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Iterative Algorithms for Assessing Network
Resilience Against Structured Perturbations

Shenyu Liu Sonia Martı́nez Jorge Cortés

Abstract—This paper studies network resilience against struc-
tured additive perturbations to its topology. We consider dynamic
networks modeled as linear time-invariant systems subject to
perturbations of bounded energy satisfying specific sparsity and
entry-wise constraints. Given an energy level, the structured
pseudospectral abscissa captures the worst-possible perturbation
an adversary could employ to de-stabilize the network, and
the structured stability radius is the maximum energy in the
structured perturbation that the network can withstand without
becoming unstable. Building on a novel characterization of
the worst-case structured perturbation, we propose iterative
algorithms that efficiently compute the structured pseudospectral
abscissa and structured stability radius. We provide theoretical
guarantees of the local convergence of the algorithms and illus-
trate their efficacy and accuracy on several network examples.

I. INTRODUCTION

The resilience of dynamic networks against perturbations
and attacks is key across engineering, scientific, and military
domains, including the operation of cyberphysical infrastruc-
ture, the distributed control of autonomous robots, and time-
critical missions. Despite important advances in designing
distributed coordination, cooperation, and decision-making
algorithms, dynamic networks have proven fragile to targeted
attacks, as local and well-orchestrated actions have rapidly
cascaded into network-wide destructive perturbations. Because
of this, it is critical to develop techniques and notions that
characterize network resilience and allow us to understand
strengths and vulnerabilities against adversaries and unfore-
seen failures. However, obtaining such characterizations is
difficult because resilience is a complex function of the oper-
ator’s and adversary’s capabilities, knowledge, and resources,
the topology of the network, and the physical limitations on
remedial and adversarial actions. Motivated by these obser-
vations, this paper studies the relationship between network
resilience and structured topological perturbations, with the
ultimate goal of enabling the deployment of dynamic networks
with quantifiable resilience guarantees.

Literature review: Network resilience, understood as the
ability of the system to carry out its goals under unex-
pected failures or malfunctions in its components, is a rich
research area. Multiple layers of network activity are involved
in ensuring resilience (e.g., detection of failures or attacks,
secure communications, injection of false data or actuation
signals), which naturally gets reflected in the variety of disci-
plines employed in its study, e.g., computer security [1], [2],
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communications [3], control [4], and signal processing [5].
In the context of distributed control of network systems,
the literature has studied diverse topics including algorithms
for function computation [6], [7] and its robustness against
malicious behavior [8], resilient estimation and control [9],
[10], [11], attack detection [12], and the scaling of robustness
with network size [13], to name a few.

Here, we model the network dynamics using a linear time-
invariant system and analyze its stability properties in the
face of additive perturbations to the entries of the system
matrix. This connected our work with the study of matrix
pseudospectra in linear algebra [14] and, in particular, the sign
of the pseudospectral abscissa (the real part of the rightmost
eigenvalue in the pseudospectrum). The work [15] shows
that the pseudospectral abscissa is associated with a low-rank
perturbation to the matrix. The works [16] and [17] propose
criss-cross algorithms to numerically compute the value of the
complex and real, respectively, pseudospectral abscissa. Both
algorithms rely on the method in [18] to compute the distance
to instability, which is impractical for large-scale systems.
Instead, iterative algorithms [19], [20] quickly approximate
complex or real pseudospectral abscissa of large matrices
with sparse structures. However, due to their gradient-based
nature, these algorithms possess local convergence properties
and are only guaranteed to yield good approximations of the
pseudospectral abscissa when the magnitude of the system per-
turbation is sufficiently small. Another closely-related concept
is that of stability radius, which is the critical value of the
magnitude of the perturbation that makes the pseudospectral
abscissa become 0. While the works [19], [20], [21] propose
effecient iterative algorithms for approximating stability radii
of sparse matrices, the work [22] provides a formula for
directly computing the stability radius when the perturbation
is an arbitrary complex matrix and its magnitude is measured
by its induced 2-norm. A similar stability radius formula is
given in [23] when the perturbation is a real matrix.

In practice, perturbations to the system matrix might be con-
strained by physical modeling, specific cyber vulnerabilities,
or sparsity patterns. The study of the pseudospectral abcissa
and the stability radius when perturbations are structured is
much more limited. The fact that structured pseudospectra
are closely tied to structured singular values [24], which
can be NP-hard to compute [25], explains why no general
formula exists for representing structured pseudospectra. The
works [26], [27], [28] study structured pseudospectra for
specific classes of perturbation matrices such as Toeplitz,
symmetric, Hankel, or circulant. [29] studies the problem of
characterizing the smallest additive matrix perturbation to an
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LTI system so that it loses controllability, observability, or
stability. The work proposes an algorithm to obtain a locally
optimal perturbation based on the identification of necessary
conditions which, given the problem generality, are expressed
implicitly in terms of abstract linear maps. Closely related to
our work, [30] considers bounded-energy perturbations with
sparse structure and studies the structured stability radius.
The treatment relaxes the sparsity constraints by incorpo-
rating them into a cost function and relies on increasingly
large penalties to satisfy them with increasing accuracy. This
increasing accuracy comes at the expense of reducing the
convergence speed of the proposed gradient-based algorithm,
which makes it not well suited for large-scale networks. In
contrast, our approach here presents a general characterization
of the worst-case structured perturbation that includes the
possibility of element-wise constraints. This serves as the basis
for our design of efficient iterative algorithms to compute both
the structured pseudospectral abscissa and stability radius that
are able to deal with large-scale systems.

Statement of contributions: We model the network as a
linear-time invariant system and study the effect on stability
of additive perturbations to the system matrix of bounded
energy and subject to sparsity and element-wise saturation
constraints. Our contributions address the questions of whether
an adversary can destabilize the network by employing such
perturbations and characterizing the maximum amount of
energy in the perturbation that the network can withstand
without becoming unstable. Our first contribution is a novel
necessary condition prescribing that the worst-case structured
perturbation to the network must solve an implicit optimization
problem. The implicitness arises because of the dependence
on the right and left eigenvectors associated to the structured
pseudospectral abscissa and, if they were known instead, the
optimization would become explicit and convex. We provide
a complete description of the solution to the explicit opti-
mization, show it is Lipschitz with respect to the problem
parameters, and provide an incremental method to compute
it. The observation about the implicit character of the op-
timization problem is the basis for our second contribution,
which is an iterative algorithm alternating between finding the
right and left eigenvectors given an estimate of the worst-
case structured perturbation and solving the corresponding
explicit optimization problem to refine said estimate. We show
that the proposed algorithm is guaranteed to converge to the
structured pseudospectral abscissa at a linear rate for suffi-
ciently close initial conditions. Our final contribution concerns
the structured stability radius, and builds on the fact that
this radius corresponds to the zero-crossing of the structured
pseudospectral abscissa when viewed as a function of the
perturbation energy. We establish the locally Lipschitzness of
this function, explicitly compute its gradient at the points of
differentiability, and employ Newton’s method to design an
iterative algorithm that provably approximates the structured
stability radius. We illustrate in simulation the efficiency
and accuracy of the proposed algorithms on several network
examples, including a class of stable large-scale systems.

II. PRELIMINARIES

Here, we introduce the notation and basic notions from
linear algebra used in the paper.

Notation: For any vector x ∈ Cn or matrix A ∈ Cn×m, let
x∗, A∗ be their conjugate transpose. Let | · | be the 2-norm of
vectors in Cn, that is, |x| :=

√
x∗x. In addition, let ‖·‖2, ‖·‖F

be the induced 2-norm and Frobenius norm, respectively, on
Cn×n. We let Br := {∆ ∈ Cn×n : ‖∆‖F ≤ r} denote the
closed ball of radius r in Cn×n. We say vectors x, y ∈ Cn are
RP-compatible, cf. [19], if |x| = |y| = 1 and x∗y is real and
positive. Given any x, y with x∗y 6= 0, one can obtain a pair
of RP-compatible vectors x̃, ỹ by scaling x and y as follows

x̃ =
x

|x|
, ỹ =

y∗x

|y∗x|
y

|y|
.

The inner product 〈·, ·〉 : Cn×n × Cn×n → C of matrices
A = [aij ] and B = [bij ] is 〈A,B〉 := Tr(A∗B) =∑n
i=1

∑n
j=1 a

∗
ijbij . Note that 〈A,A〉 = ‖A‖2F . In addition,

for any x, y ∈ Cn,M ∈ Rn×n,

Re(x∗My) = 〈M,Re(xy∗)〉. (1)

The group inverse of A, denoted A#, is the unique matrix
satisfying AA# = A#A, A#AA# = A#, and AA#A =
A, cf. [31]. The group inverse is different from the Moore–
Penrose pseudoinverse. For a function f : R→ R, define the
right derivative of f at x to be

∂+f(x) := lim
δ→0+

f(x+ δ)− f(x)

δ
.

For functions f, g : R≥0 → R, we denote f(t) = O(g(t)) if
there exists k, δ > 0 such that |f(t)| ≤ kg(t) for t < δ.

Spectral abscissa and stability radius: We denote by Λ(A)
the spectrum (i.e., set of eigenvalues) of a square matrix A.
The spectral abscissa of A is

α(A) := max
λ∈Λ(A)

Reλ. (2)

We refer to a maximizer λopt of this function as a rightmost
eigenvalue of Λ(A). For ε > 0 and a closed set H ⊆ Cn×n,
the structured ε- pseudospectrum of A (with respect to the
Frobenius norm) is

Λε,H(A) := {λ ∈ C : λ ∈ Λ(A+ ∆) for ∆ ∈ H ∩ Bε}.

Note that when H = Cn×n or H = Rn×n, Λε,H reduces to the
usual ε-pseudospectrum [19] or real ε-pseudospectrum [15],
respectively. Similar to the spectral abscissa, we also define
αε,H(A) as the structured ε-pseudospectral abscissa of A,

αε,H(A) := max
λ∈Λε,H(A)

Reλ. (3)

We refer to a maximizer λopt of this function as a rightmost
eigenvalue of Λε,H(A). Using (2), one can equivalently ex-
press the structured ε-pseudospectral abscissa of A as

αε,H(A) = max
∆∈H∩Bε

α(A+ ∆). (4)

We refer to a maximizer ∆opt of this function as a worst-case
structured perturbation of energy ε. The structured stability
radius of A is

rH(A) := min
ε≥0
{ε : αε,H(A) ≥ 0}. (5)
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Clearly, if A is not Hurwitz, rH(A) = 0. When H = Cn×n or
H = Rn×n, rH(A) coincides with the definition of stability
radius [22] or real stability radius [23], respectively. Note also
that if H1 ⊆ H2, then rH1

(A) ≥ rH2
(A).

Matrix perturbation theory: Here we gather two useful re-
sults on matrix perturbations. The first describes the derivative
of a simple eigenvalue of a matrix that depends linearly on
time.

Lemma II.1 ([32, Lemma 6.3.10 and Theorem 6.3.12]).
Consider a n×n matrix trajectory R 3 t 7→ C(t) = C0 +tC1.
Let λ(t) be an eigenvalue of C(t) converging to a simple
eigenvalue λ0 of C0 as t→ 0. Let x0 and y0 be, respectively,
right and left eigenvectors of C0 corresponding to λ0, that is,
(C0 − λ0I)x0 = 0 and y∗0(C0 − λ0I) = 0. Then y∗0x0 6= 0
and λ(t) is analytic near t = 0 with

dλ(t)

dt

∣∣∣∣
t=0

=
y∗0C1x0

y∗0x0
.

The following result describes the time derivative of the
product of the right and left eigenvectors corresponding to a
simple eigenvalue of a complex-valued time-dependent matrix.

Theorem II.2 ([19, Theorem 5.2]). Consider a n×n complex-
analytic matrix trajectory C 3 t 7→ C(t) = C0 + tC1 +O(t2).
Let λ(t) be a simple eigenvalue of C(t) in a neighborhood
N of t = 0, with corresponding RP-compatible right and left
eigenvectors x(t) and y(t). Then Q(t) = x(t)y(t)∗ is C∞

on N and its derivative at t = 0 is

dQ(t)

dt

∣∣∣
t=0

= Re(β + γ)Q(0)−GC1Q(0)−Q(0)C1G, (6)

where G = (C0 − λI)#, β = x∗GC1x, γ = y∗C1Gy, λ =
λ(0), x = x(0), and y = y(0).

III. PROBLEM STATEMENT

We provide here a formal mathematical description of the
problem of interest. Let G := {V, E} denote a network graph,
where V = {1, . . . , n} is the set of nodes and E ⊆ V × V
is the set of edges. The network dynamics is described by a
linear differential equation

ẋ = Ax, (7)

where the components of x ∈ Rn correspond to the states
of the nodes, and A = [aij ] ∈ Rn×n, with aij = 0 for
all (i, j) 6∈ E , is the weighted adjacency matrix. We assume
the matrix A is Hurwitz. An adversary seeks to destabilize
the dynamics by attacking the network interconnections. Such
attacks are structured, in the sense that the adversary is limited
to perturbing only certain edges and within some budget.
Formally, let Ep ⊆ E , denote the perturbation edge set and for
all (i, j) ∈ Ep, let ∆ij ∈ R≤0 ∪ {−∞}, ∆ij ∈ R≥0 ∪ {+∞}
be parameters specifying saturation constraints. We denote
the set of allowed perturbations whose sparsity pattern is
compatible with Ep by

H := {∆ = [∆ij ] ∈ Rn×n : ∆ij = 0 if (i, j) 6∈ Ep,
∆ij ∈ [∆ij ,∆ij ] if (i, j) ∈ Ep}. (8)

Note that we always have 0 ∈ H. When ∆ij = −∞ or ∆ij =
+∞, then there is no lower or upper bound constraint on the
perturbation size of the corresponding edge. We define the
energy of an attack ∆ to be its Frobenius norm.

After an attack ∆ ∈ H, the network dynamics changes to

ẋ = (A+ ∆)x. (9)

We are interested in answering the following questions:
1) Given the network dynamics (7), can an adversary

destabilize it by employing perturbations of bounded
energy ε > 0 in H?

2) What edges are most important to protect against per-
turbations of bounded energy ε > 0 in order to preserve
stability?

3) If by resilience of the network dynamics we understand
the maximum amount of energy in the perturbation that
it can withstand without becoming unstable, what is the
network resilience against the adversary?

Each of these questions can be transcribed into a mathemat-
ically precise statement. In fact, keeping in mind that (9) is
GAS if A+ ∆ is Hurwitz, we can equivalently say that
• question 1) refers to determining whether the structured
ε-pseudospectral abscissa αε,H(A) of A is positive;

• with regards to question 2), assume the worst-case struc-
tured perturbation ∆opt(ε) of energy ε is unique. Notice
that the larger |(∆opt)ij(ε)| is, the larger proportion of
weight modification is done on the edge (i, j) to desta-
bilize the system. Hence, the magnitude of the elements
in the perturbation matrix provides an ordering of the
relative importance of edges against the attack; and

• question 3) refers to determining the value of the struc-
tured stability radius rH(A).

In our ensuing discussion, we address questions 1) and 2)
concurrently by introducing an iterative algorithm that finds
both the value of αε,H(A) and a maximizer ∆opt of (4).
We then answer question 3) by designing another iterative
algorithm which finds the value of rH(A).

IV. NETWORK STABILITY AGAINST PERTURBATIONS:
STRUCTURED PSEUDOSPECTRAL ABSCISSA

In this section, we study the answers to questions 1) and
2) of our problem statement. We begin by characterizing the
worst-case structured perturbation of a given energy. We build
on this characterization later to propose an algorithm that
computes iteratively the structured pseudospectral abscissa.

A. Characterization of the worst-case structured perturbation
Our first result states that any worst-case structured pertur-

bation which gives rise to a simple rightmost eigenvalue is a
solution to an implicit optimization problem.

Theorem IV.1 (First-order necessary condition for optimality).
Let H′ ⊆ Cn×n be compact and convex, and let

∆opt ∈ arg max
∆∈H′

α(A+ ∆). (10)

Let λopt(A + ∆opt) be a rightmost eigenvalue of A + ∆opt

and suppose it is simple. Then ∆opt must satisfy

∆opt ∈ arg max
∆∈H′

〈∆,Re(yx∗)〉, (11)
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where x, y ∈ Cn are the RP-compatible right and left
eigenvectors associated with λopt(A+ ∆opt).

Proof. To study the first-order necessary condition of optimal-
ity, we consider the set F of feasible directions at ∆ ∈ H′,

F := {C ∈ Cn×n : ∃τ > 0 s.t. ∆ + tC ∈ H′, ∀t ∈ [0, τ ]}.

The condition for optimality states that, if ∆opt is the opti-
mizer, then d

dtα(A + ∆opt + tC)
∣∣
t=0
≤ 0, for all C ∈ F .

Applying Lemma II.1, we deduce

0 ≥ Re

(
dλopt(A+ ∆opt + tC)

dt

∣∣∣
t=0

)
= Re

(
y∗Cx

y∗x

)
=

Re(y∗Cx)

y∗x
=
〈C,Re(yx∗)〉

y∗x
,

where we have used the RP-compatibility for the second last
equality and the identity (1) for the last equality. Now, one
can see that 〈C,Re(yx∗)〉 ≤ 0 for all C ∈ F corresponds
indeed to the first-order necessary condition for optimality of
the maximization problem (11). Since this problem is convex,
the condition is also sufficient to characterize an optimizer.
Thus, satisfying the condition of (11) is a necessary condition
for being a maximizer of (10).

It is worth pointing out that, since (11) is a necessary con-
dition, it needs to be satisfied by any worst-case perturbation.
We make use of this fact to design an algorithm based on
Theorem IV.1 to find a worst-case perturbation and compute
the structured pseudospectral abscissa.

Comparing with (4), we observe that (10) with H′ = H∩Bε
corresponds exactly to a worst-case structured perturbation of
energy ε (in fact, H as defined in (8) is closed and convex,
and hence H′ is compact and convex). The optimization
problem in (10) is nonconvex and hence difficult to solve in
general. Instead, Theorem IV.1 facilitates finding the structured
pseudospectral abscissa by providing a characterization (11) of
the worst-case structured perturbations.

For known x, y ∈ Cn, the optimization in (11) is a convex
problem of the form

maximize 〈∆,M〉 (12)
subject to ∆ ∈ H ∩ Bε,

when we set M = [mij ] := Re(yx∗), and can therefore be
solved efficiently. However, we should note that the vectors x
and y in (11) are unknown, since they are the eigenvectors of
A+ ∆opt, making equation (11) implicit in ∆opt. Before we
address this issue, we finish the exposition here describing the
properties of the solution of (12) for a given known M .

We make the next assumption regarding the worst-case
perturbation.

Assumption 1. (Non-saturation at optimizers). No optimizer
of (12) is fully saturated, i.e., if ∆opt is an optimizer of (12),
then there exists (i, j) ∈ Ep such that (∆opt)ij ∈ (∆ij ,∆ij).
Furthermore, mij 6= 0.

Assumption 1 is reasonable: in case it does not hold, i.e.,
a worst-case perturbation is fully saturated, then it must be
at a vertex of H and since this constraint set has finitely
many vertices, the worst-case perturbation can be found by

exhaustion. Meanwhile, if mij = 0, then the value of (∆opt)ij
does not affect the optimal value and, consequently, one can
construct other optimizers that are saturated at edge (i, j).
This is the reason why we explicitly require mij 6= 0 in
Assumption 1. Since (12) has a non-trivial linear objective
function with a convex constraint set, the optimum is achieved
on its boundary and hence, if the maximizer ∆opt is not
fully saturated, it must verify ‖∆opt‖F = ε. In addition, by
employing the KKT conditions for optimality, we are able to
characterize the solution of (12).

Proposition IV.2. (Characterization of solution of (12)). Let
M ∈ Cn×n and ε > 0. Under Assumption 1, the optimiza-
tion (12) has a unique optimizer ∆opt given by

(∆opt)ij =


mijθopt, if (i, j) ∈ Ep\(S ∪ S),

∆ij , if (i, j) ∈ S,
∆ij , if (i, j) ∈ S,
0, if (i, j) 6∈ Ep

(13)

where S := S(ε,M),S := S(ε,M) are the unique subsets of
Ep such that

mijθopt ∈ (∆ij ,∆ij) ∀(i, j) ∈ Ep\(S ∪ S), (14a)

mijθopt ≥ ∆ij ∀(i, j) ∈ S, (14b)
mijθopt ≤ ∆ij ∀(i, j) ∈ S (14c)

and θopt is shorthand notation for θopt(ε,M) :=
θ(ε,M,S(ε,M),S(ε,M)), where the function θ is

θ(ε,M,S,S) :=

√√√√ε2 −
∑

(i,j)∈S ∆
2

ij −
∑

(i,j)∈S ∆2
ij∑

(i,j)∈Ep\(S∪S)m
2
ij

. (15)

In addition, there is a neighborhood D around (ε,M) ∈
R≥0 × Rn×n such that θopt is Lipschitz on D.

The proof of Proposition IV.2 is in the Appendix. According
to this result, the element of the optimizer ∆opt corresponding
to (i, j) ∈ Ep is either saturated or proportional to mij , with
ratio given by θopt. We refer to S,S as the index sets of
saturation as (∆opt)ij attains either of its boundary values
for all (i, j) ∈ S ∪S . Note that, by Assumption 1, S(ε,M) (
Ep and θopt given by (15) is well defined since there exists
(i, j) ∈ Ep\(S ∪ S) such that mij 6= 0.
Remark IV.3. (Comparison with the literature). Proposi-
tion IV.2 is a generalization of the results available in the
literature [15], [30]. When there are neither sparsity constraints
nor saturation constraints, H = Rn×n and θopt = ε

‖M‖F , so

∆opt =
εRe(yx∗)

‖Re(yx∗)‖F
,

as stated in [15, Theorem 2.2]. On the other hand, when H
contains sparsity constraints but no saturation constraints, we
deduce that there exists c ≥ 0 such that

(∆opt)ij =

{
cRe(yx∗), if (i, j) ∈ Ep,

0, otherwise,

as stated in [30, Theorem 3.2]. �

We note that θopt and S, S are inter-dependent, which
means that Proposition IV.2 does not provide an explicit
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expression of ∆opt. However, the result provides the basis for
a simple method, which we summarize in Algorithm 1, to find
the solution of (12) by growing the index sets of saturation
S,S if they do not meet the conditions (14a)–(14c) for the
corresponding value of θopt determined by (15). The next

Algorithm 1 Incremental construction of index sets
Input: ε,M,H
Output: θopt,∆opt

1: S ← ∅,S ← ∅,
2: NotDone ← false
3: if S∪S = Ep then break with error “the optimizer is fully

saturated, Assumption 1 is violated”
4: Compute θopt as in (15)
5: for all (i, j) ∈ Ep\(S ∪ S) do
6: if mijθopt ≥ ∆ij then
7: S ← S ∪ {(i, j)}
8: (∆opt)ij ← ∆ij

9: NotDone ← true
10: else if mijθopt ≤ ∆ij then
11: S ← S ∪ {(i, j)}
12: (∆opt)ij ← ∆ij

13: NotDone ← true
14: if NotDone = true then go back to Step 2
15: else (∆opt)ij ← mijθopt for all (i, j) ∈ Ep\(S ∪ S)

result shows that Algorithm 1 finds the solution of (12).

Lemma IV.4. (Algorithm 1 solves (12)). Under Assumption 1,
Algorithm 1 finds the solution of the optimization (12) in a
finite number of steps.

The proof of Lemma IV.4 is provided in the Appendix. In
contrast to generic convex optimization solvers, Algorithm 1
is tailored to problem (12) and takes advantage of the charac-
terization (13) of its optimizer. We use later the ratio θopt in
Algorithm 1 to compute the structured stability radius.

We conclude this section by presenting a result which shows
that the optimizer of (12) is locally Lipschitz when viewed
as a function of the matrix defining the objective function.
To establish this, we use the Frobenius norm and show that
the Lipschitz constant is proportional to the energy of matrix
perturbations. The proof is given in the Appendix.

Lemma IV.5. (Sensitivity of the optimizer of (12) with respect
to parameters). Let ε > 0,M1,M2 ∈ Rn×n and suppose ∆k

are the optimizers of (12) with parameters (ε,Mk), k = 1, 2.
Also assume that Assumption 1 holds for (ε,M1). Then, there
exist δ = δ(M1) > 0, ` = `(M1) > 0 such that

‖∆1 −∆2‖F ≤ `ε‖M1 −M2‖F
as long as ‖M1 −M2‖F ≤ δ.

B. Iterative computation of structured pseudospectral abscissa

What we have unveiled about the optimization problem (12)
and the structure of its solution in Section IV-A is not directly
applicable to the determination of the worst-case structured
perturbation and the structured pseudospectral abscissa. This
is because, as we mentioned earlier, the characterization (11)

is implicit in ∆opt, i.e., the matrix M = Re(yx∗) required
to set up (12) is not a priori known, and in fact depends on
the optimizer itself. To address this obstacle, we propose in
Algorithm 2 an iterative strategy that proceeds by repeatedly
solving instances of problem (12), in each case taking the right
and left eigenvectors corresponding to the previous iterate.

Algorithm 2 Computation of worst-case perturbation
Input: A, ε,H,∆0, tol∆
Output: ∆, α, x, y, θ

1: H′ ← H∩ Bε
2: A0 ← A+ ∆0

3: repeat k = 0, 1, · · ·
4: Compute a rightmost eigenvalue λk of Ak and its

corresponding RP-compatible right and left eigenvectors
xk, yk

5: M ← Re(ykx
∗
k)

6: Run Algorithm 1 with inputs ε,M,H, set the outputs
θk+1,∆k+1

7: Ak+1 ← A+ ∆k+1

8: until ‖∆k+1 −∆k‖2 ≤ tol∆
9: (∆, α, x, y, θ)← (∆k+1,Reλk+1, xk+1, yk+1, θk+1)

The logic of Algorithm 2 can be described as follows. At
each step, we consider a candidate worst-case perturbation ∆k,
followed by computing the RP-compatible right and left eigen-
values xk, yk of a rightmost eigenvalue of A + ∆k. We then
solve the optimization problem (12) using M = Re(ykx

∗
k),

and set the new optimizer to be ∆k+1. This process is re-
peated until the sequence of possible worst-case perturbations
converges. From its design, it is clear that a fixed point of
Algorithm 2 is a solution to the maximization problem (11)
(and hence, by Theorem IV.1, satisfies the first-order necessary
condition for being the maximizer of (10)).

The next result establishes the local asymptotic convergence
of Algorithm 2 to the structured pseudospectral abscissa.

Theorem IV.6 (Local convergence of Algorithm 2). Let ∆opt

be a worst-case structured perturbation (i.e., ∆opt satisfies
(10) with H′ = H∩Bε) and assume the rightmost eigenvalue
λ of A + ∆opt is simple, with RP-compatible right and left
eigenvector pair x, y. Let Assumption 1 hold for ∆opt and
M = Re(yx∗). Define

r =
4
√
n`ε

σn−1(A− λI)(y∗x)2
, (16)

where ` = `(Re(yx∗)) is given in Lemma IV.5 and σn−1

denotes the second smallest singular value. Let ∆k,Reλk be
the sequences generated by Algorithm 2. If r < 1, r† ∈ (r, 1)
is arbitrary and ‖∆0 −∆opt‖2 is sufficiently small, then

‖∆k −∆opt‖2 ≤ (r†)k‖∆0 −∆opt‖2 (17)

for all k = 0, 1, . . . and Reλk converges to the structured
pseudospectral abscissa αε,H(A). In addition, the output of
Algorithm 2 satisfies

|α− αε,H(A)| =
√
nr†‖Re(yx∗)‖F
(1− r†)y∗x

tol∆ +O(tol2∆). (18)
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Proof. Let L := yx∗ and Lk := ykx
∗
k for k = 0, 1, . . . , where

xk, yk come from Step 4 in the k-th iteration of Algorithm 2.
In addition, define

Ek := ∆k −∆opt, Fk := Lk − L

We first find a relation between ‖Fk‖2 and ‖Ek‖2. Consider
the matrix trajectory

C(t) = A+ ∆opt + t
Ek
‖Ek‖2

. (19)

Let x(t), y(t) be RP-compatible right and left eigenvectors of
C(t) associated with its rightmost eigenvalue λ(t) such that
λ(0) = 0, x(0) = x and y(0) = y. Define Q(t) := y(t)x(t)∗.
Invoking Theorem II.2 and taking the conjugate of (6),

dQ(t)

dt

∣∣∣
t=0

= Re(β + γ)Q(0)−Q(0)C∗1G
∗ −G∗C∗1Q(0),

where G = (A + ∆opt − λI)#, β = x∗GC1x with C1 =
Ek/‖Ek‖2 and γ = y∗C1Gy. Note that, since C(0) = A +
∆opt and C(‖Ek‖2) = A + ∆k, we have Q(0) = L and
Q(‖Ek‖2) = Lk. Therefore using Taylor’s expansion, we have

Fk = Q(‖Ek‖2)−Q(0) =
dQ(t)

dt

∣∣∣
t=0
‖Ek‖2 +R(‖Ek‖2)

= Re(x∗GEkx+ y∗EkGy)L− LE∗kG∗ −G∗E∗kL
+R(‖Ek‖2), (20)

where R(‖Ek‖2) is the Taylor remainder of order 1 such that
‖R(t)‖2 = O(t2), which implies the existence of a class K
function ξ such that ‖R(t)‖2 ≤ st for any s > 0 and t ∈
[0, ξ(s)]. Now notice that because x, y are RP-compatible and
L = yx∗, |x| = |y| = 1 and ‖L‖2 ≤ ‖L‖F = 1. In addition,
from [19, Theorem 5.5], ‖G‖2 ≤ 1

σn−1(A−λI)(y∗x)2 . Hence it
follows from (20) that

‖Fk‖2 ≤ 4‖G‖2‖Ek‖2‖L‖2 + ‖R(‖Ek‖2)‖2

≤ 4‖Ek‖2
σn−1(A− λI)(y∗x)2

+ ‖R(‖Ek‖2)‖2

=
r√
n`ε
‖Ek‖2 + ‖R(‖Ek‖2)‖2 (21)

where we have used the definition (16) of r in the last equality.
We are ready to establish (17) by induction. Define r1 :=

r†−r√
n`ε

and let ‖E0‖2 < min
{√n`ε

r†
δ, ξ(r1)

}
, where δ is given

in Lemma IV.5. The base case k = 0 for (17) is trivially true.
Since r† < 1, the induction assumption for index k implies
‖Ek‖2 < min

{√n`ε
r†

δ, ξ(r1)
}

as well. Hence, from (21),

‖Fk‖2 ≤
( r√

n`ε
+ r1

)
‖Ek‖2 =

r†√
n`ε
‖Ek‖2 < δ. (22)

Using Lemma IV.5, we deduce

‖Ek+1‖2 ≤ ‖Ek+1‖F = ‖∆k+1 −∆opt‖F
≤ `ε‖Re(ykx

∗
k)− Re(yx∗)‖F ≤ `ε‖Fk‖F ≤

√
n`ε‖Fk‖2,

where we have used ‖M‖2 ≤ ‖M‖F ≤
√
n‖M‖2. Combining

this bound with the first inequality in (22) and using the
induction hypothesis,

‖Ek+1‖2 ≤ r†‖Ek‖2 ≤ (r†)k+1‖E0‖2, (23)

establishing (17). It follows that α(A + ∆k) = Reλk con-
verges to α(A + ∆opt) = αε,H(A). To prove (18), we apply
Lemma II.1 to the matrix trajectory (19) and conclude

d

dt
α(C(t))

∣∣∣
t=0

=
〈Ek,Re(yx∗)〉
‖Ek‖2y∗x

.

Again because C(0) = A + ∆opt and C(‖Ek‖2) = A + ∆k,
we conclude from the Taylor expansion that

|α(A+ ∆k)− αε,H(A)| = 〈Ek,Re(yx∗)〉
y∗x

+O(‖Ek‖22)

≤
√
n‖Ek‖2‖Re(yx∗)‖F

y∗x
+O(‖Ek‖22).

On the other hand, when the loop in Algorithm 2 terminates
at the k-th iteration,

(1− r†)‖Ek+1‖2 ≤ r†(‖Ek‖2 − ‖Ek+1‖2)

≤ r†(‖∆k+1 −∆k‖2) ≤ r† tol∆,

where we use the first inequality in (23), the triangle inequality
and the stopping criteria of Algorithm 2. Hence ‖Ek+1‖2 ≤
r†

1−r† tol∆, completing the proof.

According to Theorem IV.6, the algorithm’s convergence
requires r to be smaller than 1: the smaller r is, the smaller
r† can be, leading to faster convergence of Algorithm 2 and
a smaller approximation error |α− αε,H(A)|. The value of r
depends on various system parameters: it is proportional to
the square root of the dimension of A, inversely proportional
to the second smallest singular value of A−λI , and increases
as the left and right eigenvectors of A+ ∆opt associated with
λ get closer to being orthogonal. Using arguments similar to
those in the proof of [19, Theorem 5.7], we can conclude that
r = O(ε) and hence, as long as the energy of the structured
perturbation is small enough, r < 1 is ensured. A smaller
value of tol∆ results in a more accurate approximation of the
structured pseudospectral abscissa, cf. (18), at the cost of more
iterations in Algorithm 2.

V. MEASURING NETWORK RESILIENCE: STRUCTURED
STABILITY RADIUS

Here we introduce an iterative algorithm to find the struc-
tured stability radius rH(A), providing a metric of network
resilience, corresponding to question 3) of our problem state-
ment. Our strategy makes repeated use of Algorithm 2 to find
the structured pseudospectral abscissa αε,H(A) for a given
energy ε, since the zero-crossing of this function corresponds
to the structured stability radius.

A. Structured pseudospectral abscissa as a function of pertur-
bation energy

From the definition (3), we observe that ε 7→ αε,H(A)
is an increasing function and rH(A) is its zero-crossing.
We claim that the map ε 7→ αε,H(A) is locally Lipschitz
and hence differentiable almost everywhere by Rademacher’s
theorem [33]. To show Lipschitzness, we note that eigenvalues
are Lipschitz functions with respect to perturbations of matrix
entries, cf. [34] (and in fact differentiable when the eigenvalue
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is simple). Then, in view of definition (3) and because the
maximum of Lipschitz functions is Lipschitz, we conclude
that ε 7→ αε,H(A) is locally Lipschitz. The following result is
useful in computing derivative of ε 7→ αε,H(A) when it exists.

Lemma V.1 (Derivative of optimal value of (12) with respect
to energy of the perturbation). Let ε > 0 and M ∈ Rn×n.
Suppose Assumption 1 holds for ∆opt(ε) = [(∆opt(ε))ij ] ∈
H∩Bε and let η(ε,M) be the optimal value of the optimization
problem (12). Let S := S(ε,M), S := S(ε,M) be the index
sets of saturation as in Proposition IV.2. Then ε 7→ η(ε,M) is
Lipschitz and wherever it is differentiable, its derivative is

∂

∂ε
η(ε,M) =

ε

θopt(ε,M)
,

where θopt is given by (15).

The proof is in the Appendix. If the perturbation is unstruc-
tured and without saturation constraints, Lemma V.1 simplifies
to ∂

∂εη(ε,M) = ‖M‖F , recovering [21, Lemma 4]. Using
Lemma II.1, when Λε,H(A) has a simple, unique rightmost
eigenvalue associated with the worst-case perturbation ∆opt(ε)
with RP-compatible right and left eigenvectors x(ε), y(ε),

d

dε
αε,H(A) =

d

dt
α(A+ ∆opt(ε+ t))

∣∣
t=0

= Re
(y(ε)∗( ddt∆opt(t)|t=ε)x(ε)

y(ε)∗x(ε)

)
=

1

y(ε)∗x(ε)
〈 d
dt

∆opt(t)|t=ε,Re(y(ε)x(ε)∗)〉

=
1

y(ε)∗x(ε)

d

dt
〈∆opt(t),Re(y(ε)x(ε)∗)〉|t=ε.

From Theorem IV.1, ∆opt(ε) is the maximizer of (12) with
M = Re(y(ε)x(ε)∗). Thus, using Lemma V.1, we conclude

d

dε
αε,H(A) =

1

y(ε)∗x(ε)

ε

θopt(ε,Re(y(ε)x(ε)∗))
. (24)

B. Iterative computation of structured stability radius

We use Newton’s method [21]

εl+1 = εl −
αεl,H(A)

d
dεαε,H(A)

∣∣
ε=εl

(25)

to find the zero-crossing of ε 7→ αε,H(A), which by defini-
tion (5) is the stability radius rH(A). Note from our discussion
above that d

dεαε,H(A) is not well defined when Λε,H(A) has
multiple rightmost eigenvalues. In this case, we compute the
value of the right-hand of (24) for each rightmost eigenvalue
and take the minimum to be the “gradient” (which is in
fact the subgradient of ε 7→ αε,H(A) with smallest norm).
Consequently, substituting (24) into (25), we update ε using

εl+1 = εl −
(y∗l xl)θopt(εl,Re(ylx

∗
l ))αεl,H(A)

εl
(26)

where xl, yl denote the right and left eigenvectors associated
with the rightmost eigenvalue in Λε,H(A) giving the smallest
value of right-hand side of (24). We also observe from (26) that
a fixed point of the iteration corresponds to either y∗l xl = 0,
which is ruled out if the corresponding rightmost eigenvalue

is simple, or αεl,H(A) = 0, in which case the iteration has
found the structured stability radius. Algorithm 3 summarizes
the procedure written in pseudocode. Notice that the matrix

Algorithm 3 Computation of structured stability radius
Input: A, ε0,H, tol∆, tolα, ζ
Output: r

1: repeat l = 0, 1, · · ·
2: Pick ∆init ∈ H ∩ Bεl
3: Run Algorithm 2 with inputs A, εl, H, ∆init, tolα and

set the outputs ∆l, αl, xl, yl, θl
4: εl+1 ← max

{
εl − (y∗l xl)θlαl

εl
, ζεl

}
5: until |αl| ≤ tolα
6: r ← εl

∆init ∈ H∩Bεl selected in Step 2 is used as the initial guess
of the worst-case perturbation for Algorithm 2 (cf. Step 3). In
our simulations, cf. Section VI, we use either the zero matrix,
a random matrix taken from the constraint set or the result
from the previous algorithm iteration. In addition, in Step 4,
we let εl+1 be lower bounded by ζεl, for some ζ ∈ (0, 1), in
order to prevent εl+1 from becoming negative.

The next result characterizes the output of Algorithm 3.

Theorem V.2 (Error bound for Algorithm 3). Let λ be a
simple rightmost eigenvalue for the structured pseudospectrum
corresponding to the structured stability radius, with RP-
compatible right and left eigenvector pair x, y. Let r† ∈ (0, 1)
and suppose that for each iteration of Algorithm 3, it holds
that r < r†, where the parameter r is defined by (16). Further
assume that for every iteration l, the rightmost eigenvalue of
Λεl,H(A) is simple and the initial guess ∆init in Step 2 is close
enough to ∆opt(εl) so that it falls in the region of convergence
of Algorithm 2. Then, if Algorithm 3 terminates at the lf -th
iteration, it holds that

|εlf − rH(A)| = O

(√
nr†‖Re(yx∗)‖F
(1− r†)y∗x

tol∆ + tolα

)
. (27)

Proof. Since the rightmost eigenvalue is simple,
d
dεαε,H(A)

∣∣
ε=rH(A)

exists and is given by (24). Hence,
using a first-order approximation on the inverse map of
ε 7→ αε,H(A),

εlf = rH(A) +
y∗xθ†αεlf ,H(A)

rH(A)
+O(αεlf ,H(A)2), (28)

where θ† := θopt(rH(A),Re(yx∗)) is given by (15). In
addition, |αεlf ,H(A)| ≤ |αεlf ,H(A) − αlf | + |αlf | =
√
nr†‖Re(yx∗)‖F

(1−r†)y∗x tol∆ +O(tol2∆) + tolα, where we have used
the bound (18) from Theorem IV.6. The result follows from
using this fact in equation (28).

Notice that lf does not appear on the right-hand side of (27),
which indicates that the final error does not depend on the
total number of iterations. In other words, the error introduced
by using the approximate solution computed by Algorithm 2
at each iteration does not accumulate. We also make a final
remark here that while in most cases Newton’s method has
quadratic convergence rate, for some particular initial guesses
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it may yield cyclic orbits and not converge. Nevertheless, such
cyclic orbits are unstable and in all our simulations we observe
Algorithm 3 terminates after a finite number of timesteps.

VI. EXAMPLES

We illustrate here the use of the proposed algorithms to find
the structured pseudospectral abscissa and structured stability
radius. In all examples, we use the parameters ε0 = 1, tol∆ =
tolα = 10−3, and ζ = 0.1. Our algorithms are implemented
in MATLAB on a personal computer with 4 cores at 2.71GHz.

A. Perturbation to edges of single node of sparse network
Consider a 5-node network system with graph given in

Fig. 1a. Let system matrix in (7) be given by

A =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
−150 −260 −187 −69 −13

 ,

whose eigenvalues are −2 ± i,−3,−3 ± i. We consider

5

4

3 2

1

(a)

1
2

3

4

5
6

7

8

9

10

(b)

Fig. 1: Network graph of (a) Section VI-A (only red edges are subject to
perturbation) and (b) Section VI-B (without self-loops displayed).

additive perturbations to the edges of the node 5, i.e., Ep =
{(5, i) : i = 1, . . . , 5}. All rows of the perturbation matrix
are then zero, except for the last one which has entries
δ = (δ5, . . . , δ1). We consider three scenarios: (i) the entries
δi are unconstrained, (ii) δi ≤ 0 for all i = 1, . . . , 5; and
(iii) δi ≥ 0, for all i = 1, . . . , 5. Since A is in controllable
canonical form, its eigenvalues are the roots of the 5-degree
polynomial pa(x) = x5 + a1x

4 + a2x
3 + a3x

2 + a2x
1 + a0,

with a = (a1, · · · , a5) = (13, 69, 187, 260, 150). Hence,
the problem of determining the structured stability radius of A
is equivalent to finding the smallest perturbation on the non-
leading coefficients of pa(x) such that pa−δ(x) becomes non-
Hurwitz. Even though the roots of a high-degree polynomial
are in general sensitive to its coefficients, cf. [35], the proposed
algorithms efficiently compute their outputs for A.

1) No constraints on perturbation: Consider the case when
H = {∆ ∈ Rn×n : ∆ij = 0 if (i, j) 6∈ Ep}. Algo-
rithm 3, using ∆init = 05×5 in Step 2, finds 10.1465 as
the structured stability radius, with worst-case perturbation
δopt = (10.1341, 0.4743, −0.1571, −0.0074, 0.0024).
Fig. 2c shows the corresponding structured ε-pseudospectrum
of A using random samples from H∩Bε. Note that structured
pseudospectrum is indeed touching the imaginary axis, show-
ing that the computed value is the true structured stability

radius. We also note that the first element (δopt)1 has the
largest magnitude in the worst-case perturbation, indicating
that the element A5,5 is the most critical for preserving
network stability (equivalently, the coefficient a1 in pa(x)
is the most critical for preserving the Hurwitzness of the
polynomial). If we eliminate the possibility of perturbing A5,5,
our algorithm computes the new structured stability radius
94.3512, which is significantly larger. Fig. 2a shows the locally
Lipschitzness nature of ε 7→ αε,H(A). The non-smooth corners
in the map ε → αε,H(A) corresponds to case when Λε,H(A)
has multiple rightmost eigenvalues. The evolution of Λε,H(A)
with respect to ε is appreciated in Figs. 2b (with ε = 5) through
2d (with ε = 35).

0 5 10 15 20 25 30 35 40
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25

Iter. 1
Iter. 2

Iter. 3
Iter. 4

Iter. 5

(a)

−14 −12 −10 −8 −6 −4 −2 0
−10

−5

0

5

10

(b)
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−10

−5

0

5

10

(c)

−50 −40 −30 −20 −10 0 10 20
−10

−5

0

5

10

(d)

Fig. 2: Structured stability radius without constraints on perturbation. (a) Plot
of ε 7→ αε,H(A) generated by uniformly sampling ε in [0, 40] with stepsize
0.1 and running Algorithm 2 with ∆init = 05×5 for each value. The red
dots correspond to the values αl computed by Algorithm 3, which terminates
after 5 iterations. Generated with 1000 random samples of ∆ ∈ H ∩ Bε
in each case, the figures (b) (c) and (d) are the estimated Λε,H(A) with
ε = 5, 10.1465 (the structured stability radius computed by Algorithm 3)
and 35, respectively.

2) Non-positive constraints on perturbation: We next con-
sider the case when H = {∆ ∈ Rn×n : ∆ij =
0 if (i, j) 6∈ Ep and ∆5j ≤ 0 , j ∈ {1, . . . , 5}}. This
corresponds to increasing the value of the coefficients
of pa(x). Algorithm 3 finds 24.1733 as the structured
stability radius, with a worst-case perturbation δopt =
(−23.9583, 0, 0, −2.6928, −1.4657). Fig. 3b shows the
corresponding structured ε-pseudospectrum of A using random
samples from H ∩ Bε. In this case, we observe that using
∆init = 05×5 in Step 2 of Algorithm 3 does not always lead
to convergence to a global optimizer of problem (11) when
executing Algorithm 2 (cf. blue curve in Fig. 3). Instead, we
make the selection

∆init = min
∆∈H∩Bεl

‖∆−∆l−1‖F , (29)

which takes the previous estimated worst-case perturbation
as an initial guess corresponding to the updated value of
structured pseudospectral abscissa. In Fig. 3, we observe that
with the selection (29), the first and second iterations of
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Algorithm 3 correspond to local rightmost eigenvalues, but to
global ones from the 3rd iteration onwards, thereby allowing
the algorithm to determine the structured stability radius.

0 10 20 30 40
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−1−1

00

0.5

Iter. 1

Iter. 2

Iter. 3
Iter. 4

Iter. 5
Iter. 6
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−4

−2

0

2

4

6

(b)

Fig. 3: Structured stability radius with non-positive constraints on perturbation.
(a) The blue (respectively, yellow) curve corresponds to the output of
Algorithm 2 with uniform samples of ε in [0, 40] with stepsize 0.1 and the
initial guess ∆init = 05×5 (respectively, 1000 random ∆init ∈ H ∩ Bε
and taking the maximum). The red dots correspond to the values αl of the
stability radius computed by Algorithm 3, which terminates after 6 iterations;
(b) Estimated Λε,H(A) with ε = 24.1733, generated with 1000 random
samples of ∆ ∈ H ∩ Bε.

3) Non-negative constraints on perturbation: Lastly, the
case when H = {∆ ∈ Rn×n : ∆ij = 0 if (i, j) 6∈
Ep and ∆5j ≥ 0 , j ∈ {1, . . . , 5}} yields almost iden-
tical result as the scenario without constraints, with
10.1478 as the structured stability radius and δopt =
(10.1367, 0.474, 0, 0, 0.0024) as worst-case perturbation.

B. Circulant network

Consider a network system of 10 agents with circulant graph
given in Fig. 1a. Each agent’s state is 1-dimensional and obeys
the simple dynamics ẋi = ui, where ui is the control input.
Here, we consider

ui = x(i+1) − x(i−1) − 0.1xi, (30)

where we abuse notation by identifying (i+ 1) = 1 if i = 10
and (i− 1) = 10 if i = 1. The closed-loop system is then

ẋi = −0.1xi + x(i+1) − x(i−1),

which is a typical formation control problem of agents running
in a circle when the state xi corresponds to the angle of agent
i with respect to the center of rotation. The corresponding
10× 10 circulant matrix A is

A =


−0.1 1 −1
−1 −0.1 1

. . . . . . . . .
−1 −0.1 1

1 −1 −0.1

 .

and the network graph is given in Fig. 1b.
Suppose the first agent is compromised by an adversary so

that instead of (30), it implements u1 = (1 + δ1)x2 − (1 −
δ2)x10 − (0.1 − δ3)x1. This corresponds to perturbations in
the non-zero elements of the first row of A. If δ = (δ1, δ2, δ3)
is unconstrained, Algorithm 3 initialized at ∆init = 010×10

finds the structured stability radius 0.4727 and a worst-case
perturbation δopt = (−0.0889, 0.0889, 0.4556). Fig. 4a shows
the structured pseudospectrum.

If the perturbation is constrained with ∆1,1 = 0.1, ∆1,2 =

−1, and ∆1,10 = 1, the sign of each term in the control
law (30) is preserved and Algorithm 3 initialized with ∆init =
010×10 finds the structured stability radius 1.4177 and a worst-
case perturbation δopt = (0.1,−1, 1). With this worst-case
perturbation, the control u1 vanishes and the network becomes
marginally stable. This can also be seen in Fig. 4b, where the
structured pseudospectrum touches the imaginary axis.

−0.4 −0.2 0
−2.5

0

2.5

(a)

−1 −0.5 0
−2.5

0

2.5

(b)

Fig. 4: Structured pseudospectra of the circulant network when one agent is
subject to adversaries, generated by 2000 random sampling of ∆ ∈ H∩ Bε.
(a) ε = 0.4727 and the perturbation is unconstrained. (b) ε = 1.4177 and
the perturbation is sign preserving.

In scenarios where several, instead of just one, consecutive
agents are compromised, Fig. 5a shows the stability radius
as a function of the number of compromised agents. As this
number grows, the set H becomes larger and, for a fixed
ε, αε,H(A) increases. As a result, rH(A) decreases, which
is correctly captured in Fig. 5a. Notice also that when 5
or more consecutive agents are subject to adversaries, the
structured stability radii are the same independently of whether
the perturbation is unconstrained or sign preserving. This is
because the worst-case perturbation is distributed over all com-
promised edges, with entries on each edge small enough that
they do not violate the boundary constraints. It is also worth
mentioning that when all agents are subject to adversaries, the
estimated pseudospectrum generated by randomly sampling
of perturbations in H ∩ Bε does not accurately reflect the
true pseudospectrum, cf. Fig. 5b, because of the sensitivity
of the rightmost eigenvalue with respect to the perturbation.
Nevertheless, our iterative algorithms are still able to correctly
find the pseudospectral abscissa and stability radius.
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−2
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(b)

Fig. 5: (a) Stability radius vs. number of consecutive compromised agents. (b)
Estimated Λε,H(A) when all agents are subject to unconstrained adversaries,
generated by 2000 random sampling of ∆ ∈ H ∩ Bε with ε = 0.1826.

C. Tolosa networks
Lastly we consider large-scale systems where the network

matrix in (7) is given by a Tolosa matrix [36]. These matrices
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are sparse, asymmetric, and Hurwitz, and here we consider the
cases of dimension n = 90, 340, and 1090. For each network,
we consider additive perturbations to the entries of the 19th
to the 36th rows (Ep = {(i, j) : 19 ≤ i ≤ 36}), since these
are the ones with the most non-zero elements. We consider
two scenarios for the constraints corresponding, respectively,
to non-negative and non-positive perturbations, in both cases
bounded in magnitude by 10,

H1 = {∆ ∈ [0, 10]n×n : ∆ij = 0 ∀(i, j) 6∈ Ep},
H2 = {∆ ∈ [−10, 0]n×n : ∆ij = 0 ∀(i, j) 6∈ Ep}.

We run Algorithm 3, where at each iteration we take the
initial condition ∆init = 0n×n and 10 random initial guesses
∆init ∈ H∩Bεl , and select the one that results in the maximum
structured pseudospectral abscissa. Tables I and II summarize
the results for each scenario.

Matrix Dimension rH Iterations Time (secs)
Tolosa90 90 0.50251 2 0.915406
Tolosa340 340 0.066404 13 58.732560

Tolosa1090 1090 0.15919 7 312.649106

TABLE I: Structured stability radii under perturbations in H1 obtained by
Algorithm 3. The columns, from left to right, correspond to the matrix
name, its dimension, the structured stability radius, the number of algorithm
iterations, and the total computation time.

Matrix Dimension rH Iterations Time (secs)
Tolosa90 90 4.6737 3 2.896226

Tolosa340 340 0.35407 17 45.508739
Tolosa1090 1090 0.19163 7 213.961736

TABLE II: Structured stability radii under perturbations in H2 obtained by
Algorithm 3. The adescription of the columns is the same as in Table I.

In our simulations, we notice that the worst-case pertur-
bations have a structure that is even sparser than the one
specified by Ep. For example, for the case of Tolosa90 with
perturbation in H1, the worst-case perturbation ∆opt only
has 8 elements with magnitude larger than 0.001, and the
largest element is (∆opt)21,21 = 0.5021, which takes about
99.84% of the total energy (rH(A) = 0.50251) of ∆opt,
suggesting the importance of protecting edge (21, 21) ∈ Ep
against structured additive topological perturbations. We also
observe that for these large-scale systems, around 90% of the
total computation time corresponds to the computation of the
left and right eigenvectors using the MATLAB command eigs.
Hence, there is significant room for improving the computation
time by optimizing the computation of eigenvectors of large-
scale sparse matrices.

VII. CONCLUSIONS

We have studied the stability of linear dynamical systems
systems against additive perturbations of the system matrix.
We have formalized questions about whether an adversary can
destabilize the network with perturbations of a given energy
and determining what is the maximum amount of perturbation
energy the network can withstand without becoming unstable
using the concepts of structured pseudospectral abscissa and
structured stability radius. We have proposed iterative algo-
rithms that asymptotically compute both quantities for a given
network along with the corresponding worst-case structured

perturbations. Future work will study the global convergence
of the algorithms and their extension to consider arbitrary
values of the perturbation energy, develop distributed strategies
for the computation of the structured pseudospectral abscissa
and the corresponding worst-case perturbation to help indi-
vidual agents assess their relative value in ensuring network
stability, and examine resilience in scenarios where adversaries
only have partial knowledge of the network structure.

APPENDIX

Proof of Proposition IV.2. Let λ0 ≥ 0, λij ≥ 0, λij ≥ 0
be the Lagrange multipliers for the constraints. Writing (12)
element-wise, the Lagrangian is

L(∆, λ0, λij , λij) = −
∑

(i,j)∈Ep

∆ijmij+λ0(
∑

(i,j)∈Ep

∆2
ij−ε2)

+
∑

(i,j)∈Ep

λij(∆ij −∆ij) +
∑

(i,j)∈Ep

λij(∆ij −∆ij).

Define the sets S := {(i, j) ∈ Ep : (∆opt)ij = ∆ij} and S :=
{(i, j) ∈ Ep : (∆opt)ij = ∆ij}. Note that since the sets are
defined for the worst-case perturbation ∆opt, they are exactly
the index sets of saturation as defined in Proposition IV.2.
At the optimum (∆opt, λ0,opt, λopt, λopt), the Lagrangian is
maximized. Because L is linear in λij , λij , and (∆opt)ij’s do
not reach boundary values for any (i, j) ∈ Ep\(S ∪ S), we
have λopt,ij = λopt,ij = 0 for all those edges. Thus, for all
(i, j) ∈ Ep\(S ∪ S),

0 =
∂

∂∆ij
L(∆opt, λopt,0, λopt, λopt) = −mij+2λ0,opt(∆opt)ij .

Because of Assumption 1, λ0,opt 6= 0 or otherwise the above
equation does not hold for that particular unsaturated element
with mij 6= 0. This implies

∑
(i,j)∈Ep(∆opt)

2
ij = ε2 and

(∆opt)ij =
mij

2λ0,opt
(31)

for all (i, j) ∈ Ep\S, which yields the formula for ∆opt given
in Proposition IV.2 if θopt = 1

2λ0,opt
. The latter is verified by

squaring both sides of (31) and summing all the terms whose
indices are not in the saturation index set, which gives

ε2 −
∑

(i,j)∈S

∆
2

ij −
∑

(i,j)∈S

∆2
ij

=
∑

(i,j)∈Ep\(S∪S)

(∆opt)
2
ij =

∑
(i,j)∈Ep\(S∪S)m

2
ij

4λ2
0,opt

.

Rearranging the terms and comparing with (15), we conclude

θopt =

√√√√ε2 −
∑

(i,j)∈S ∆
2

ij −
∑

(i,j)∈S ∆2
ij∑

(i,j)∈Ep\S m
2
ij

=
1

2λ0,opt
.

Finally, we show the local Lipschitzness of θopt over some
neighborhood D 3 (ε,M). Let ε > ε,m > ‖M‖F , and δ > 0.
Define D := {(ε′,M ′) ∈ R≥0 × Rn×n : ε ∈ [0, ε], ‖M‖F ≤
m, |ε′ − ε| + ‖M ′ −M‖ ≤ δ}. Let (ε1,M1) = (ε,M) and
pick arbitrary (ε2,M2) ∈ D. Denote Sk := S(εk,Mk),Sk :=



11

S(εk,Mk), θk := θopt(εk,Mk), k = 1, 2. We make the
following abbreviations:

a :=
∑

(i,j)∈S1∩S1

∆
2

ij +
∑

(i,j)∈S1∩S1

∆2
ij ,

b :=
∑

(i,j)∈S1\S2

∆
2

ij +
∑

(i,j)∈S1\S2

∆2
ij ,

c :=
∑

(i,j)∈S2\S1

∆
2

ij +
∑

(i,j)∈S2\S1

∆2
ij

and for k = 1, 2, let

dk :=
∑

(i,j)∈Ep

(Mk)2
ij ,

ek :=
∑

(i,j)∈S1∩S2

(Mk)2
ij +

∑
(i,j)∈S1∩S2

(Mk)2
ij ,

fk :=
∑

(i,j)∈S1\S2

(Mk)2
ij +

∑
(i,j)∈S1\S2

(Mk)2
ij ,

gk :=
∑

(i,j)∈S2\S1

(Mk)2
ij +

∑
(i,j)∈S2\S1

(Mk)2
ij .

Using the formula (15), we have

θ2
1 =

ε21 − a− b
d1 − e1 − f1

, θ2
2 =

ε22 − a− c
d2 − e2 − g2

.

By making δ sufficiently small, (ε2,M2) is close enough to
(ε1,M1) and hence the denominators of the expressions for
θ2

1, θ
2
2 are close and have a common positive lower bound. In

other words, there exists m > 0 only depending on δ and M1

such that d1 − e1 − f1 ≥ m2 and d2 − e2 − g2 ≥ m2. In
addition, by properties of index sets of saturation (14), a ≤
θ2

1e1, a ≤ θ2
2e2, and

θ2
2f2 ≤ b ≤ θ2

1f1, (32)

θ2
1g1 ≤ c ≤ θ2

2g2, (33)

which further implies that

εk ≤ θkdk ≤ θk‖Mk‖F ≤ θkm (34)

for both k = 1, 2. We show the Lipschitzness of θopt(η,M)
by considering two cases, 1) f1 = 0 or g2 = 0, and 2) both
f1, g2 > 0. In case 1), when f1 = 0, the inequality (32) implies
b = f2 = 0. Meanwhile, it can also be deduced from (33) that

(ε21 − a)g1 ≤ c(d1 − e1),

(ε22 − a)(d2 − e2 − g2) ≤ (ε22 − a− c)(d2 − e2).

Denote κ1 := (d1 − e1)(d2 − e2 − g2) ≥ m4. Note that

θ2
2 − θ2

1

= κ−1
1

(
(ε22 − a− c)(d1 − e1)− (ε21 − a)(d2 − e2 − g2)

)
≤ κ−1

1

(
(ε22 − a)(d1 − e1)− (ε21 − a)g1

− (ε21 − a)(d2 − e2 − g2)
)

= κ−1
1

(
(ε22 − ε21)(d1 − e1)

+ (ε21 − a)((d1 − e1 − g1)− (d2 − e2 − g2))
)

≤ κ−1
1

(
|ε22 − ε21|m2 + ε21|(d1 − e1 − g1)− (d2 − e2 − g2)|

)
.

Note that (34) implies that ε1
θ1+θ2

≤ ε1+ε2
θ1+θ2

≤ m. Hence

θ2 − θ1 ≤
1

(θ1 + θ2)κ1

(
m2(ε1 + ε2)|ε2 − ε1|

+ ε21(
√
d1 − e1 − g1 +

√
d2 − e2 − g2)

· |
√
d1 − e1 − g1 −

√
d2 − e2 − g2|

)
≤ m2

κ1

ε1 + ε2
θ1 + θ2

|ε2 − ε1|

+
ε

κ1

ε1
θ1 + θ2

(
√
d1 − e1 − g1 +

√
d2 − e2 − g2)

· |
√
d1 − e1 − g1 −

√
d2 − e2 − g2|

)
≤ m3

m4
|ε2 − ε1|+

εm2

m4
‖M2 −M1‖F

)
.

On the other hand,

θ2
1 − θ2

2

= κ−1
1

(
(ε21 − a)(d2 − e2 − g2)− (ε22 − a− c)(d1 − e1)

)
= κ−1

1

(
(ε21 − ε22)(d2 − e2 − g2)

+ (ε22 − a)(d2 − e2 − g2)− (ε22 − a− c)(d1 − e1)
)

≤ κ−1
1

(
(ε21 − ε22)(d2 − e2 − g2)

+ (ε22 − a− c)((d2 − e2)− (d1 − e1))
)

≤ κ−1
1

(
|ε21 − ε22|m2 + ε22|(d1 − e1)− (d2 − e2)|

)
.

and again we can conclude the same upper bound on θ1 −
θ2. Therefore θopt is Lipschitz on D. Similar arguments hold
when g2 = 0.

In case (2), we have f2 > 0, g1 > 0 by picking δ small
enough. Hence there exist mf ,mg > 0 only depending on
δ and M1 such that fk ≥ m2

f , gk ≥ m2
g for both k = 1, 2.

Consequently

| 1√
f1

− 1√
f2

| = |
√
f1 −

√
f2|√

f1f2

≤ ‖M1 −M2‖F
m2
f

where we have used the triangle inequality. Similarly we also
have | 1√

g1
− 1√

g2
| ≤ ‖M1−M2‖F

mg
. Meanwhile, it can be directly

concluded from (32), (33) that

|θ1 − θ2| ≤ max{θ1 − θ2, θ2 − θ1}

≤ max
{∣∣√ b

f1
−

√
b

f2

∣∣, ∣∣√ c

g1
−
√

c

g2

∣∣}
≤ max{

√
b

m2
f

,

√
c

m2
g

}‖M1 −M2‖F

≤ ε

(min{mf ,mg})2
‖M1 −M2‖F ,

completing the proof.

Proof of Lemma IV.4. Note that Algorithm 1 terminates in a
finite number of steps since the sequence of index sets of
saturation S, S is monotonically non-decreasing and uniformly
bounded. In fact, the algorithm stops if the sets S, S are
unchanged or their union satisfies S ∪ S = Ep. Under
Assumption 1, Algorithm 1 terminates if and only if NotDone
= false, i.e., when (14a) holds. In addition, when Algorithm 1
terminates, ∆opt is given by (13) for the computed S, S. Thus,
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to prove the statement, we are left to show that (14b) and
(14c) hold. Let θopt,1, θopt,2, · · · , θopt,k be the sequence of
θopt generated by Algorithm 1. From (15), it is clear that these
variables are non-negative. We next show that the sequence
is non-decreasing. Take any consecutive terms θopt,l, θopt,l+1

and let δS (resp. δS) be the difference between the set S
(resp. S) computed in the l-th iteration and the one computed
in the next iteration. In other words, mijθopt,l ≥ ∆ij for
all (i, j) ∈ δS and mijθopt,l ≤ ∆ij for all (i, j) ∈ δS . To
simplify the presentation, for the l-th iteration, let

a :=
∑

(i,j)∈S

∆
2

ij +
∑

(i,j)∈S

∆2
ij ,

b :=
∑

(i,j)∈δS

∆
2

ij +
∑

(i,j)∈δS

∆2
ij , c :=

∑
(i,j)∈Ep

m2
ij ,

d :=
∑

(i,j)∈S

m2
ij +

∑
(i,j)∈S

m2
ij ,

e :=
∑

(i,j)∈δS

m2
ij +

∑
(i,j)∈δS

m2
ij .

Note that (15) implies

θ2
opt,l =

ε2 − a
c− d

, (35a)

θ2
opt,l+1 =

ε2 − a− b
c− d− e

. (35b)

Plugging (35a) into b ≤ θ2
opt,le, we have b(c−d) ≤ (ε2−a)e.

Subtracting (35a) from (35b),

θ2
opt,l+1 − θ2

opt,l =
(ε2 − a)e− b(c− d)

(c− d− e)(c− d)
≥ 0,

as claimed. Observe that in the execution of Algorithm 1, an
edge (i, j) ∈ S (resp. S) is added to the index set of saturation
at some iteration l ≤ k, when mijθopt,l ≥ ∆ij ≥ 0 (resp.
mijθopt,l ≤ ∆ij ≤ 0). Since {θopt,l} is non-decreasing, we
deduce mijθopt,k ≥ ∆ij (resp. mijθopt,k ≤ ∆ij), thereby
verifying (14b) and (14c).

Proof of Lemma IV.5. Let θk = θopt(ε,Mk), k = 1, 2.
Notice that for some (i, j) ∈ Ep, if (i, j) belongs to neither
index sets of saturation for the two optimization problems,
then (∆k)ij = (Mk)ijθk for both k = 1, 2 so

|(∆1)ij − (∆2)ij | ≤ |(M1)ijθ1 − (M2)ijθ2| (36)

holds with equality. If (i, j) only belongs to one index set of
saturation, say (i, j) ∈ S(ε,M1) but (i, j) 6∈ S(ε,M2), then
(M1)ijθ1 ≥ (∆1)ij = ∆ij ≥ (∆2)ij = (M2)ijθ2 and hence
again the inequality (36) holds. This is also true if (i, j) only
belongs to one of the other index sets of saturation. If (i, j)
belongs to the index sets of saturation for both optimization
problems, then (∆1)ij = (∆2)ij and (36) holds again.

Let δ > 0 be the one picked in the proof of Proposi-
tion IV.2 for defining the neighborhood D 3 (ε,M1). We have
(ε,M2) ∈ D as well and using the Lipschitzness of θopt,

|(∆1)ij − (∆2)ij | ≤ |(M1)ijθ1 − (M2)ijθ2|
≤ |(M1)ij ||θ1 − θ2|+ |(M1)ij − (M2)ij |θ2

≤ κε‖M1 −M2‖F +
ε

m
|(M1)ij − (M2)ij |,

where κ = max{m
2

m4 ,
1

(min{mf ,mg})2 } and m,m,mf ,mg

come from the proof of Proposition IV.2 and only depend on
δ,M1. As a result,

‖∆1 −∆2‖F =

√ ∑
(i,j)∈Ep

|(∆1)ij − (∆2)ij |2

≤
(√
|Ep|κ+

1

m

)
ε‖M1 −M2‖F

and hence the statement holds with ` :=
(√
|Ep|κ+ 1

m

)
.

Proof of Lemma V.1. For fixed M ∈ Rn×n, η(ε,M) =
〈∆opt,M〉 is linear in ∆opt, and hence Lipschitz. In addition,
θopt(ε,M) 7→ ∆opt, given by (13)-(14) is also Lipschitz.
Lastly, ε 7→ θopt(ε,M) is Lipschitz by Proposition IV.2.
Hence, the composition ε 7→ η(ε,M) is locally Lipschitz.

To find the derivative of ε 7→ η(ε,M) when it exists,
we first conclude from the continuity of ε 7→ θopt(ε,M)
and the criteria for index sets of saturation (14) that for
δ ∈ R with sufficiently small |δ|, S(ε+ δ,M) ⊆ S(ε,M) and
S(ε + δ,M) ⊆ S(ε,M). Meanwhile, the linearity of the ob-
jective function (12) implies that when ε grows, the saturated
elements in the optimizer remain saturated. In other words,
if δ ≥ 0, then S(ε + δ,M) ⊇ S(ε,M) and S(ε + δ,M) ⊇
S(ε,M) Therefore, the index sets of saturation are the same
for sufficiently small δ > 0; i.e., S(ε+δ,M) = S(ε,M) =: S
and S(ε+δ,M) = S(ε,M) =: S. Thus the difference between
η(ε+ δ,M) and η(ε,M) can be expressed as

η(ε+ δ,M)− η(ε,M)

=
(
θopt(ε,M)− θopt(ε+ δ,M)

) ∑
(i,j)∈Ep\(S∪S)

m2
ij .

This equation is useful for computing the right one-sided
derivative of ε 7→ η(ε,M), which equals to the derivative of
this map when it exists,

d

dt
η(t,M)|t=ε = lim

δ→0+

η(ε+ δ,M)− η(ε,M)

δ

= lim
δ→0+

θopt(ε+ δ,M)− θopt(ε,M)

δ

∑
(i,j)∈Ep\(S∪S)

m2
ij

=
d

dt
θopt(t,M)

∣∣
t=ε
·

∑
(i,j)∈Ep\(S∪S)

m2
ij

= ε

√√√√ ∑
(i,j)∈Ep\(S∪S)m

2
ij

ε2 −
∑

(i,j)∈S ∆
2

ij −
∑

(i,j)∈S ∆2
ij

=
ε

θopt
.
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[29] S. C. Johnson, M. Wicks, M. Žefran, and R. A. DeCarlo, “The structured
distance to the nearest system without property P ,” IEEE Transactions
on Automatic Control, vol. 63, no. 9, pp. 2960–2975, 2018.

[30] V. Katewa and F. Pasqualetti, “On the real stability radius of sparse
systems,” Automatica, vol. 113, p. 108685, 2020.

[31] C. D. Meyer and G. W. Stewart, “Derivatives and perturbations of
eigenvectors,” Numerical Analysis, vol. 25, pp. 679–691, 1988.

[32] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University
Press, 1985.

[33] F. H. Clarke, Optimization and Nonsmooth Analysis, ser. Canadian Math-
ematical Society Series of Monographs and Advanced Texts. Wiley,
1983.

[34] A. S. Lewis, “Nonsmooth analysis of eigenvalues,” Mathematical Pro-
gramming, vol. 84, pp. 1–24, 1999.

[35] J. H. Wilkinson, Rounding Errors in Algebraic Processes. Englewood
Cliffs, New Jersey: Prentice Hall, 1963.

[36] R. F. Boisvert, R. Pozo, K. Remington, R. F. Barrett, and J. J. Dongarra,
“Matrix market: A web resource for test matrix collections,” in The
Quality of Numerical Software: Assessment and Enhancement. London:
Chapman & Hall, 1997, pp. 125–137.

Shenyu Liu (S’16-M’20) received his B. Eng. de-
gree in Mechanical Engineering and B.S. degree
in Mathematics from the University of Singapore,
Singapore, in 2014. He then received his M.S. degree
in Mechanical Engineering from the University of
Illinois, Urbana-Champaign in 2015, where he also
received his Ph.D. degree in Electrical Engineering
in 2020. He is currently a postdoctoral researcher
in Department of Mechanical and Aerospace Engi-
neering at University of California San Diego. His
research interest includes matrix perturbation theory,

Lyapunov methods, input-to-state stability theory, switched/hybrid systems
and motion planning via geometric methods.

Sonia Martı́nez (M’02-SM’07-F’18) is a Professor
of Mechanical and Aerospace Engineering at the
University of California, San Diego, CA, USA. She
received the Ph.D. degree in Engineering Mathe-
matics from the Universidad Carlos III de Madrid,
Spain, in May 2002. She was a Visiting Assistant
Professor of Applied Mathematics at the Technical
University of Catalonia, Spain (2002-2003) and a
Postdoctoral Fulbright Fellowship at the Coordinated
Science Laboratory of the University of Illinois,
Urbana-Champaign (2003-2004) and the Center for

Control, Dynamical systems and Computation of the University of California,
Santa Barbara (2004-2005). Her research interests include the control of
network systems, multi-agent systems, nonlinear control theory, and robotics.
She received the Best Student Paper award at the 2002 IEEE Conference on
Decision and Control for her work on the control of underactuated mechanical
systems and was the recipient of a NSF CAREER Award in 2007. For the
paper “Motion coordination with Distributed Information,” co-authored with
Jorge Cortés and Francesco Bullo, she received the 2008 Control Systems
Magazine Outstanding Paper Award. She is the Editor in Chief of the recently
launched Open Journal of Control Systems.

Jorge Cortés (M’02, SM’06, F’14) received the
Licenciatura degree in mathematics from Univer-
sidad de Zaragoza, Zaragoza, Spain, in 1997, and
the Ph.D. degree in engineering mathematics from
Universidad Carlos III de Madrid, Madrid, Spain,
in 2001. He held postdoctoral positions with the
University of Twente, Twente, The Netherlands,
and the University of Illinois at Urbana-Champaign,
Urbana, IL, USA. He was an Assistant Professor
with the Department of Applied Mathematics and
Statistics, University of California, Santa Cruz, CA,

USA, from 2004 to 2007. He is currently a Professor in the Department of
Mechanical and Aerospace Engineering, University of California, San Diego,
CA, USA. He is the author of Geometric, Control and Numerical Aspects
of Nonholonomic Systems (Springer-Verlag, 2002) and co-author (together
with F. Bullo and S. Martı́nez) of Distributed Control of Robotic Networks
(Princeton University Press, 2009). He is a Fellow of IEEE and SIAM.
His current research interests include distributed control and optimization,
network science, nonsmooth analysis, reasoning and decision making under
uncertainty, network neuroscience, and multi-agent coordination in robotic,
power, and transportation networks.


	I Introduction
	II Preliminaries
	III Problem statement
	IV Network stability against perturbations: structured pseudospectral abscissa
	IV-A Characterization of the worst-case structured perturbation
	IV-B Iterative computation of structured pseudospectral abscissa

	V Measuring network resilience: structured stability radius
	V-A Structured pseudospectral abscissa as a function of perturbation energy
	V-B Iterative computation of structured stability radius

	VI Examples
	VI-A Perturbation to edges of single node of sparse network 
	VI-A1 No constraints on perturbation
	VI-A2 Non-positive constraints on perturbation
	VI-A3 Non-negative constraints on perturbation

	VI-B Circulant network
	VI-C Tolosa networks

	VII Conclusions
	Appendix
	References
	Biographies
	Shenyu Liu
	Sonia Martínez
	Jorge Cortés


