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Reinforcement Learning based Distributed Control
of Dissipative Networked Systems

K. C. Kosaraju, S. Sivaranjani, W. Suttle, V. Gupta, and J. Liu

Abstract—We consider the problem of designing distributed
controllers to stabilize a class of networked systems, where each
subsystem is dissipative and designs a reinforcement learning
based local controller to maximize an individual cumulative
reward function. We develop an approach that enforces dissipa-
tivity conditions on these local controllers at each subsystem to
guarantee stability of the entire networked system. The proposed
approach is illustrated on a DC microgrid example, where the
objective is maintain voltage stability of the network using local
distributed controllers at each generation unit.

I. INTRODUCTION

Distributed control of large scale networked systems is
a classical research topic, with practical applications in a
variety of fields such as transportation, chemical reaction, and
hydraulic networks, multi-body mechanical systems, and mi-
crogrids [1]–[5]. The problem provides many challenges such
as non-classical information patterns, computational complex-
ity due to the large state-space, scalability of control design
methods, complex system dynamics that may be imperfectly
known, and so on. Despite many important advances, the field
continues to be a focus of intense research.

An interesting direction in recent times has been the utiliza-
tion of reinforcement learning for distributed and multi-agent
control. Reinforcement Learning (RL) is especially powerful
for the control of systems where the dynamics and/or the
environment are unknown [6]. In a typical RL-based design,
the aim is to learn a controller that maximizes its cumulative
reward while exploring the unknown environment. A wide
variety of model-based and model-free algorithms are now
available (see, e.g., [7] for a survey). While initially developed
for single agent settings, the scope of RL based techniques
has also been expanded to multi-agent networked systems
(see [8]–[10] for surveys). Further, while the typical focus of
RL-based techniques for controller design has been through
simulations and demonstrations, a growing line of research
now considers obtaining guarantees about concerns traditional
to control theory, e.g., stability, safety, and robustness, through
controllers obtained using RL [11].

K.C. Kosaraju, V. Gupta are with the Department of Electrical Engi-
neering, University of Notre Dame, Notre Dame, IN 46556, USA (email:
{kkosaraj, vgupta2}@nd.edu).

S. Sivaranjani is with the Department of Electrical and Computer
Engineering, Texas A&M University, College Station, TX 77843, USA (email:
sivaranjani@tamu.edu).

W. Suttle and J. Liu are with the Department of Applied Mathematics
and Statistics and the Department of Electrical and Computer Engineering at
Stony Brook University, Stony Brook, NY 11794, USA (email: {wesley.suttle,
ji.liu}@stonybrook.edu).

In this paper, we consider the problem of guaranteeing
stability when RL is used for distributed control of networked
dynamical systems. Specifically, consider a large scale system
consisting of many subsystems that are coupled through their
inputs and outputs, such as a network of microgrids. Each
subsystem designs a local controller based on information
about the subsystem state, inputs, and outputs. In particular,
we assume that the controller is implemented using an RL
algorithm since the dynamics of the subsystems may be un-
known. Of note, however, different controllers may potentially
use different RL algorithms. How do we design the controllers
that guarantee that the entire system is still stable? There are
at least two challenges here. First, we would like the control
strategy to be distributed. While there exists a wide literature
on RL techniques for multi-agent systems, distributed control
strategies using RL that provide guarantees like stability,
safety, and robustness [12] are still scant. Works that consider
the problem of guaranteeing stability and robustness with
RL controllers have largely been limited to contexts such as
model-based RL and LQR designs for single-agent systems
[13]–[16]. Second, most available literature on multi-agent RL
considers the case when all subsystems implement the same
RL algorithm and further share information such as a global
state or rewards with other subsystems. Development of RL-
based controllers at the subsystems that ensure stability and
robustness for the entire networked system, especially when
different agents may not use the same RL algorithm, largely
remains an open problem.

As a first step towards addressing this problem, we focus on
a class of networked systems where each subsystem is dissipa-
tive [17] in open loop. Dissipativity is an input-output concept
that can be used to guarantee a broad range of useful properties
such as L2 stability, robustness with respect to disturbances,
and stability under time-delays [18]–[20] and has been widely
used in traditional control theory for distributed controller
synthesis [21]–[29]. In the context of RL, dissipativity has
been used to enhance the convergence/performance of various
learning schemes [30] and has been enforced as a system
property for specific systems like Port-Hamiltonian systems
[31], [32]. However, there has been limited literature on
enforcing it using model-free RL techniques or on exploring its
potential to permit distributed controller design that guarantees
properties such as stability at the system level. The challenge
in our formulation is that an RL controller aiming to optimize
the local performance metric at a subsystem can easily disrupt
the dissipativity of the subsystem with respect to the variables
that it exchanges with the other subsystems.

In this paper, we develop a reinforcement learning based
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distributed control design approach that exploits the dissipa-
tivity property of individual subsystems to guarantee stability
of the entire networked system. Our proposed approach can be
summarized as follows. We first use a control barrier function
to characterize the set of controllers that enforce a dissipativity
condition at each subsystem (Propositions 2 and 3). We impose
a minimal energy perturbation on the control input learned
by the RL algorithm to project it to an input in this set
(Theorem 3). Together, these results guarantee the stability of
the entire networked system even when the subsystems utilize
potentially heterogeneous RL algorithms to design their local
controllers (Theorem 4).

Our approach of utilizing a control barrier function (CBF)
to impose the constraint that the controller designed for
each subsystem using RL preserves the dissipativity of the
subsystem in the closed loop parallels the use of CBFs to
enforce safety in RL algorithms [11]. CBFs guarantee the
existence of control inputs under which a super-level set of
a function (typically representing specifications like safety) is
forward invariant under a given dynamics [33]–[35]. However,
their use to impose input-output properties such as dissipativity
is less studied. Here, we utilize CBFs to characterize the set of
dissipativity ensuring controllers, and then learn a dissipativity
ensuring controller for each subsystem from this set.

The main contribution of this work is a distributed approach
to ensure stability of a networked system with dissipative
subsystems when the individual subsystems utilize RL to
design their own controllers. Beyond the specific stabilization
problem that we focus on, integrating dissipativity (and other
input-output) specifications into RL-based control is useful
since it allows a wide landscape of tools from classical dissi-
pativity theory to be integrated into RL-based control design.
The proposed algorithm guarantees stability irrespective of
the choice of the RL algorithm used at each subsystem.
In particular, the results also hold for heterogeneous RL
algorithms being used at each subsystem. We also note that
as opposed to most existing literature on multi-agent RL, the
proposed approach requires only the output from neighboring
subsystems to learn the control policy at each subsystem. In
other words, to guarantee stability, no information about the
states, rewards, or policies of other subsystems is required.

The paper is organized as follows. In Section II, we
present the model of the networked system, state the neces-
sary assumptions, and provide the problem formulation. In
Section III-A, we utilize CBFs to characterize the set of
controllers that guarantees dissipativity of each subsystem.
In Section III-B, we present an RL algorithm to compute a
control input that preserves the dissipativity of each subsystem,
and show that it stabilizes the networked system. In Section
IV, we numerically illustrate our approach on a Direct-Current
microgrid application. Finally, in Section V, we provide some
directions for future work. Proofs of all the results in the
paper, and the definitions of dissipativity, are provided in the
Appendix.

Notation: Rm denotes the space of m-dimensional real
vectors, R denotes the space of real numbers, and R+ denotes
the set of all positive real numbers. ⊗ denotes the Kronecker
product. z> denotes the transpose of a vector or a matrix z
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Figure 1. Schematic of the system configuration

and ‖z‖2 (or simply ‖z‖) denotes its 2-norm. For a symmetric
matrix M and a vector z of compatible dimensions, ‖z‖2M
is defined to be equal to z>Mz. Given square matrices
M1, M2, · · · , Mn, define the matrix diag(Mi) as the block
diagonal matrix whose main-diagonal blocks are matrices M1,
M2, · · · , Mn, and all off-diagonal blocks are zero matrices.
For a symmetric matrix M , λmin(M) denotes its smallest
eigenvalue. I denotes the identity matrix with dimensions clear
from the context. A directed graph G = (V, E) is defined
by a finite set of nodes (or vertices) V and a set of directed
edges (or arcs) E , together with a mapping from E to the
set of pairs of V . By convention, we disregard self-loops.
Thus, to any arc e ∈ E , there corresponds an ordered pair
(u, v) ∈ V×V, with u 6= v, representing the head vertex u and
the tail vertex v. Given this, a shorthand notation is to simply
say (u, v) ∈ E . A graph is undirected if whenever (u, v) ∈ E
then (v, u) ∈ E . The in-neighbor set Ni of node i is the set
of all vertices j such that (j, i) ∈ E . Let D ⊂ Rn. A function
f : D → Rn is Lipschitz if there exists a constant L satisfying
‖f(b)−f(a)‖2 ≤ L‖b−a‖2 for all a, b ∈ D, and class C1 if
it is continuously differentiable. We denote a value obtained
by sampling the probability distribution function fX(x) for a
random variable X as y ∼ fX(x). When the random variable
is clear from the context, we denote the distribution function
simply by f(x).
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II. PROBLEM FORMULATION

We adapt the general framework described in [23] and
shown in Figure 1.

Node dynamics: Consider a networked system described
by a directed graph G = (V, E), where each node i ∈ V is a
subsystem Σin, given by

Σin :


xit+1

yiu,t
yiν,t

=
=
=

f i(xit, u
i
t, ν

i
t)

gi(xit, u
i
t)

hi(xit, ν
i
t)

(1)

where at time t, xit ∈ Rni denotes the state of the i-th
subsystem, uit ∈ Rmi denotes the control input applied by the
subsystem controller that needs to be designed, and νit ∈ Rpi
is the input to the i-th subsystem that depends on the output
of the other subsystems in the in-neighbor set of node i. The
subsystem has two outputs: yiu,t ∈ Roi which is the output that
is used to design the control input uit, and yiν,t ∈ Rôi which
is the output that is used to compute the inputs νjt for other
subsystems j for whom i is an in-neighbor. We will define
the exact relation between νit and yjt , j ∈ Ni, later. Given that
each subsystem corresponds to a unique node in the graph,
we use the terms subsystem dynamics and node dynamics
interchangeably. We assume that the state transition function
f i and the output functions gi, hi are of Class C1. Without
loss of generality we assume that (xi = 0, ui = 0, νi = 0) is
an equilibrium point of the subsystem Σin.

For future reference, define x> , [x1>, . . . , xN>] ∈ Rn,
u> , [u1>, . . . , uN>] ∈ Rm, y>u , [y1>u , . . . , yN>u ] ∈ Ro,
y>ν , [y1>ν , . . . , yN>ν ] ∈ Rô, yi , [yi>u , yi>ν ] ∈ Ro, y> ,
[y1>, . . . , yN>] ∈ Ro, and ν> , [ν1>, . . . , νN>] ∈ Rp.

As stated earlier, definitions of dissipativity are provided
in Appendix A for the sake of completeness. We make the
following assumption throughout the paper.

Assumption 1 (Dissipative node dynamics). Each subsystem
Σin with dynamics defined in (1) is dissipative, in the set Sin,
with respect to the supply function

win(ui, νi, yiu, y
i
ν) =ui>Si>u yiu − ‖ui‖2Riu − ‖y

i
u‖2Qiu︸ ︷︷ ︸

,wiu(u
i,yiu)

+ νi>Si>ν yiν − ‖νi‖2Riν − ‖y
i
ν‖2Qiν︸ ︷︷ ︸

,wiν(ν
i,yiν)

,
(2)

where Siu, R
i
u =

(
Riu
)>
, Qiu =

(
Qiu
)>
, Siν , R

i
ν =

(
Riν
)>
,

and Qiν =
(
Qiν
)>

are matrices of appropriate dimensions.

For future reference, define Su , diag(Siu), Ru ,
diag(Riu), Qu , diag(Qiu), Sν , diag(Siν), Rν , diag(Riν),
and Qν , diag(Qiν). Further, denote εν = λmin (Qν),
δν = λmin (Rν), εu = λmin (Qu), δu = λmin (Ru),
εe = λmin (Qe) and δe = λmin (Re).

Remark 1. Even though Assumption 1 states that the subsys-
tem is dissipative, it is an assumption in the ‘open loop’. Note
that the design of the controller that determines the inputs ui

has not been specified. The dissipativity property required for
system stability concerns the inputs µi and the outputs yiµ and
this may easily be disrupted by the additional dynamics, say

of the form ui = ζi(xi), introduced through the design of the
controller. For a simple illustration of this fact, note that from
[36, Corollary 4.1.5], Assumption 1 holds if and only if the
condition

t−1∑
t=t0

N∑
i=1

(
wiu(uit, y

i
ut) + wiν(νi, yiν)

)
≥ 0, (3)

holds for all 0 ≤ t0 ≤ t. Consider subsystem (1) in closed-
loop with a Lipschitz controller ui = ζi(xi) ∈ Rmi . Then, we
notice that
t−1∑
t=t0

N∑
i=1

wiν(νit , y
i
ν,t) ≥ −

t−1∑
t=t0

N∑
i=1

wiu(ζi(xit), y
i
u,t) � 0, (4)

which implies that unless the controller has been designed to
ensure that wiu(ζi(xi), yiu) ≤ 0, dissipativity of the subsystem
in the closed loop with the controller may not be preserved.

Edge dynamics: While the simplest form of coupling
among the subsystems would be to equate the inputs νit for the
subsystem i with the output yjt of subsystem j if (j, i) ∈ E ,
inspired by [23], we consider a more general model that allows
the edges in the graph G to be described a dynamic system as
well. Specifically for edge k ∈ E , the dynamics are given by

Σke :

{
zkt+1

ωkt

=
=
gk(zkt , µ

k
t )

jk(zkt , µ
k
t )

(5)

where zkt ∈ Rqi denotes the edge subsystem state at time t,
µkt ∈ Rri denotes the input at time t, and ωkt ∈ Rsi denotes the
output at time t. We assume that the state transition function
gk and the output function jk are of Class C1. Once again,
without loss of generality we assume that (zk = 0, µk = 0) is
an equilibrium point of the subsystem Σke . For future reference,
define z> , [z1>, . . . , zM>] ∈ Rq , ω> , [ω1>, . . . , ωM>] ∈
Rs, and µ> , [µ1>, . . . , µM>] ∈ Rr, where M denotes the
cardinality of the set E .

Assumption 2 (Dissipative edge dynamics). Each subsystem
Σke with its dynamics defined in (5) is dissipative in the set
Ske with supply-function

wke (µk, ωk) =µk>Sk>e ωk − ‖µk‖2Rke − ‖ω
k‖2Qke , (6)

where Ske , R
k
e =

(
Rke
)>
, Qke =

(
Qke
)>

are matrices of
appropriate dimensions.

For future reference, define Se , diag(Ske ), Re , diag(Rke ),
and Qe , diag(Qke).

Interconnection among subsystems: The entire networked
system is defined through the interconnection of the subsys-
tems defined by the nodes and edges by relating the inputs ν
and outputs yν of the node subsystems with the inputs µ and
outputs ω of the edge subsystems as specified below. Define
s> , [x>, z>] as the state variable of the overall network.
Further, define

wu(u, yu) ,
(
u>S>u yu − ‖u‖2Ru − ‖yu‖

2
Qu

)
,

wν(ν, yν) ,
(
ν>S>ν yν − ‖ν‖2Rν − ‖yν‖

2
Qν

)
,

we(µ, ω) ,
(
µ>S>e ω − ‖µ‖2Re − ‖ω‖

2
Qe

)
.

(7)
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Figure 2. Electrical scheme of DGU i and transmission line k as considered
in Example 1.
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Figure 3. The topology of network considered in Example 1.

Following [23], we model the interconnection among the
subsystems through the equation

Σi :

[
ν
µ

]
=

[
0 B
−B> 0

] [
yν
ω

]
(8)

for a suitably defined matrix B. Further, we make the following
assumption.

Assumption 3. Matrices Sν and Se in (7) satisfy

B>S>ν − SeB> = 0 (9)

An interpretation of (8) and Assumption 3 is that the
edges of the system do not generate any energy. Although
equation (8) appears intricate, most interconnected physical
systems can be written in this form (see [23] for examples from
various domains; an example of interconnected distributed
generation units is discussed in detail below). Similarly,
several relevant subclasses of dissipative systems including,
but not limited to, L2 gain systems and passive systems
satisfy Assumption 3, see [22] for other examples. For future
reference, denote

Bδ(x) , εeI + xB>B, (10)

Bε(y) , yI + δeBB>. (11)

Example 1. Consider the electrical schematic of a microgrid,
containing four Distributed Generating Units (DGUs) and
interconnected through four transmission lines, as shown in
Figures 2 and 3. The DGUs correspond to the nodes and
the transmission lines correspond to the edges of the graph
describing this networked system. Let the DGUs and the

transmission lines be numbered as shown in Fig 3. Each
DGU contains a DC-DC buck converter that is operating
on a constant impedance load. The controller to be designed
sets uit ∈ (0, 1) for the i-th DGU. Denote by Ikt the current
through the k-th transmission line at time t and by V it the
voltage across the i-th DGU at time t. Define the state of the
subsystem at the i-th node (corresponding to the i-th DGU)
by xit ,

[
Iit V it

]>
. The dynamics of the DGU at node

i ∈ V := {1 . . . 4}, which forms the i-th subsystem, can be
written as

Iit+1 = Iit − (Ts/L
i)(RiIit + V it − uitVs)

V it+1 = V it + (Ts/C
i)(Iit −GiV it + νit),

(12)

where Ts, Li, Ci, Ri, Gi, V is ∈ R>0 are constants, uit ∈
(0, 1) is the local control input to be designed, and νit ∈ R is
the input to the i-th subsystem that depends on the output of the
other subsystems in its in-neighbor set through the relations

ν1t
ν2t
ν3t
ν4t

 =


I4l,t − I1l,t
I1l,t − I2l,t
I2l,t − I3l,t
I3l,t − I4l,t

 , (13)

where Ikl,t denotes the current through the edge k. We denote
the outputs yiν,t , V it .

The edges correspond to the transmission lines connected
to each DGU. The dynamics of the transmission line at edge
k ∈ E := {1 . . . 4} are given by

Ikl,t+1 = Ikl,t − (Ts/L
k
l )(Rkl I

k
l,t + µkt )

ωkt = Ikl,t
(14)

where Lkl , R
k
l ∈ R>0 are constants, Ikl,t ∈ R denotes the

state variable, and µkt ∈ R denotes the input from the nodes
connected to the edge k defined as

µ1
t

µ2
t

µ3
t

µ4
t

 =


V 2
t − V 1

t

V 3
t − V 2

t

V 4
t − V 3

t

V 1
t − V 4

t

 . (15)

Define the incidence matrix B ∈ R4×4 to model the network
topology. Specifically, if the ends of each edge k are arbitrarily
labeled with a + and a −, then the entries of B are given by

Bik =


+1 if i is the positive end of k
−1 if i is the negative end of k
0 otherwise.

The interconnection between the nodes and edges can then be
expressed as[

νt
µt

]
=

[
0 B
−B> 0

] [
yν,t
ωt

]
=

[
BIl,t
B>Vt

]
(16)

Controller design: We assume that each subsystem i wishes
to design its controller to maximize the expected discounted
cumulative reward,

J i = E

[ ∞∑
t=0

γtrit(x
i
t, u

i
t)

]
, (17)
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where γ ∈ (0, 1) is the discount factor, rit(x
i
t, u

i
t) is the per

step reward function evaluated at time t, and the expectation is
over any stochasticity that may arise due to the control policy
itself. We assume that each agent utilizes a RL algorithm to
design its controller. For a given control policy πi, we define
the value function V iπ , and the state-action value function Qiπ
below:

V iπ(xi) = Eπi

[ ∞∑
t=0

γtrit(x
i
t, u

i
t) | xi0 = xi

]
, (18)

Qiπ(xi, ui) = Eπi

[ ∞∑
t=0

γtrit(x
i
t, u

i
t) | xi0 = xi, ui0 = ui

]
,

(19)

Aiπ(xi, ui) = Qiπ(xi, ui)− V iπ(xi). (20)

Note that we do not assume that each subsystem utilizes
the same RL algorithm. However, we assume that the RL
algorithms converge.

Problem statement: Equations (1), (5) and (8) jointly
define the networked system Σ under consideration, with state
defined as s>t ,

[
x>t , z

>
t

]
. From Assumption 1, we know that

the each subsystem i is dissipative with the supply-function
wiu(ui, yiu) + wiν(νi, yiν). However, since the subsystems use
RL to design their local controllers, the closed loop subsystems
may not remain dissipative (see Remark 1). Further, the control
actions of all the subsystems may end up destabilizing the
entire networked system. We are interested in the problem of
how to design the RL algorithm at each subsystem to guarantee
the stability of the networked system. Specifically, consider a
networked system on a directed graph G = (V, E), described
by (1), (5), and (8), and satisfying Assumptions 1, 2 and 3.
Assume that the controller at each subsystem i is designed
using an RL algorithm to maximize the discounted cumula-
tive reward J i in (17). How should the updates in the RL
algorithms be done so that the control policies at convergence
guarantee Lyapunov stability of the overall networked system?

III. DISSIPATIVITY ENSURING REINFORCEMENT
LEARNING

In this section, we present the main results of the paper
through a new distributed RL algorithm that guarantees the
stability of the entire networked system. The proposed ap-
proach is as follows.
(a) Control barrier functions for dissipativity: As stated

in Remark 1, even though each subsystem i is dissipative
with supply-function wiu(ui, yiu) + wiν(νi, yiν), with the
controller for the input ui the subsystem may no longer
remain dissipative with the input-output pair wiν(νi, yiν).
Our first step is to utilize control barrier functions to
characterize the set of all controllers that ensure that the
closed loop subsystem i is dissipative with respect to the
input νi and output yi (c.f. Fig 1) with the supply function

wid(ν
i, yi) = νi>Si>ν yiν − δid‖νi‖22 − εid‖yi‖22, (21)

where δid ∈ R and εid ∈ R are tuning parameters set by
the designer.

(b) Projection-based RL algorithm for dissipativity: In
the second step, at each subsystem i, we consider the
control input generated by an RL algorithm that seeks
to maximize the discounted cumulative reward given by
(17) and use a quadratic program (QP) to project this
control input onto the set of control inputs that ensure
that the closed loop subsystem remains dissipative with
supply-function wid(ν

i, yiν). Note that the RL algorithms
used at different nodes can be different.

(c) Networked system stability: We finally show that if
each subsystem designs the controller to ensure that it
is dissipative, the entire networked system is also stable.

We now develop these steps one by one. We will make the
following assumption in the sequel.

Assumption 4. Denote α = min(δ1d, . . . , δ
N
d ), and β =

min(ε1d, . . . , ε
N
d ). The conditions

Bδ(α) ≥ 0,

Bε(β) ≥ 0,
(22)

hold, where Bδ, and Bε have been defined in (10).

A. Control barrier functions for dissipativity

Control barrier functions (CBFs) are now a popular tool for
enforcing safety constraints in nonlinear control systems. The
following definition follows the development in [37]–[39].

Definition 1 (Time-varying Zeroing Control Barrier Func-
tions). Consider a function b : R+ × Rn+q → R that is
continuously differentiable in both arguments. Define a closed
set C as the super-level set of this function as follows:

C ,
{
s ∈ Rn+q | b(t, s) ≥ 0

}
. (23)

The function b(t, st) is a time-varying zeroing control barrier
function, for the networked system Σ described by (1), (5) and
(8) and with state st, if there exists an η ∈ [0, 1] such that
for all st ∈ C, t ∈ R+,

sup
ut∈Rm

[b(t+ 1, st+1) + (η − 1)b(t, st)] ≥ 0. (24)

Control barrier functions can be used to derive sufficient
conditions under which a super-level set of a function of the
state of the networked system Σ is forward invariant. These
conditions also characterize the set of control inputs achieving
such forward invariance through the relation

B(t, st) , {ut ∈ Rm|b(t+ 1, st+1) + (η − 1)b(t, st) ≥ 0} .
(25)

The following result, given for completeness for a discrete
time setting such as ours, shows that the set C defined in (23)
is forward invariant for every ut ∈ B(t, st).

Proposition 1 (Discrete-time time-varying Control Barrier
Functions). Consider a time-varying zeroing control barrier
function b(t, st) and its super level set C defined in (23). Then
any Lipschitz input ut ∈ B(t, st), where B(t, st) is given in
(25), will render the set C forward invariant.
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Although dissipativity is a property defined by the input,
and the output, we can utilize control barrier functions to
characterize the set of controllers that ensures dissipativity in
the closed loop of the subsystems, which in turn guarantee
the stability of the overall networked system [40] . Following
Proposition 1, we define a control barrier function for each
subsystem i as follows. Denote

w̃i(ui, νi, yiu, y
i
ν) , win(ui, νi, yiu, y

i
ν)− wid(νi, yi). (26)

Then, define the control barrier function

bi(t, xit) , −
t−1∑
τ=t0

w̃i(uiτ , ν
i
τ , y

i
u,τ , y

i
ν,τ ), (27)

whose super-level set is given by

Ci =
{
xit ∈ Rni | bi(t, xit) ≥ 0

}
. (28)

To use the control barrier function bi(t, xit) to enforce dissi-
pativity of the closed loop subsystem, we proceed as follows.
Denote

Di(xit, ν
i
t) , {ui ∈ Rmi | − w̃i(uit, νit , yiu,t, yiν,t)

+ ηibi(t, xit) ≥ 0}, (29)

where ηi ∈ [0, 1] is a designer specified parameter. We can
then state the following result.

Proposition 2 (Control barrier function for dissipativity).
Consider the problem formulation in Section II. If ui ∈
Di(xi, νi) at all time steps, then the subsystem (1) is dis-
sipative with respect to input νi and output yi with supply
function wid(ν

i, yiν).

From Proposition 2, if the set Di(xit, ν
i
t) is non-empty, then

any control input uit ∈ Di(xit, ν
i
t) renders (1) dissipative with

respective to the supply function wid(ν
i
t , y

i
νt). We can choose

a particular control input in this set from other considerations,
such as minimizing the control cost. We can also use this set
to ensure that the control input from an RL algorithm ensures
that the subsystem is dissipative as shown next.

B. Dissipativity ensuring RL policies

We now consider the case when an RL algorithm is used for
designing the control inputs ui and show how the input can
be chosen to one that preserves the dissipativity of the closed-
loop subsystem Σin with respective to the supply function
wid(ν

i, yiν). The key idea is similar to shielded RL techniques
[11], [41], [42] and uses the control barrier function based
characterization of the set of dissipativity ensuring controllers
obtained above to both project the control policy and to guide
the future exploration of the RL algorithm.

We assume that the RL algorithm proceeds in an episodic
fashion. Let πRLi

k denote the policy at the k-th policy iteration
of the RL algorithm. This policy will in general be stochastic
and may be parameterized by some parameters θik that may
correspond to, e.g., the neural network being used to learn the
policy. The paramterization is not relevant to our arguments
and to minimize notational complexity, we suppress it in the
sequel. Let uRLi

k (xit) ∼ π
RLi
k (·|xit). Our algorithm proceeds by

projecting this input on the set of dissipativity ensuring con-
trollers. Specifically, we propose that the overall dissipativity
ensuring control input in the k-th episode takes the following
structure:

uDECi
k (xit) = uFFik (xit) + uCBFi

k (xit, u
FFi
k ), (30)

where uFFik (xi) represents the feedforward compensation,
given by

uFFik (xit) = uRLi

k (xit) +

k−1∑
j=0

uCBFi
j (xit, u

FFi
j (xit)), (31)

and uCBFi
k is computed using the optimization problem:

uCBFi
k (xit, u

FFi
k ) = arg min

ait∈Rmi
‖ait‖ (32)

s.t.− w̃(uit, ν
i
t , y

i
ut , y

i
ν) + ηibi(t, xit) ≥ 0,

ait + uFFik (xit) = uit.

As in the usual control barrier function based works, the
formulation in the relation (30) seeks to minimize the energy
of the perturbation needed to project the control input in
the set of dissipativity ensuring controllers [11], [37]. The
feedforward compensation in (31) is split into two parts:
uRLi
k (xi) represents the control input obtained from the RL

policy. However, this might not ensure dissipativity of the
closed loop subsystem. The second term in (31) represents
our best guess to rectify the input to ensure dissipativity.
Furthermore, the term uCBFi in (30) may be interpreted as
the feedback part of the controller. The complete algorithm
description is given in Algorithm 1.

We assume that the parameter Max Episodes has been
chosen to be large enough that the algorithm converges. Upon
convergence, denote uDECi(xit) to be the final deployed con-
troller uik(xit) for k = Max Episodes. The following result
shows that Algorithm 1 renders the closed loop subsystem
dissipative. For brevity, we skip the proof as it is a direct
consequence of Proposition 2 and Definition 2.

Proposition 3. Consider the problem formulation in Sec-
tion II. Let the controller uDECi(xit) designed with Algorithm 1
be used as the input uit for the subsystem (1). If there exists
a solution to the optimization problem (32) for all (xi, νi),
then the closed-loop subsystem (30) is dissipative with supply
function wid(ν

i, yiν).

Remark 2. Computing uFFik (x) requires the solution of the
optimization problem k times; further, the knowledge of all
uRLi
0 , . . . , uRLi

k−1 is required. Consequently, for large k, the
proposed algorithm can become memory intensive and compu-
tationally expensive. However, we need not compute uFFik (x)
very accurately because of the presence of the feedback term
uCBFik . This raises the possibility of approximating uFFik (x)
by using a feed-forward neural network ubarφk

to learn the term∑k−1
j=0 u

CBFi
j . In this case, (31) should be replaced by

uFFik (x) = uRLi

k (x) + ubarφik
(x), (33)

where φk parameterizes the neural network, which is updated
using the data from previously collected samples.
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Algorithm 1: RL-DEC algorithm.

for i = 1, . . . , N do
Initialize RL input πRLi

0 , and arrays D̂i and Âi.
end
for t = 0, . . . , T do

for i = 1, . . . , N do
Sample uRLi

0 (xit) ∼ π
RLi
0 and compute

uCBFi
0 (xit, u

FFi
0 ) using (32).

Deploy ui0(xit) = uRLi
0 (xit) + uCBFi

0 (xit, u
FFi
0 )

Store state-action pairs (xit, u
CBFi
0 (xit, u

FFi
0 ))

in Âi
end
for i = 1, . . . , N do

Observe xit, u
i
0(xit), x

i
t+1, r

i
t and store in D̂i for

use in the RL algorithm
end

end
for i = 1, . . . , N do

Collect Episode Reward
∑T
t=1 r

i
t

end
Set k = 1 (representing the k-th episode or input

iteration step)
while k < Max Episodes do

for i = 1, . . . , N do
Do input iteration using RL algorithm based on

previously observed episode to obtain πRLi
k

end
Initialize state s0 from an initial state distribution
for t = 0,. . . , T do

for i = 1, . . . , N do
Compute the feed-forward term uFFik (xit) =

uRLi

k (xit) +
∑k−1
j=0 u

CBFi
j (xit, u

FFi
j (xit))

Use (32) solve for uCBFi
k (xit, u

FFi
k )

Deploy controller
uik(xit) = uFFik (xit) + uCBFi

k (xit, u
FFi
k (xit))

Store state-action pairs (xit, u
i
k(xit))

end
for i = 1, . . . , N do

Observe xit, u
i
k(xit), x

i
t+1, r

i
t and store in

D̂i for use in the RL algorithm
end

end
k = k + 1

end

The following is the main result of the paper, which shows
that the controller calculated using Algorithm 1 stabilizes the
networked system.

Theorem 4 (Stability of networked system in closed-loop).
Consider the problem formulation in Section II with Assump-
tion 4. If uit is chosen to be equal to uDECi(xit) at all time steps
and for all subsystems i, then the networked system defined
by (1), (5) and (8) is Lyapunov stable with respect to the
origin. Further, suppose that Bδ(α) > 0, Bε(β) > 0, and
Ru , diag(Riu) > 0. If the systems (1), and (5) are zero state
detectable, then the networked system defined by (1), (5), and

(8) is also asymptotically stable with respect to the origin.

The definition of zero-state detectability is provided in
Definition 3 of Appendix A.

Remark 3 (Decentralized and Distributed). In (32), each
agent needs to evaluate w̃ which requires the information
of νt. From (8), computing νt requires information from its
neighbours. Then, the proposed RL algorithm is distributed.
However, in the event when the desired supply-function wd is
equal to wν , then w̃ = wu. Consequently, the RL algorithm
takes a decentralized form.

IV. CASE STUDY: DC MICROGRID

We now evaluate the proposed control barrier function based
RL Algorithm 1 in simulation. We consider the DC microgrid
in Example 1 with 4 DGU’s, interconnected through resistive
and inductive lines as shown in Figure 3. The control objective
is to regulate the voltage V i across the load of each DGU’s
to its desired value V

i ∈ R. Thus, we define the set of all
feasible forced equiliria of the node subsystems (12) and the
edge subsystems (14) as

Cni =
{

(I
i
, V

i
, ui, νi) ∈ R4| RiIi + V

i − uiV is = 0, (34)

I
i −GV i + νi = 0

}
,

and

Cek =
{

(I
i

l, µ
i) ∈ R2|RilI

i

l + µi = 0
}
, (35)

respectively. In the development above, we have assumed that
(s = 0) is the desired equilibrium. However, the results are
agnostic to the choice of the equilibrium. Since the objective
in this case study is to stabilize the system at a non-trivial
operating point (I

i
, V

i
, ui, νi, I

i

l, µ
i) ∈ Cni × Cek, we shift the

equilibrium of the networked system to the trivial equilibrium
via a simple change of variables. In what follows, for a given
variable ν, denote the error between ν̃ = ν − ν.

In [43], the authors show that the subsystems at the node
(12) and the edge (14) are dissipative with the supply-functions

win(ũi, ν̃i, ỹiu, ỹ
i
ν) = ũi>ỹiu −Ri‖ỹiu‖22︸ ︷︷ ︸

wiu(ũ
i,ỹiu)

+ ν̃i>ỹiν −Gi‖ỹiν‖22︸ ︷︷ ︸
wiν(ν̃

i,ỹiν)

(36)

and

wke (µ̃k, ω̃k) =µ̃k>ω̃k −Rkl ‖ω̃k‖22, (37)

respectively. As a next step, we define the desired supply
function corresponding to (21) as

wid(ν̃
i, ỹi) = wiν(ν̃i, ỹiν)−Ri‖ỹiu‖22

where we chose δid = 0, εid = Ri, which satisfies equation
(22) in Assumption 4. Consequently, using (26) we compute
the resulting control barrier function as

bi(t, xit) = −
t−1∑
τ=t0

(
ũi>ỹiu −Gi‖ỹiν‖22

)
, t ≥ t0 ≥ 0, (38)

and its super-level is defined as in (28). Finally, we define the
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Figure 4. (Top) time evolution of control barrier function, (bottom) voltage
across the load of each DGU, considering a load variation of 5% at time
t = 0.05 seconds.

instantaneous reward function at each node as

ri(V i) := −ki
(
Ṽ i
)2

(39)

where ki ∈ R>0. For numerical simulation, the parameters of
the microgrids are taken from [43, Tables 3, and 4].

Though the general framework described in the preceding
can be used with almost any RL algorithm, we chose to
use Deep Deterministic Policy Gradient (DDPG) [44] to
showcase the performance of Algorithm 1. Figure 5 compares
the accumulated rewards of vanilla DDPG and the proposed
dissipativity-ensuring Algorithm 1 using DDPG during train-
ing. As the plot shows, Algorithm 1 coupled with DDPG
converges faster that the vanilla DDPG algorithm; however,
this may not be a general observation.

Next, we validate the performance of the controllers de-
signed using the proposed approach. The voltage across the
load and the value of the control barrier function at each
node are plotted in Figure 4. At t = 0 seconds, we start
by initializing the microgrid near the desired operating point.
We observe that the voltage signals stabilize to their desired
values. However, in the DC microgrid, the value of load Gi

is unknown and subject to change over time. To verify the
robustness of the controller with respect to this uncertainty,
the load at each DGU was increased by 5% of its original
value at t = 0.05 seconds. In Figure 4 we see that, after
a minor perturbation, the voltage signals again stabilized to
their desired values. Furthermore, the control barrier function
is positive, thus validating the dissipativity-ensuring nature of
the proposed approach.

V. CONCLUSIONS

In this paper, we considered the problem of designing
distributed controllers to stabilize a class of networked sys-
tems, where each subsystem is dissipative. We assumed that
each subsystem designs a local controller using reinforceent
learning to optimize its own reward function. We develop an

approach that enforces dissipativity conditions on the local
controller design to guarantee stability of the entire networked
system. The proposed approach was illustrated on a microgrid
example.

APPENDIX

A. Dissipativity

Consider the following discrete time nonlinear system with
state x ∈ Rn and inputs a ∈ Rm{

xt+1

yt

=
=
f(xt, at),
h(xt, at).

(40)

where the functions f, h as assumed to be sufficiently smooth.
Consider the mapping w : Rm,Rm → R. Then, dissipativity
of system Σ with w(at, yt) as supply-function is defined as
follows:

Definition 2 (Dissipativity [45]). System (40) is said to be
dissipative with respect to the supply function w(at, yt), if
there exist a non-negative function S : Rn → R+, called as
storage function, satisfying S(0) = 0 such that for all st0 ∈ X ,
all t > t0 ≥ 0 and all at ∈ A,

S(xt)− S(st0) ≤ −
t−1∑
i=t0

D(xt) +

t−1∑
i=t0

w(at, yt), (41)

or equivalently [46],

t−1∑
i=t0

w(at, yt) ≥
t−1∑
i=t0

D(xt) ≥ 0 (42)

where D(xt) ∈ R+ is a non-negative function, and st is
the state at time t, resulting from state st−1 with input
ut−1. Furthermore, we call the system QSR dissipative if the
inequality (42) holds with

w(at, yt) = −‖yt‖2Q + a>t Syt − ‖at‖2R (43)

where Q = Q>, S, and R = R> are matrices of appropriate
dimensions.

Definition 3 (zero-state detectability). Consider (40) with
f(0, 0) = 0, and h(0, 0) = 0. Then system (40) is called
zero-state detectable if

at = 0 and yt = 0 =⇒ lim
t→∞

xt → 0.

B. Proofs

Proof of Proposition 1: Without loss of generality, we
assume the initial state as s0 ∈ ρ0 at time t = 0 and b(0, s0) ≥
0. It suffices to show that b(t, st) ≥ 0, for all at ∈ DEC(t, st).
From (24) and (25), for all at ∈ DEC(t, st), we have

b(t+ 1, st+1) ≥ (1− η)b(t, st). (44)

Now, consider the following boundary value problem:

Xt+1 = (1− η)Xt (45)
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Figure 5. Comparison of accumulated rewards from nodes of DC microgrid for each episode during training using DDPG and the propose Dissipative CBF
approach.

with initial condition X0 = b(0, s0) ≥ 0. Then, the solution
to (45) is Xt = (1− η)tX0 ≥ 0, ∀k ∈ Z+, 0 < η ≤ 1. From
(44) and (45),

b(t, st) ≥ Xt. (46)

Thus C is forward invariant.

Proof of Proposition 2: Consider the barrier function
bi(t, xit) defined in (28). From Proposition 1, for all ut ∈
Di(xit, νt), it implies that Ci is forward invariant. Conse-
quently, we have bi(t, xit) = −

∑t−1
τ=t0

w̃ ≥ 0

=⇒
t−1∑
τ=t0

w̃ ≤ 0 (47)

=⇒
t−1∑
τ=t0

(wn − wd) ≤ 0 (48)

=⇒
t−1∑
τ=t0

wd ≥
t−1∑
τ=t0

wn. (49)

From Assumption 1 the subsystem (1) is dissipative, which
further implies

=⇒
t−1∑
τ=t0

wd ≥
t−1∑
τ=t0

wn ≥ 0. (50)

From Definition 2, we conclude the proof.

Proof of Theorem 4: As a consequence of Assumption 1,
Proposition 3 implies that node dynamics in closed-loop with
control input (30) are dissipative with supply function (21)
wid(ν

i, yi). Consequently, for all i ∈ V there exist a storage
function Sid : Rn → R+, satisfying

Sid(x
i
t) ≤ Sid(xit0) +

t−1∑
t=t0

wid(ν
i, yi). (51)

From Assumption 2, the edge dynamics are dissipative
with supply-function wke (µk, ωk). Consequently, for all k ∈
{1, . . . ,M}, there exist a storage function Sie : Rm → R+,
satisfying

Ske (zkt ) ≤ Sie(zkt0) +

t−1∑
t=t0

wke (µkt , ω
k
t ). (52)

Consider S(st) =
∑N
i=1 S

i
d(x

i
t)+

∑M
k=1 S

k
e (zkt ), consequently

S(st)− S(st0) (53a)

≤
N∑
i=1

t−1∑
t=t0

wid(ν
i, yi) +

M∑
k=1

t−1∑
t=t0

wke (µkt , ω
k
t )

=

t−1∑
t=t0

N∑
i=1

wid(ν
i, yi) +

t−1∑
t=t0

M∑
k=1

wke (µkt , ω
k
t )

≤
t−1∑
t=t0

(
ν>S>ν yν − α‖ν‖22 − β‖y‖22 + µ>S>e ω − δe‖µ‖22

−εe‖ω‖22
)

(53b)

≤
t−1∑
t=t0

(
ω>B>S>ν yν − α‖Bω‖22 − β‖yν‖22 − β‖yu‖22

−y>ν B>S>e ω − δe‖Byν‖22 − εe‖ω‖22
)

(53c)

=−
t−1∑
t=t0

(
‖ω‖2Bδ(α) + ‖yν‖2Bε(β) + β‖yu‖22

)
(53d)

In (53a) we use (51) and (52). In (53b) we use the intercon-
nection laws from (8). In (53c), we use Assumption 3. This
implies that the overall networked system is stable.

Furthermore, consider Bδ(α) > 0, and Bε(β) > 0. Then
from (53d) there exists a forward invariant set Π and by
LaSalle’s invariance principle, the solutions that start in Π
converge to the largest invariant set contained in

Π ∩
{
s ∈ Rn+p| ω = 0, y = 0

}
. (54)

Moreover, from (8) this implies µ = 0, ν = 0. From
Assumption 1 and Ru > 0 this further implies that u = 0.
Finally on this set, we have (y = 0, u = 0, ν = 0)
and (ω = 0, µ = 0). Given that that subsystems (1) and
(5) are zero-state detectable, the trajectories in Π converges
asymptotically to the largest invariant set contained in

Π ∩ {s = 0} , (55)

following [36, Corollary 4.2.2].
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