

T,1

α

)

+O(V g
T ) + O(αV g

T,1).

By choosing α =
√

(1 + V p
T,1)/(T + V g

T,1), the result in (19)

can be directly obtained.

Remark 4. Note that distributed algorithms are studied in

this paper. The bound in Theorem 2 is almost as good as

the centralized algorithms in [31], [32], but a drawback is

the requirement of knowing T , V p
T,1, and V g

T,1 beforehand,

which also appears in [31], [32]. In comparison, the stepsize

in Theorem 1 does not require any knowledge of T , V p
T,1, and

V g
T,1, but at the cost of a more conservative regret bound.

B. The Case with Stochastic Gradients

In this subsection, true gradients in Algorithm 1 are replaced

with stochastic ones, which can be obtained by mini-batch

samples. In this case, denote by ∇̃ the stochastic gradient.

The algorithm is given in Algorithm 2.

To proceed, it is standard to list a few assumptions on

stochastic gradients, i.e., unbiased gradients and bounded

variances.

Assumption 3. There exist constants σ1, σ2 > 0 such that for

all t ≥ 0,

E[∇̃1fi,t(xi,t, νi,t)|xi,t, νi,t] = ∇1fi,t(xi,t, νi,t), (20)

E[∇̃ψi(xi,t)|xi,t] = ∇ψi(xi,t), (21)

E[∇̃2fi,t(xi,t, νi,t)|xi,t, νi,t] = ∇2fi,t(xi,t, νi,t), (22)

E[‖∇̃ − ∇‖2|xi,t, νi,t] ≤ σ2
1 , (23)

E[‖∇̃2 −∇2‖2|xi,t, νi,t] ≤ σ2
2 , (24)

where ∇̃ stands for the stochastic gradients in (20) and (21),

∇ is the corresponding true gradient, and ∇̃2,∇2 denote

∇̃2fi,t(xi,t, νi,t) and ∇2fi,t(xi,t, νi,t), respectively.

In this scenario, the dynamic regret in (4) should be rede-

fined in the sense of expectation, i.e., E(RT ).
It is now ready to present the main result on Algorithm 2.

Algorithm 2 O-DGT with Stochastic Gradients

1: Initialization: Stepsize αt in (8), and local initial con-

ditions xi,0 ∈ Xi, νi,0 = ψi(xi,0), and yi,0 =
∇̃2fi,0(xi,0, νi,0) for all i ∈ [N ].

2: Iterations: Step t ≥ 0: update for each i ∈ [N ] by (7) with

true gradients ∇1fi,t, ∇ψi, ∇2fi,t+1, and ∇2fi,t being

replaced with stochastic gradients ∇̃1fi,t, ∇̃ψi, ∇̃2fi,t+1,

and ∇̃2fi,t, respectively.

Theorem 3. Under Assumptions 1-3, let αt be the same as in

Theorem 1, then there holds

E(RT ) = O(
√
T ) +O(V p

T,α−1

t

) +O(max{V g
T , V

g
T,αt

}).

Proof. The proof can be found in Appendix B.

Remark 5. It is worth mentioning that the result in Theorem 3

is the same as in the full gradient case. In addition, the similar

bound to (13) can also be derived by similar arguments, but

some constants omitted in O(·) are proportional to σ1, σ1σ2,

and σ2
2 as well. Moreover, similar to Theorem 2, the same

bound (19) can be obtained when applying the constant

stepsize (18).

To end this section, a similar result to Corollary 1 can be

obtained for the time-invariant case, as shown below, where

Algorithm 2 becomes a distributed gradient tracking algorithm

(DGT) with stochastic gradients.

Corollary 2. For the case with ft = f for all t ≥ 0, if

Assumptions 1-3 hold, and αt is the same as in Theorem 1,

then there holds

E[f(x̄T )]− f(x∗) = O
( 1√

T

)

, (25)

where x̄T and x∗ are defined in (15).

Proof. This corollary is a direct implication of Theorem 3 and

the argument of Corollary 1, and it is thus omitted.

IV. A NUMERICAL EXAMPLE

This section aims at providing a numerical example to cor-

roborate the obtained theoretical results. In doing so, motivated

by a simple synthetic robotics reactive control task in [11], let

us consider a target surrounding problem for robots in the

plane, where there are N robots (or agents), whose purpose

is to protect a target, denoted by x0(t), by surrounding this

target in order to avoid the attack from M intruders. Also, each

agent is only aware of some intruders, instead of all intruders.

For this problem, let Xi = R
2, N = M = 50, Q = 4, and

ψi = Id for all i ∈ [N ]. Without loss of generality, assume

that agent i ∈ [N ] is only aware of the intruder i ∈ [M ], as

shown in Fig. 1. In this case, after each agent i ∈ [N ] decides

to move to the position xi,t at time step t ≥ 0, a loss will

be incurred for agent i proportional to the distance from xi,t
to the intruder i and the distance from the average position

ν(xt) of all agents to the target x0(t), i.e., fi,t(xi,t, ν(xt)) =
‖xi,t−zi(t)‖+‖ν(xt)−x0(t)‖, where xt = col(x1,t, . . . , xN,t)
and zi(t) represents the i-th intruder for all i ∈ [M ].
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In the numerical simulation, set x0(t) = col(10, 10)+1/(t+
1) · col(1, 1), and zi(t) = col(10, 10)+6 · col(sin(t), cos(t))+
1/(t+1) · col(1, 1) for all i ∈ [M ]. By running the developed

Algorithms 1 and 2, the evolutions of dynamic regret are

plotted in Fig. 2, from which one can observe that the dynamic

regret with true gradients, i.e., Algorithm 1, decreases faster

than the expected dynamic regret with stochastic gradients,

i.e., Algorithm 2, where gradients are stochastic with σ2
1 =

σ2
2 = 0.1. Meanwhile, the (expected)

Intruder 1

Intruder 

i=2,…,N-1

Intruder N

x

y

0

Agent 1

Agent N

Agent 

i=2,…,N-1

Target

ν (x)

Fig. 1. Schematic illustration for the target surrounding problem, where solid
arrows mean that agents are aware of the pointed intruders and the triangle
represents the average ν(x) that aims to track the target in order to protect it
from intruders’ attack in the sense of almost surrounding it by all agents.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T

0

100

200

300

400

500

600

700 Algorithm 1
Algorithm 2

Fig. 2. Evolutions of RT /T and E(RT )/T for Algorithms 1 and 2,
respectively.

dynamic regrets for both cases in Fig. 2 tend to decrease

asymptotically. In summary, the numerical simulations support

the theoretical results on the proposed algorithms.

V. CONCLUSION

This paper studied distributed online convex optimization

with an aggregative variable over a multi-agent network con-

sisting of N agents, where each agent must make a decision

based on its own partial information on its local loss function

and decision variable. All agents are required to cooperate

by local information exchange among neighboring agents in

order to tackle a global decision making problem at each

time instant. To our best knowledge, this paper is the first

to consider the dependency on an aggregative variable for all

local loss functions, and the aggregative variable is unavailable

to all agents. To cope with this problem, both true and

stochastic/noisy gradients were taken into account, for which

a novel algorithm, called online distributed gradient tracking

(O-DGT), was developed based on true or stochastic gradients.

It was shown that the dynamic regret is sublinear when some

path and gradient variation terms are all sublinear in both the

true and stochastic gradient cases. A numerical simulation was

also provided to corroborate the developed algorithms. Future

research directions can be placed on addressing unbalanced

communication graphs (i.e., At in Assumption 2 is only row-

or column-stochastic) and asynchronous algorithms.

APPENDIX

To facilitate the ensuing analysis, it is helpful to introduce

some notations. For a vector x = col(x1, . . . , xN ) ∈ R
n, let

us define ψ(x) := col(ψ1(x1), . . . , ψN (xN )). For a vector-

valued differentiable function g(x) = col(g1(x), . . . , gm(x)),
where gi is a real-valued function for all i ∈ [m],
denote ∇g(x) = (∇g1(x), . . . ,∇gm(x)). Also, denote

PX(z) = col(PX1
(z1), . . . , PXN

(zN )) for a vector z =
col(z1, . . . , zN ) ∈ R

n.

With the above notations, algorithm (7) can be written in a

compact form as

xt+1 = PX [xt − αt(∇1ft(xt, νt) +∇ψ(xt)yt)], (26)

νt+1 = Atνt + ψ(xt+1)− ψ(xt), (27)

yt+1 = Atyt +∇2ft+1(xt+1, νt+1)−∇2ft(xt, νt), (28)

whereAt := (At ⊗ Id), xt := col(x1,t, . . . , xN,t) (νt and

yt are similarly defined), and ∇1ft,∇2ft are defined in the

paragraph after Example 1.

A. Proof of Theorem 1

To begin with, several lemmas are first provided.

Lemma 1. Under Assumption 2, for all t ≥ 0, there holds

ν̄t :=
1

N

N
∑

i=1

νi,t =
1

N

N
∑

i=1

ψi(xi,t) = ν(xt), (29)

ȳt :=
1

N

N
∑

i=1

yi,t =
1

N

N
∑

i=1

∇2fi,t(xi,t, νi,t). (30)

Proof. In light of column-stochasticity of At in Assumption

2, multiplying 1⊤/N on both sides of (27) yields that

ν̄t+1 = ν̄t +
1

N

N
∑

i=1

ψi(xi,t+1)−
1

N

N
∑

i=1

ψi(xi,t),

which further implies that

ν̄t −
1

N

N
∑

i=1

ψi(xi,t) = ν̄0 −
1

N

N
∑

i=1

ψi(xi,0).

Note that νi,0 = ψi(xi,0). Thus, ν̄0 − 1
N

∑N
i=1 ψi(xi,0) = 0,

which together with the above equality leads to (29).

The assertion (30) can be similarly proved as above.

Lemma 2. Under Assumptions 1 and 2, there holds

‖yt − 1N ⊗ ȳt‖ ≤ NB1, (31)

‖xt+1 − xt‖ ≤ G(1 +G+NB1)αt, ∀t ≥ 0 (32)
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where B1 := Nγmaxi∈[N ] ‖yi,1‖+ 2NGγξ
1−ξ

+ 4G, and

γ :=
(

1− a

2N2

)−2
, ξ :=

(

1− a

2N2

)
1

Q . (33)

Proof. The iteration (7c) can be rewritten as

yi,t+1 =

N
∑

j=1

aij,tyj,t + ǫyi,t+1, (34)

where ǫyi,t+1 := ∇2fi,t+1(xi,t+1, νi,t+1) − ∇2fi,t(xi,t, νi,t).
Invoking Lemma 2 in [23] for (34) can lead to

‖yi,t+1 − ȳt+1‖ ≤ Nγξt max
i∈[N ]

‖yi,1‖+ γ

t−1
∑

l=1

ξt−l

N
∑

j=1

‖ǫyj,l+1‖

+
1

N

N
∑

j=1

‖ǫyj,t+1‖+ ‖ǫyi,t+1‖. (35)

By invoking Assumption 1.4, it can be obtained that

‖ǫyi,t+1‖ ≤ ‖∇2fi,t+1(xi,t+1, νi,t+1)‖+ ‖∇2fi,t(xi,t, νi,t)‖
≤ 2G. (36)

In view of (35) and (36), one can obtain that ‖yi,t+1−ȳt+1‖ ≤
B1, which further results in

‖yt − 1N ⊗ ȳt‖ ≤
N
∑

i=1

‖yi,t − ȳt‖ ≤ NB1.

For (32), with reference to (1) and (26), one has that

‖xt+1 − xt‖ ≤ αt‖∇1ft(xt, νt) +∇ψ(xt)yt‖
≤ αt‖∇1ft(xt, νt)‖

+ αt‖∇ψ(xt)‖‖1N ⊗ ȳt‖
+ αt‖∇ψ(xt)‖‖yt − 1N ⊗ ȳt‖. (37)

Meanwhile, by (30), it is easy to obtain that

‖1N ⊗ ȳt‖2 = ‖1N ⊗ 1

N

N
∑

i=1

∇2fi,t(xi,t, νi,t)‖2

=
1

N
‖

N
∑

i=1

∇2fi,t(xi,t, νi,t)‖2

≤
N
∑

i=1

‖∇2fi,t(xi,t, νi,t)‖2

= ‖∇2ft(xt, νt)‖2

≤ G2, (38)

where the first inequality has employed the fact ‖∑N
i=1 zi‖2 ≤

N
∑N

i=1 ‖zi‖2 for any vectors zi’s, and Assumption 1.4 has

been used in the last inequality. Applying (38) and Assumption

1.4 to (37) can lead to the assertion (32). This ends the proof.

Lemma 3. Under Assumptions 1 and 2, there holds

T
∑

t=1

‖νt − 1N ⊗ ν̄t‖ = O
(N

√
NB1γξ

1− ξ

T
∑

t=1

αt

)

, (39)

T
∑

t=1

αt‖νt − 1N ⊗ ν̄t‖2 = O
( N3B2

1γ
2

(1− ξ2)2

T
∑

t=1

α3
t

)

, (40)

T
∑

t=1

‖yt − 1N ⊗ ȳt‖ = O
(N2B1γξ

1− ξ

T
∑

t=1

αt

)

+O
( γξ

1− ξ
V g
T

)

, (41)

T
∑

t=1

αt‖yt − 1N ⊗ ȳt‖2 = O
( N4B2

1γ
4

(1− ξ2)4

T
∑

t=1

α3
t

)

+ O
( γ2

(1− ξ2)2
V g
T,αt

)

. (42)

Proof. It is easy to see that (7b) can be rewritten as

νi,t+1 =

N
∑

j=1

aij,tνj,t + ǫνi,t+1, (43)

where ǫνi,t+1 := ψi(xi,t+1) − ψi(xi,t). For (43), invoking

Lemma 2 in [23] can obtain that

‖νi,t+1 − ν̄t+1‖ ≤ Nγξt max
i∈[N ]

‖νi,1‖+ γ

t−1
∑

l=1

ξt−l

N
∑

j=1

‖ǫνj,l+1‖

+
1

N

N
∑

j=1

‖ǫνj,t+1‖+ ‖ǫνi,t+1‖. (44)

Appealing to ‖∇ψi(xi)‖ ≤ G in Assumption 1.4, it can be

concluded that

‖ǫνi,t+1‖ ≤ G‖xi,t+1 − xi,t‖,

which implies that

N
∑

i=1

‖ǫνi,t+1‖ ≤ G

N
∑

i=1

‖xi,t+1 − xi,t‖

≤
√
NG‖xt+1 − xt‖

≤
√
NG2(1 +G+NB1)αt, (45)

where the second inequality has exploited the fact that
∑N

i=1 ‖zi‖ ≤
√
N

√

∑N
i=1 ‖zi‖2 for any vectors zi’s, and (32)

has been used in the last inequality.

Moreover, for a sequence {βt}, it is easy to verify that

T
∑

t=1

t−1
∑

l=1

ξt−lβl+1 =
T−1
∑

l=1

ξl
T+1−l
∑

t=2

βt ≤
ξ

1− ξ

T
∑

t=1

βt. (46)

Now, substituting (45) and (46) into (44), together with

T
∑

t=1

‖νt − 1N ⊗ ν̄t‖ ≤
T
∑

t=1

N
∑

i=1

‖νi,t − ν̄t‖,

finishes the proof of (39).
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For (40), invoking (44) leads to

‖νi,t+1 − ν̄t+1‖2

≤ 4N2γ2ξ2t max
i∈[N ]

‖νi,1‖2 +
4

N2

(

N
∑

j=1

‖ǫνj,t+1‖
)2

+ 4γ2t
t−1
∑

l=1

ξ2(t−l)
(

N
∑

j=1

‖ǫνj,l+1‖
)2

+ 4‖ǫνi,t+1‖2, (47)

where the fact that (s1 + · · ·+ sm)2 ≤ m(s21 + · · ·+ s2m) for

si ≥ 0, i ∈ [m] has been utilized.

Moreover, for a sequence {βt} and η ∈ (0, 1), it is easy to

verify that

T
∑

t=1

t

t−1
∑

l=1

ηt−lβl+1 ≤ S

T
∑

t=1

βt, (48)

where S :=
∑∞

k=0(k+1)ηk. In addition, it can be obtained that

S−ηS =
∑∞

k=0 η
k = 1/(1−η), thus implying S = 1/(1−η)2.

Therefore, one has that

T
∑

t=1

t

t−1
∑

l=1

ηt−lβl+1 ≤ 1

(1− η)2

T
∑

t=1

βt. (49)

In light of the nonincreasing property of αt, it

can be concluded that
∑T

t=1 αtt
∑t−1

l=1 η
t−lβl+1 ≤

∑T
t=1 t

∑t−1
l=1 η

t−l(αl+1βl+1), which, combining with

(47), (45) and (49), results in (40).

As for (41), bearing (34) in mind, it can be obtained that

‖ǫyi,t+1‖ = ‖∇2fi,t+1(xi,t+1, νi,t+1)−∇2fi,t(xi,t, νi,t)‖
≤ ‖∇2fi,t(xi,t+1, νi,t+1)−∇2fi,t(xi,t, νi,t)‖

+ ‖∇2fi,t+1(xi,t+1, νi,t+1)−∇2fi,t(xi,t+1, νi,t+1)‖
≤ L1(‖xi,t+1 − xi,t‖+ ‖νi,t+1 − νi,t‖)

+ max
xi∈Xi,zi∈Rd

‖∇2fi,t+1(xi, zi)−∇2fi,t(xi, zi)‖,

where the last inequality has leveraged Assumption 1.3. There-

fore, one has that

N
∑

i=1

‖ǫyi,t+1‖ ≤ L1(

N
∑

i=1

‖xi,t+1 − xi,t‖+
N
∑

i=1

‖νi,t+1 − νi,t‖)

+

N
∑

i=1

max
xi∈Xi,zi∈Rd

‖∇2fi,t+1(xi, zi)−∇2fi,t(xi, zi)‖

≤
N
∑

i=1

max
xi∈Xi,zi∈Rd

‖∇2fi,t+1(xi, zi)−∇2fi,t(xi, zi)‖

+
√
NL1(‖xt+1 − xt‖+ ‖νt+1 − νt‖), (50)

where the second inequality has employed the fact that
∑N

i=1 ‖zi‖ ≤
√
N

√

∑N
i=1 ‖zi‖2 for any vectors zi’s.

Let us now analyze the term ‖νt+1 − νt‖. In light of (27),

one has that

‖νt+1 − νt‖

= ‖(At − I)(I − 1

N
1N1

⊤
N ⊗ Id)νt + ψ(xt+1)− ψ(xt)‖

≤ ‖(At − I)⊗ Id(νt − 1N ⊗ ν̄t)‖+ ‖ψ(xt+1)− ψ(xt)‖
≤ ‖At − I‖‖νt − 1N ⊗ ν̄t‖+G‖xt+1 − xt‖
≤ 2‖νt − 1N ⊗ ν̄t‖+G‖xt+1 − xt‖, (51)

where the second and third inequalities have used Assumption

1.4 and ‖At − I‖ ≤ 2, respectively.

Inserting (51) into (50) gives rise to

N
∑

i=1

‖ǫyi,t+1‖

≤
√
NL1(1 +G)‖xt+1 − xt‖+ 2

√
NL1‖νt − 1N ⊗ ν̄t‖

+

N
∑

i=1

max
xi∈Xi,zi∈Rd

‖∇2fi,t+1(xi, zi)−∇2fi,t(xi, zi)‖,

which, together with (35) and
∑T

t=1 ‖yt − 1N ⊗ ȳt‖ ≤
∑T

t=1

∑N
i=1 ‖yi,t − ȳt‖, leads to (41).

Finally, (42) can be similarly derived as (40). This ends the

proof.

With the above preparations, it is now ready to prove

Theorem 1.

Proof of Theorem 1: By (26) and (1), one can obtain that

‖xt+1 − x∗t ‖2 ≤ ‖xt − x∗t − αt(∇1ft(xt, νt) +∇ψ(xt)yt)‖
= ‖xt − x∗t ‖2 + α2

t‖∇1ft(xt, νt) +∇ψ(xt)yt‖2
− 2αt〈xt − x∗t ,∇1ft(xt, νt) +∇ψ(xt)yt〉.

Note that ‖∇1ft(xt, νt) + ∇ψ(xt)yt‖2 = ‖∇1ft(xt, νt) +
∇ψ(xt)1N⊗ȳt+∇ψ(xt)(yt−1N⊗ȳt)‖2 ≤ 2‖∇1ft(xt, νt)+
∇ψ(xt)1N⊗ȳt‖2+2‖∇ψ(xt)‖2‖(yt−1N⊗ȳt)‖2. As a result,

it can be deduced that

‖xt+1 − x∗t ‖2
≤ ‖xt − x∗t ‖2 + 2α2

t‖∇1ft(xt, νt) +∇ψ(xt)1N ⊗ ȳt‖2

+ 2α2
t‖∇ψ(xt)‖2‖(yt − 1N ⊗ ȳt)‖2

− 2αt〈xt − x∗t ,∇ψ(xt)(yt − 1N ⊗ ȳt)〉
− 2αt〈xt − x∗t ,∇1ft(xt, νt) +∇ψ(xt)1N ⊗ ȳt〉,

which, together with Assumption 1.4 and (38), leads to

‖xt+1 − x∗t ‖2

≤ ‖xt − x∗t ‖2 + 2α2
tG

2(1 +G)2

+ 2α2
tG

2‖yt − 1N ⊗ ȳt‖2
+ 2αt‖xt − x∗t ‖‖∇ψ(xt)‖‖yt − 1N ⊗ ȳt‖
− 2αt〈xt − x∗t ,∇1ft(xt, νt) +∇ψ(xt)1N ⊗ ȳt〉

≤ ‖xt − x∗t ‖2 + 2α2
tG

2(1 +G)2

+ 2α2
tG

2‖yt − 1N ⊗ ȳt‖2

+ 4
√
NBGαt‖yt − 1N ⊗ ȳt‖

− 2αt〈xt − x∗t ,∇1ft(xt, νt) +∇ψ(xt)1N ⊗ ȳt〉, (52)
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where the last inequality has applied Assumption 1.1, i.e.,

‖x‖ ≤
√
NB for any x = col(x1, . . . , xN ) ∈ X .

For the last term in (52), by noting ν̄t = ν(xt) in Lemma

1, it can be obtained that

− 2αt〈xt − x∗t ,∇1ft(xt, νt) +∇ψ(xt)1N ⊗ ȳt〉
= −2αt〈xt − x∗t ,∇1ft(xt,1N ⊗ ν̄t)

+∇ψ(xt)1N ⊗ 1

N

N
∑

i=1

∇2fi,t(xi,t, ν̄t)〉

− 2αt〈xt − x∗t ,∇1ft(xt, νt)−∇1ft(xt,1N ⊗ ν̄t)〉

− 2αt〈xt − x∗t ,∇ψ(xt)1N ⊗ 1

N

N
∑

i=1

[∇2fi,t(xi,t, νi,t)

−∇2fi,t(xi,t, ν̄t)]〉
≤ 2αt[ft(x

∗
t )− ft(xt)]

+ 4
√
NBαt‖∇1ft(xt, νt)−∇1ft(xt,1N ⊗ ν̄t)‖

+ 4
√
NBαt‖∇ψ(xt)‖‖1N ⊗ 1

N

N
∑

i=1

[∇2fi,t(xi,t, νi,t)

−∇2fi,t(xi,t, ν̄t)]‖,

where the convexity of ft, the Cauchy-Schwarz inequality,

and Assumption 1.1 have been utilized in the last inequality.

Applying Assumptions 1.3 and 1.4 to the above inequality can

further yield that

− 2αt〈xt − x∗t ,∇1ft(xt, νt) +∇ψ(xt)1N ⊗ ȳt〉
≤ 2αt[ft(x

∗
t )− ft(xt)]

+ 4
√
NBL1(1 +G)αt‖νt − 1N ⊗ ν̄t‖. (53)

Combining (52) with (53), one can obtain that

ft(xt)− ft(x
∗
t ) ≤

1

2αt

(‖xt − x∗t ‖2 − ‖xt+1 − x∗t+1‖2)

+
1

2αt

(‖xt+1 − x∗t+1‖2 − ‖xt+1 − x∗t ‖2)

+ αtG
2(1 +G)2 + αtG

2‖yt − 1N ⊗ ȳt‖2

+ 2
√
NBL1(1 +G)‖νt − 1N ⊗ ν̄t‖

+ 2
√
NBG‖yt − 1N ⊗ ȳt‖,

which, by the summation over t ∈ [T ], leads to

RT ≤
T
∑

t=1

1

2αt

(‖xt − x∗t ‖2 − ‖xt+1 − x∗t+1‖2)

+

T
∑

t=1

1

2αt

(‖xt+1 − x∗t+1‖2 − ‖xt+1 − x∗t ‖2)

+G2(1 +G)2
T
∑

t=1

αt +G2
T
∑

t=1

αt‖yt − 1N ⊗ ȳt‖2

+ 2
√
NBL1(1 +G)

T
∑

t=1

‖νt − 1N ⊗ ν̄t‖

+ 2
√
NBG

T
∑

t=1

‖yt − 1N ⊗ ȳt‖. (54)

For the first term on the right-hand side of (54), it is easy

to calculate that

T
∑

t=1

1

2αt

(‖xt − x∗t ‖2 − ‖xt+1 − x∗t+1‖2)

=
1

2α1
‖x1 − x∗1‖2 −

1

2αT

‖xT+1 − x∗T+1‖2

+
1

2

T
∑

t=2

( 1

αt

− 1

αt−1

)

‖xt − x∗t ‖2

≤ 1

α1
(‖x1‖2 + ‖x∗1‖2) +

T
∑

t=2

( 1

αt

− 1

αt−1

)

(‖xt‖2 + ‖x∗t ‖2)

≤ 2NB2

αT

, (55)

where ‖z1 + z2‖2 ≤ 2(‖z1‖2 + ‖z2‖2) for any two vectors

z1, z2 and 1
αt

− 1
αt−1

> 0 have been used in the first inequality,

and Assumption 1.1 has been employed in the last inequality.

For the second term on the right-hand side of (54), one has

that

T
∑

t=1

1

2αt

(‖xt+1 − x∗t+1‖2 − ‖xt+1 − x∗t ‖2)

=
T
∑

t=1

1

2αt

(x∗t+1 − x∗t )
⊤(x∗t + x∗t+1 − 2xt+1)

≤ 2
√
NB

T
∑

t=1

1

αt

‖x∗t+1 − x∗t ‖

= 2
√
NBV p

T,α−1

t

, (56)

where the first inequality was resulted from the Cauchy-

Schwarz inequality and Assumption 1.1.

Finally, by appealing to (8) and Lemma 3, substituting (55)-

(56) into (54) can complete the proof.

B. Proof of Theorem 3

The proof is similar to that of Theorem 1, but Lemmas 1-3

need to be modified in the stochastic scenario.

Lemma 4. Under Assumption 2, for all t ≥ 0, there holds

ν̄t :=
1

N

N
∑

i=1

νi,t =
1

N

N
∑

i=1

ψi(xi,t) = ν(xt), (57)

ȳt :=
1

N

N
∑

i=1

yi,t =
1

N

N
∑

i=1

∇̃2fi,t(xi,t, νi,t). (58)

Proof. The proof is the same as that of Lemma 1.

Lemma 5. Under Assumptions 1 and 2, there holds

‖yt − 1N ⊗ ȳt‖ = O(1), (59)

E(‖xt+1 − xt‖) = O(αt), ∀t ≥ 0. (60)
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Proof. It can be similarly proved to that of Lemma 2, once

noting that there holds

E(‖∇̃‖|xi,t) = E(‖∇+ ∇̃ − ∇‖|xi,t)
≤ ‖∇‖+ E(‖∇̃ − ∇‖|xi,t)

≤ ‖∇‖+
√

E(‖∇̃ − ∇‖2|xi,t)
≤ G+ σ♯, (61)

where ∇̃ can be any stochastic gradient in Assumption 3 with

the corresponding true gradient ∇, σ♯ = σ1 or σ2 depending

on ∇̃, the second inequality has used Jensen’s inequality, and

the last inequality has employed Assumption 1.4 and (23) in

Assumption 3.

Lemma 6. Under Assumptions 1 and 2, there holds

E(
T
∑

t=1

‖νt − 1N ⊗ ν̄t‖) = O
(N

√
Nγξ

1− ξ

T
∑

t=1

αt

)

, (62)

E(
T
∑

t=1

αt‖yt − 1N ⊗ ȳt‖2) = O
( N4γ4

(1− ξ2)4

T
∑

t=1

α3
t

)

+O
( γ2

(1− ξ2)2
V g
T,αt

)

+O
( N2γ2σ2

2

(1− ξ2)2

T
∑

t=1

αt

)

. (63)

Proof. The proof is similar to that of Lemma 3 along with

(61), which is thus omitted.

At this position, the proof of Theorem 3 can be given by a

similar argument as in the proof of Theorem 1, together with

Lemmas 4-6, which is omitted here.
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