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COMPOSITIONAL CONSTRUCTION OF SAFETY CONTROLLERS FOR NETWORKS

OF CONTINUOUS-SPACE POMDPS

NILOOFAR JAHANSHAHI1, ABOLFAZL LAVAEI2, AND MAJID ZAMANI3,1

Abstract. In this paper, we propose a compositional framework for the synthesis of safety controllers for
networks of partially-observed discrete-time stochastic control systems (a.k.a. continuous-space POMDPs).
Given an estimator, we utilize a discretization-free approach to synthesize controllers ensuring safety spec-
ifications over finite-time horizons. The proposed framework is based on a notion of so-called local control
barrier functions computed for subsystems in two different ways. In the first scheme, no prior knowledge of
estimation accuracy is needed. The second framework utilizes a probability bound on the estimation accuracy
using a notion of so called stochastic simulation functions. In both proposed schemes, we drive sufficient
small-gain type conditions in order to compositionally construct control barrier functions for interconnected
POMDPs using local barrier functions computed for subsystems. Leveraging compositionality results, the
constructed control barrier functions enable us to compute lower bounds on the probabilities that the inter-
connected POMDPs avoid certain unsafe regions in finite-time horizons. We demonstrate the effectiveness of
our proposed approaches by applying them to an adaptive cruise control problem.

1. Introduction

Large-scale stochastic systems have received significant attentions in the past few years due to their broad
applications in modeling many engineering systems such as power grids, road traffic networks and industrial
control systems to name a few. Guaranteeing safety and reliability of such complex systems in a formal as well
as time- and cost-effective way has always been very challenging. In the past few years, formal verification and
synthesis of controllers against safety specifications have gained considerable attentions among both control
engineers and computer scientists. In this respect, abstraction-based techniques have been widely employed
for the formal synthesis of safety controllers [L+96, LSZ20d, TNXJ17]. However, those approaches rely on
the state and input set discretization and consequently suffer severely from the curse of dimensionality:
computational complexity exponentially grows with the dimension of the system. In order to overcome this
difficulty, compositional techniques have been introduced in the past few years to construct finite abstractions
of interconnected systems based on abstractions of smaller subsystems [SAM17, LSZ19, LSZ20a, NSZ21,
LSZ20d, NZ20, LSZ20c, LZ19, LSZ18, LSZ20b, Lav19, LSAZ20].

As another promising alternative, discretization-free approaches based on control barrier functions have been
introduced in the past decade [PJP07, AXGT16, NSZ20a, ACE+19, JSZ20, NSZ20c, NSZ20b, ALZ20, ALZ21].
Unfortunately, all above-mentioned literatures on both discretization and discretization-free techniques assume
that full state information is available for the sake of controller synthesis which is not the case in many
practical applications. Taking this limitation into account, the work in [Cla19] studies a controller synthesis
scheme for stochastic systems with incomplete information by assuming a priori knowledge of control barrier
functions. Given an estimator with a probabilistic guarantee on the accuracy of estimations, [JJZ20b] studies
the controller synthesis problem for partially-observed stochastic systems and proposes a lower bound for the
probability of satisfaction of safety specifications over finite-time horizons. A synthesis framework based on
control barrier functions for partially-observed jump diffusion systems enforcing complex properties expressed
by deterministic finite automata is recently proposed in [JJZ20a] in which a prior knowledge of the estimation
accuracy is not required anymore.
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The proposed techniques in the above-mentioned literature on partially observed systems assume that control
barrier functions have a certain parametric form, such as polynomial, and search for their corresponding
coefficients under certain assumptions. Although it may be easy to search for those functions for lower-
dimensional systems via existing tools, it is computationally very expensive (if not impossible) to compute
them for large-scale interconnected systems. Motivated by this challenge, we propose here a compositional
approach for the construction of control barrier functions for partially-observed discrete-time stochastic control
systems (a.k.a. POMDPs). To the best of our knowledge, this paper is the first to develop a compositional
controller synthesis scheme for networks of POMDPs based on barrier functions. By driving small-gain type
conditions, we compositionally construct a control barrier function for the interconnected POMDP based on
local barrier functions of subsystems. Accordingly, by leveraging the constructed barrier function and the
corresponding controller, we compute a lower bound on the probability that the interconnected POMDP
avoids an unsafe region over a finite-time horizon.

Particularly, we propose two distinct approaches for the construction of control barrier functions. In the first
one, local control barrier functions are defined over augmented systems consisting of subsystems and their
estimators. This formulation makes it possible to search for local control barrier functions, and as a result the
overall one, without requiring explicitly the accuracies of estimators in probability. In the second framework,
local control barrier functions are constructed using the estimators’ dynamics (without augmenting them with
the subsystems’ dynamics) in where we utilize a notion of so-called stochastic simulation functions to compute
a probabilistic bound on the estimation accuracy. We propose a sum-of-squares (SOS) optimization approach
to search for local control barrier functions in both approaches, and accordingly, to compute the corresponding
controllers. In order to illustrate the effectiveness of our proposed results, we apply both approaches to an
adaptive cruise control problem.

2. Preliminaries and Problem Definition

2.1. Preliminaries. A probability space in this work is presented by tuple (Ω,FΩ,PΩ), where Ω is a sample
space, FΩ is a sigma-algebra on Ω, and PΩ is a probability measure that assigns probabilities to events.
Random variables introduced here are measurable functions of the form X : (Ω,FΩ) → (SX ,FΩ) such that
any random variable X induces a probability measure on its space (SX ,FΩ) as Prob{A} = PΩ{X−1(A)} for
any A ∈ FX . We directly present the probability measure on (SX ,FX) without explicitly mentioning the
underlying probability space and the function X itself.

We call the topological space S as a Borel space if it is homeomorphic to a Borel subset of a Polish space.
Euclidean space R

n, its Borel subsets endowed with a subspace topology, and hybrid spaces are examples of
Borel spaces. A Borel sigma-algebra is denoted by B(S), where any Borel space S is assumed to be endowed
with it. A map f : S → Y is measurable whenever it is Borel measurable.

2.2. Notation. The sets of nonnegative and positive integers are denoted by N := {0, 1, 2, . . .} and N≥1 :=
{1, 2, 3, . . .}, respectively. Moreover, symbols R,R>0, and R≥0 denote, respectively, the sets of real, positive
and nonnegative real numbers. Given N vectors xi ∈ R

ni , ni ∈ N≥1, i ∈ {1, . . . , N}, we use x = [x1; . . . ;xN ]
to denote the corresponding column vector of the dimension

∑
i ni. We denote by ‖ · ‖ the infinity norm.

Given any a ∈ R, |a| denotes the absolute value of a. The identity function and composition of functions are
denoted by Id and the symbol ◦, respectively. A function κ : R≥0 → R≥0, is said to be a class K function if it
is continuous, strictly increasing, and κ(0) = 0. A class K function κ(·) is said to be a class K∞ if κ(r) → ∞ as
r → ∞. We denote the empty set by ∅. Given functions fi : Xi → Yi, for any i ∈ {1, . . . , N}, their Cartesian

product
∏N

i=1 fi :
∏N

i=1Xi →
∏N

i=1 Yi is defined as (
∏N

i=1 fi)(x1, . . . , xN ) = [f1(x1); . . . ; fN(xN )].

2.3. Partially-Observed Discrete-Time Stochastic Control Systems (a.k.a. Continuous-Space
POMDPs). In this paper, we consider partially-observed discrete-time stochastic control systems as for-
malized in the following definition.
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Definition 2.1. A partially-observed discrete-time stochastic control system (PO-dt-SCS) in this paper is
characterized by the tuple

Σ = (X,U,W, ς1, f, Y1, Y2, h1, h2, ς2), (2.1)

where,

• X ⊆ R
n is a Borel space as the state space of the system. The measurable space with B(X) being the

Borel sigma-algebra on the state space is denoted by (X,B(X));
• U ⊆ R

m is a Borel space as the external input space of the system;
• W ⊆ R

p is a Borel space as the internal input space of the system;
• ςi, i ∈ {1, 2}, denote sequences of independent and identically distributed (i.i.d.) random variables

from a sample space Ω to the set Vςi ,

ςi = {ςi(k) : Ω → Vςi , k ∈ N},

• f : X × U ×W × Vς1 → X is a measurable function characterizing the state evolution of the system;
• Y1 ⊆ R

p is a Borel space as the internal output space of the system;
• Y2 ⊆ R

q is a Borel space as the external output space of the system;
• h1 : X → Y1 is a measurable function that maps a state x ∈ X to its internal output y1 = h1(x);
• h2 : X × Vς2 → Y2 is a measurable function that maps a state x(k) ∈ X to its external output
y2(k) = h2(x(k), ς2(k)).

An evolution of the state of PO-dt-SCS Σ for a given initial state x(0) ∈ X and input sequences υ(·) : N → U
and w(·) : N →W is described by

Σ :





x(k + 1) = f(x(k), υ(k), w(k), ς1(k)),

y1(k) = h1(x(k)),

y2(k) = h2(x(k), ς2(k)), k ∈ N.

(2.2)

A PO-dt-SCS Σ in (2.1) can be equivalently represented as a partially-observed Markov decision process
(POMDP) [Kal97, Proposition 7.6]

Σ = (X,U,W, Tx, Y1, Y2, h1, h2, ς2), (2.3)

where the map Tx : B(X)×X×U×W → [0, 1] is a conditional stochastic kernel that assigns to any x(k) ∈ X ,
υ(k) ∈ U , and w(k) ∈ W , a probability measure Tx(· | x(k), υ(k), w(k)) on the measurable space (X,B(X))
so that for any set A ∈ B(X),

P
(
x(k + 1) ∈ A

∣∣x(k), υ(k), w(k)) =
∫

A

Tx(x(k + 1)
∣∣x(k), υ(k), w(k)

)
.

For given inputs υ(·), and w(·), the stochastic kernel Tx captures the evolution of the state of Σ and can be
uniquely determined by the pair (ς1, f) from (2.1). Since two systems (2.1) and (2.3) are indeed equivalent, we
interchangeably employ terms PO-dt-SCS and POMDP in the remainder of the paper. We associate to U and
W sets U andW , respectively, to be collections of sequences {υ(k) : Ω → U, k ∈ N} and {w(k) : Ω →W,k ∈ N},
in which υ(k) and w(k) are independent of ςi(l) for any k, l ∈ N, l ≥ k and i ∈ {1, 2}. The random sequences
xaυw : Ω × N → X , y1aυw

: Ω × N → Y1, and y2aυw
: Ω × N → Y2 satisfying (2.2) are called respectively the

solution process, internal output and external output processes of Σ, respectively, under an external input υ,
an internal input w, and an initial state a.

Since the main goal of this work is to study networks of systems, the tuple representing interconnected systems,
not containing internal inputs and outputs, is Σ = (X,U, ς1, f, Y, h, ς2), where f : X × U × Vς1 → X , and

Σ :

{
x(k + 1) = f(x(k), υ(k), ς1(k)),

y(k) = h(x(k), ς2(k)), k ∈ N.
(2.4)
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For the sake of controller synthesis using barrier certificates explained later in detail, we raise the following
assumption on the existence of an estimator that estimates the state of the PO-dt-SCS in (2.2).

Assumption 1. Consider a PO-dt-SCS Σ = (X,U,W, ς1, f, Y1, Y2, h1, h2, ς2). States of Σ in (2.2) can be esti-

mated by a proper estimator Σ̂ which is characterized by the tuple Σ̂ = (X,U,W, f̂ , Y1, Y2, h1) and represented
in the following form:

Σ̂ :

{
x̂(k + 1) = f̂(x̂(k), υ(k), ŵ(k), y2(k)),

ŷ1(k) = h1(x̂(k)),
(2.5)

where υ and y2 are external input and output signals of Σ and ŵ is the internal input signal coming from other
estimators. We explain later how ŵ is being fed by the estimators of other neighbouring subsystems.

There exist numerous results in the relevant literature for the design of the estimator in (2.5) for different
classes of stochastic systems (cf. [LWL09, SWL11, WDZH13, SSS09]).

In the next section, we introduce notions of local control barrier functions (LCBF) and control barrier func-
tions (CBF) for respectively POMDPs (with both internal and external inputs) and interconnected POMDPs
(without internal inputs and outputs).

3. (Local) Control Barrier Functions

First, we define (local) control barrier functions ((L)CBF) over an augmented system consisting of the sto-
chastic (sub)system’s and its estimator’s dynamics. This formulation enables one to search for (local) control
barrier functions with no prior knowledge of the estimation accuracy. Second, we formulate (local) control
barrier functions over the estimator’s dynamics (without augmenting them with the subsystem’s dynamics) by
utilizing a given probability bound on the estimation accuracy computed via a notion of so-called stochastic
simulation functions.

3.1. Notions of (L)CBF without considering the estimation accuracy. Here, we first define the aug-
mented process

[
x(k); x̂(k)

]
, where x(k) and x̂(k) are the solution processes of subsystems Σ in (2.2) and their

estimators Σ̂ in (2.5), respectively. The corresponding augmented stochastic subsystem Σ̃ can be defined as:

Σ̃ :

[
x(k + 1)
x̂(k + 1)

]
=

[
f(x(k), υ(k), w(k), ς1(k))

f̂(x̂(k), υ(k), ŵ(k), y2(k))

]
. (3.1)

Now, the local control barrier function is defined for system Σ̃ in (3.1). This framework allows us to provide
one of our main results without any prior knowledge of the probabilistic distance between the actual states
and their estimations. We now formally define local control barrier functions constructed over the augmented

system Σ̃.

Definition 3.1. Consider a POMDP Σ in (2.2), its estimator Σ̂ in (2.5), and the resulting augmented

system Σ̃ in (3.1). Let Xa, Xb ⊆ X represent some initial and unsafe regions, respectively. A function

B : X ×X → R≥0 is called a local control barrier function (LCBF) for Σ̃ if there exist constants ψ̄, γ̄ ∈ R≥0

and λ̄ ∈ R>0, such that

• ∀(x, x̂) ∈ X ×X,

B(x, x̂) ≥ α(‖

[
h1(x)
h1(x̂)

]
‖

2

), (3.2)

• ∀(x, x̂) ∈ Xa ×Xa,
B(x, x̂) ≤ γ̄, (3.3)

• ∀(x, x̂) ∈ Xb ×X,
B(x, x̂) ≥ λ̄, (3.4)
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• ∀x̂(k) ∈ X, ∀ŵ(k) ∈W , ∃υ(k) ∈ U , such that ∀x(k) ∈ X, ∀w(k) ∈W ,

E

[
B
(
f(x(k), υ(k), w(k), ς1(k)), f̂(x̂(k), υ(k), ŵ(k), y2(k))

) ∣∣ x(k), x̂(k), υ(k), w(k), ŵ(k)
]

≤ max
{
κ̄B(x(k), x̂(k)), ρ(‖

[
w(k)
ŵ(k)

]
‖

2

), ψ̄
}
,

(3.5)

for some α ∈ K∞, ρ ∈ K∞ ∪ {0} and 0 < κ̄ < 1.

Definition 3.1 can also be stated for interconnected systems without internal inputs and outputs by eliminating
all the terms related to the internal input w, its estimation ŵ, internal output h1(x), and its estimation h1(x̂)
as defined below.

Definition 3.2. Consider an (interconnected) POMDP Σ = (X,U, ς1, f, Y, h, ς2), its estimator Σ̂ also without

internal inputs and outputs, and the augmented system Σ̃ = [Σ; Σ̂]. Let Xa, Xb ⊆ X, respectively, represent

initial and unsafe regions. A function B : X ×X → R≥0 is called a control barrier function (CBF) for Σ̃ if
there exist constants ψ, γ ∈ R≥0 and λ ∈ R>0 such that γ < λ, and

• ∀(x, x̂) ∈ Xa ×Xa,
B(x, x̂) ≤ γ, (3.6)

• ∀(x, x̂) ∈ Xb ×X,
B(x, x̂) ≥ λ, (3.7)

• and ∀x̂(k) ∈ X, ∃υ(k) ∈ U , such that ∀x(k) ∈ X,

E

[
B
(
f(x(k), υ(k), ς1(k)), f̂(x̂(k), υ(k), y(k))

) ∣∣x(k), x̂(k), υ(k)
]
≤ max

{
κB(x(k), x̂(k)), ψ

}
, (3.8)

for some 0 < κ < 1.

Remark 3.3. Note that we need the condition γ < λ ( i.e., Xa ∩ Xb = ∅) in order to provide a meaningful
probability in Theorem 3.4 later. This requirement is only for the interconnected system and not for subsystems.
In particular, LCBFs are mainly utilized for the compositional construction of CBFs over interconnected
systems and are not directly employed for ensuring the probability of safety satisfaction. The above definition

associates a policy η : X → U to a CBF, where X here is the state set of the estimator Σ̂. Definition 3.2 gives
such a policy according to the existential quantifier over the input for any estimator’s state x̂ ∈ X.

The next theorem shows the usefulness of having a CBF to quantify an upper bound on the exit probability
(i.e., the probability that the solution process of the interconnected system reaches the unsafe region in a
finite-time horizon) of POMDP (without internal inputs and outputs).

Theorem 3.4. Let Σ = (X,U, ς1, f, Y, h, ς2) be a POMDP (without internal inputs and outputs) and Σ̂ be
its corresponding estimator. Suppose B is a CBF according to Definition 3.2. Then, the probability that the
solution process of Σ starts from any initial states x(0) = a ∈ Xa and reaches Xb under the control policy η
within a time horizon [0, Td] is formally upper bounded as

P

[
xaυ(k) ∈ Xb for some k ∈ [0, Td]

∣∣ a, υ
]
≤ δ, (3.9)

where,

δ :=





1− (1 − γ

λ
)(1 − ψ

λ
)Td , if λ ≥ ψ

κ
,

γ

λ
(1− κ)Td + ( ψ

κλ
)(1 − (1− κ)Td), if λ < ψ

κ
.

(3.10)

The proof of Theorem 3.4 is provided in Appendix.
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Remark 3.5. Utilizing the augmented system Σ̃ as in (3.1) provides us with the results in Theorem 3.4 with
no need of knowing the estimation accuracy explicitly. This allows more flexibility in designing the estimator
and potentially results in tighter upper bounds.

In the next subsection, we formulate control barrier functions only over the estimators’ dynamics by utilizing
a probability bound on the estimation accuracy.

3.2. Notions of (L)CBF by considering the estimation accuracy. Given an estimator with a proba-
bilistic guarantee on the accuracy of the estimation, we propose an approach to construct a CBF defined only

over the states of the estimator Σ̂. For a given time horizon Td, we assume the probabilistic bound on the
accuracy of the estimator is given by [RGYU00]:

∀ǫ > 0, ∃θ ∈ (0, 1], such that P

[
sup

0≤k≤Td

‖xaυ(k)− x̂âυ(k)‖ < ǫ
∣∣ a, â, υ

]
≥ 1− θ,

for any a, â ∈ X and any υ ∈ U . In order to quantify the distance (a.k.a. error) between a system’s state
and its estimation, we employ notions of so-called stochastic (pseudo)-simulation functions. To do so, we first
introduce stochastic pseudo-simulation functions (SPSF) for POMDPs with both internal and external inputs.
We then define stochastic simulation functions (SSF) for interconnected POMDPs without internal inputs and
outputs.

Definition 3.6. Consider a POMDP Σ in (2.2) and its corresponding estimator Σ̂ in (2.5). A function

φ : X ×X → R≥0 is called a stochastic pseudo-simulation function (SPSF) from Σ̂ to Σ if

(i) ∀x ∈ X, ∀x̂ ∈ X,
ε(‖x− x̂‖) ≤ φ(x, x̂),

(ii) ∀x̂(k) ∈ X, ∀ŵ(k) ∈W, ∃υ(k) ∈ U , such that ∀x(k) ∈ X, ∀w(k) ∈W ,

E

[
φ
(
f(x(k), υ(k), w(k), ς1(k)), f̂(x̂(k), υ(k), ŵ(k), y2(k))

) ∣∣ x(k), x̂(k), υ(k), w(k), ŵ(k)
]

≤ max
{
µ̄φ(x(k), x̂(k)), ̺(‖w(k) − ŵ(k)‖), c̄

}
,

for some 0 < µ̄ < 1, ε ∈ K∞, ̺ ∈ K∞ ∪ {0}, and c̄ ∈ R≥0.

Definition 3.6 can also be stated for POMDPs without internal inputs and outputs by eliminating all the terms
related to the internal input w and its estimation ŵ as defined below.

Definition 3.7. Consider an (interconnected) POMDP Σ = (X,U, ς1, f, Y, h, ς2) and its estimator Σ̂. A

function φ : X ×X → R≥0 is called a stochastic simulation function (SSF) from Σ̂ to Σ if

(i) ∀x ∈ X, ∀x̂ ∈ X,
ε(‖x− x̂‖) ≤ φ(x, x̂),

(ii) ∀x̂(k) ∈ X, ∃υ(k) ∈ U , such that ∀x(k) ∈ X,

E

[
φ
(
f(x(k), υ(k), ς1(k)), f̂(x̂(k), υ(k), y(k))

) ∣∣ x(k), x̂(k), υ(k)
]
≤ max

{
µφ(x(k), x̂(k)), c

}
,

for some 0 < µ < 1, ε ∈ K∞, and c ∈ R≥0.

The next theorem shows how an SSF can be employed to obtain the probability bound on the estimation
accuracy.

Theorem 3.8. Consider a POMDP Σ in (2.4), its estimator Σ̂ in (2.5) (without internal inputs and outputs),

and ǫ > 0. Suppose φ is an SSF from Σ̂ to Σ. For any υ ∈ U , and for any random variables a and â as initial

states of Σ and Σ̂, respectively, the following inequality holds:

P

[
sup

0≤k≤Td

‖xaυ(k)− x̂âυ(k)‖ ≥ ǫ
∣∣ a, â, υ

]
≤ θ,
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where,

θ :=





1− (1− φ(a,â)
ε(ǫ) )(1 − c

ε(ǫ))
Td , if ε(ǫ) ≥ c

µ
,

(
φ(a,â)
ε(ǫ) )(1 − µ)Td + ( c

µε(ǫ) )(1 − (1− µ)Td),

if ε(ǫ) < c
µ
.

(3.11)

The proof of Theorem 3.8 is provided in Appendix.

We now propose our second formulation of control barrier functions defined only over the estimators’ dynamics
as the following.

Definition 3.9. Consider a POMDP Σ as in (2.2), its estimator Σ̂, and ǫ > 0. Let Xa, Xb ⊆ X denote
respectively initial and unsafe sets. Let us define Xǫ

b := {x̂ ∈ X | ∃x ∈ Xb, ‖x̂− x‖ ≤ ǫ} ( i.e., unsafe set for

Σ̂). A function B : X → R≥0 is called a local control barrier function (LCBF) for Σ̂ if there exist constants
ψ̄, γ̄ ∈ R≥0 and λ̄ ∈ R>0, such that

• ∀x ∈ X,

B(x) ≥ α(‖h1(x)‖
2

), (3.12)

• ∀x ∈ Xa,

B(x) ≤ γ̄, (3.13)

• ∀x ∈ Xǫ
b ,

B(x) ≥ λ̄, (3.14)

• and ∀x̂(k) ∈ X, ∀ŵ(k) ∈ W , ∃υ(k) ∈ U , such that ∀y2(k) ∈ Y2,

E

[
B
(
f̂(x̂(k), υ(k), ŵ(k), y2(k))

)
| x̂(k), υ(k), ŵ(k)

]
≤ max

{
κ̄B(x̂(k)), ρ(‖ŵ(k)‖

2

), ψ̄
}
, (3.15)

for some 0 < κ̄ < 1, α ∈ K∞, and ρ ∈ K∞ ∪ {0}.

We now modify Definition 3.9 and present it for the interconnected POMDPs as the following.

Definition 3.10. Consider an (interconnected) POMDP Σ = (X,U, ς1, f, Y, h, ς2), its estimator Σ̂ without
internal inputs and outputs and ǫ > 0. Let Xa, Xb ⊆ X denote respectively initial and unsafe sets. Let us
define Xǫ

b := {x̂ ∈ X | ∃x ∈ Xb, ‖x̂− x‖ ≤ ǫ}. A function B : X → R≥0 is called a control barrier function for

Σ̂ if there exist constants ψ, γ ∈ R≥0 and λ ∈ R>0 such that γ < λ and

• ∀x ∈ Xa,

B(x) ≤ γ,

• ∀x ∈ Xǫ
b ,

B(x) ≥ λ,

• and ∀x̂(k) ∈ X, ∃υ(k) ∈ U , such that ∀y(k) ∈ Y ,

E

[
B
(
f̂(x̂(k), υ(k), y(k))

)
| x̂(k), υ(k)

]
≤ max

{
κB(x̂(k)), ψ

}
,

for some 0 < κ < 1.

One can employ Definition 3.10 and provide a similar result as Theorem 3.4:

P

[
x̂âυ(k) ∈ Xǫ

b for some k ∈ [0, Td]
∣∣ â, υ

]
≤ δ,
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where δ is computed as in (3.10). In the next Theorem, we provide an upper bound on the exit probability of
POMDP using the estimation accuracy.

Theorem 3.11. Let Σ = (X,U, ς1, f, Y, h, ς2) be a POMDP without internal inputs and outputs, Σ̂ be its

corresponding estimator and ǫ be a positive constant. Suppose B is a CBF for Σ̂ as in Definition 3.10. Then,
the probability that the solution process of Σ starts from any initial state x(0) = a ∈ Xa and reaches Xb under
control policy η within a time horizon [0, Td] is upper bounded as

P

[
xaυ(k) ∈ Xb for somek ∈ [0, Td]

∣∣ a, υ
]
≤ δ + θ, (3.16)

where δ and θ are computed as in (3.10) and (3.11), respectively.

The proof is similar to that of [JJZ20a, Theorem 3.3] and is omitted here due to lack of space.

Remark 3.12. Note that the first proposed approach does not require a prior knowledge of the estimation
accuracy, and accordingly, it gives the user more flexibility on the estimator design. Moreover, in the first
approach the computation of the exit probability can be done in one shot without utilizing SSFs and, hence, be
less conservative. However, the computational complexity in the first approach is more than the second one
since the control barrier function should be constructed over the augmented system.

In the next sections, we analyze networks of POMDP and discuss under which conditions one can construct
a CBF of an interconnected system based on LCBF of its subsystems.

4. Interconnected POMDP

We consider a collection of partially-observed stochastic control subsystems and their estimators as

Σi = (Xi, Ui,Wi, ς1i, fi, Y1i , Y2i , h1i , h2i , ς2i),

Σ̂i = (Xi, Ui,Wi, f̂i, Y1i , Y2i , h1i), i ∈ {1, . . . , N},

where internal inputs and outputs are partitioned as

wi =
[
wi1; . . . ;wi(i−1);wi(i+1); . . . ;wiN

]
,

y1i =
[
y1i1 ; . . . y1i(i−1)

; y1i(i+1)
; . . . ; y1iN

]
,

(4.1)

and their internal output spaces and functions are of the form

Y1i =

N∏

j=1,j 6=i

Y1ij ,

h1i(xi) = [h1i1(xi); . . . ;h1i(i−1)
(xi);h1i(i+1)

(xi); . . . h1iN (xi)].

(4.2)

Furthermore, the internal input and output of the estimators are also partitioned similar to (4.1) and (4.2).

Outputs y1ij with i 6= j are internal outputs which are employed for the sake of interconnections. If there is
a connection from Σj to Σi, we assume that wij is equal to y1ji . Otherwise, the connecting output function
is identically zero, i.e., h1ji ≡ 0. The same interconnections hold for the estimators. If there is a connection

from Σ̂j to Σ̂i, we assume that ŵij is equal to ŷ1ji . Otherwise, the connecting output function is identically
zero, i.e., h1ji ≡ 0. Now we define interconnected partially-observed stochastic control systems.

Definition 4.1. Consider N ∈ N≥1 POMDPs Σi = (Xi, Ui,Wi, ς1i , fi, Y1i , Y2i , h1i , h2i , ς2i), i ∈ {1, . . . , N},
with the input-output configuration as in (4.1)-(4.2). The interconnection of Σi, for any i ∈ {1, . . .N}, is

the interconnected POMDP Σ = (X,U, ς1, f, Y, h, ς2), denoted by I(Σ1, . . . ,ΣN ), such that X :=
∏N

i=1Xi,

U :=
∏N

i=1 Ui, ς1 =
[
ς11 ; · · · ; ς1N

]
, f :=

∏N

i=1 fi, Y :=
∏N

i=1 Yi, h :=
∏N

i=1 hi, and ς2 =
[
ς21 ; · · · ; ς2N

]
,

subjected to the following constraint:

∀i, j ∈ {1, . . . , N}, i 6= j : wji = y1ij , Y1ij ⊆Wji.
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In a similar way, we define the interconnection of estimators Σ̂ as the following.

Definition 4.2. Consider N ∈ N≥1 estimators Σ̂i = (Xi, Ui,Wi, f̂i, Y1i , Y2i , h1i), i ∈ {1, . . . , N}, with the

input-output configuration similar to (4.1)-(4.2). The interconnection of Σ̂i, for any i ∈ {1, . . .N}, is the

interconnected estimator Σ̂ = (X,U, f̂ , Y ), denoted by I(Σ̂1, . . . , Σ̂N ), such that X :=
∏N

i=1Xi, U :=
∏N

i=1 Ui,

f̂ :=
∏N

i=1 f̂i, and Y :=
∏N

i=1 Yi, subject to the following constraint:

∀i, j ∈ {1, . . . , N}, i 6= j : ŵji = ŷ1ij , Y1ij ⊆Wji.

An example of the interconnection of two POMDPs Σ1 and Σ2 is illustrated in Fig. 1.

I(Σ1,Σ2)

Σ1

Σ2

y21υ1

y22υ2

y112

w21 y121

w12

Figure 1. Interconnection of two POMDPs Σ1 and Σ2.

5. Compositional Construction of CBF

In this section, we analyze networks of POMDP and provide a compositional approach to construct a CBF
of an interconnected POMDP based on LCBF of its subsystems. For i ∈ {1, . . . , N}, consider the PO-dt-SCS

Σi in (2.2), its corresponding estimator Σ̂i in (2.5), and the augmented system Σ̃ in (3.1). Assume there
exists a LCBF Bi as defined in Definition 3.1 or 3.9 with functions αi ∈ K∞, ρi ∈ K∞ ∪ {0} and constants
λ̄i, ψ̄i ∈ R≥0, γ̄i ∈ R>0, and 0 < κ̄i < 1. Now we raise the following small-gain assumption that is essential
for the compositionality results of this section.

Assumption 2. Assume that K∞ functions κ̄ij defined as

κ̄ij(s) :=

{
κ̄i(s), if i = j,

ρi(α
−1
j (s)), if i 6= j,

satisfy

κ̄i1i2 ◦ κ̄i2i3 ◦ · · · ◦ κ̄ir−1ir ◦ κ̄iri1 < Id, (5.1)

for all sequences (i1, . . . , ir) ∈ {1, . . . , N}r and r ∈ {1, . . . , N}.

Remark 5.1. Note that the small-gain condition (5.1) is a standard one in studying the stability of large-
scale interconnected systems via ISS Lyapunov functions [DRW07, DRW10]. This condition is automatically
satisfied if each κ̄ij is less than identity (κ̄ij < Id, ∀i, j ∈ {1, . . . , N}).

The small-gain condition (5.1) implies the existence of K∞ functions σi > 0 [Rüf10, Theorem 5.5], satisfying

max
i,j

{
σ−1
i ◦ κ̄ij ◦ σj

}
< Id, i, j = {1, . . . , N}. (5.2)

In the next theorem, we show that if Assumption 2 holds and maxi σ
−1
i is concave (in order to employ

Jensen’s inequality), then one can compute a CBF for the interconnected system Σ as in Definition 3.2 in a
compositional fashion.
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Theorem 5.2. Consider the interconnected POMDP Σ = I(Σi, . . . ,ΣN ) induced by N ∈ N≥1 subsystems Σi.

Suppose that for each Σi there exits an estimator Σ̂i together with a corresponding LCBF Bi as defined in
Definition 3.1 with initial and unsafe sets Xai and Xbi , respectively. If Assumption 2 holds and maxi σ

−1
i for

σi as in (5.2) is concave and
max
i

{σ−1
i (γ̄i)} < max

i
{σ−1

i (λ̄i)}, (5.3)

then function B(x, x̂) defined as
B(x, x̂) := max

i

{
σ−1
i (Bi(xi, x̂i))

}
, (5.4)

is a CBF for the augmented system Σ̃ = [Σ ; Σ̂] with initial and unsafe sets Xa =
∏N

i=1Xai , Xb =
∏N

i=1Xbi ,
respectively.

The proof of Theorem 5.2 is provided in Appendix.

Similarly, we propose the next theorem to compute a CBF for an interconnected system Σ as in Definition
3.10 in a compositional way based on LCBFs of subsystems.

Theorem 5.3. Consider an interconnected POMDP Σ = I(Σi, . . . ,ΣN) induced by N ∈ N≥1 subsystems Σi.

Suppose that for each Σi there exits an estimator Σ̂i together with a corresponding LCBF Bi as defined in
Definition 3.9 with initial and unsafe sets Xai and Xǫ

bi
, respectively. If Assumption 2 holds and maxi σ

−1
i for

σi as in (5.2) is concave and
max
i

{σ−1
i (γ̄i)} < max

i
{σ−1

i (λ̄i)}, (5.5)

then function B(x) defined as
B(x) := max

i

{
σ−1
i (Bi(xi))

}
, (5.6)

is a CBF for the estimator Σ̂ = I(Σ̂i, . . . , Σ̂N ) with initial and unsafe sets Xa =
∏N

i=1Xai , X
ǫ
b =

∏N

i=1X
ǫ
bi
,

respectively.

The proof of Theorem 5.3 follows the same reasoning as that of Theorem 5.2 and is omitted here due to lack
of space.

Finally, we provide an approach to compositionally construct an SSF for an interconnected POMDP Σ based
on SPSFs of its subsystems. Note that the constructed SSF is one of the main ingredients used in Theorem
3.11. First, we raise the following small-gain assumption.

Assumption 3. Assume that K∞ functions µij defined as

µ̄ij(s) :=

{
µ̄i(s), if i = j,

̺i(ε
−1
j (s)), if i 6= j,

satisfy
µ̄i1i2 ◦ µ̄i2i3 ◦ · · · ◦ µ̄ir−1ir ◦ µ̄iri1 < Id, (5.7)

for all sequences (i1, . . . , ir) ∈ {1, . . . , N}r and r ∈ {1, . . . , N}.

The small-gain condition (5.7) implies the existence of K∞ functions ζi > 0 [Rüf10, Theorem 5.5], satisfying

max
i,j

{
ζ−1
i ◦ µ̄ij ◦ ζj

}
< Id, i, j = {1, . . . , N}. (5.8)

In the next proposition, we show that if Assumption 3 holds and maxi ζ
−1
i is concave, then we can composi-

tionally construct an SSF for an interconnected system based on SPSFs of its subsystems.

Proposition 5.4. Consider an interconnected POMDP Σ = I(Σi, . . . ,ΣN ) induced by N ∈ N≥1 subsystems

Σi. Suppose that for each Σi there exits an estimator Σ̂i together with a corresponding SPSF φi(xi, x̂i). If
Assumption 3 holds and maxi ζ

−1
i for ζi as in (5.8) is concave, then the function φ(x, x̂) defined as

φ(x, x̂) := max
i

{
ζ−1
i (φi(xi, x̂i))

}
,
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is an SSF from Σ̂ = I(Σ̂i, . . . , Σ̂N ) to Σ = I(Σi, . . . ,ΣN ), as defined in Definition 3.7, with

µ(s) = max
i,j

{
ζ−1
i ◦ µ̄ij ◦ ζj(s)

}
, i, j = {1, . . . , N},

c = max
i
ζ−1
i (c̄i).

The proof of Proposition 5.4 follows the same reasoning as that of Theorem 5.2 and is omitted here.

6. Computation of LCBF

In this subsection, we provide a systematic approach to search for LCBFs and the corresponding control policies
for subsystems. The proposed approach is based on the sum-of-squares (SOS) optimization problem [Par03], in
which LCBF is restricted to be non-negative which can be written as a sum of squares of different polynomials.
To do so, we need to raise the following assumption.

Assumption 4. The POMDP Σ = (X,U,W, ς1, f, Y1, Y2, h1, h2, ς2) has a continuous state set X ⊆ R
n and

continuous external and internal input sets U ⊆ R
m and W ∈ R

p. Moreover, the transition map f : X ×
U ×W × Vς1 → X is a polynomial function of its arguments. We also assume that the internal output map
h1 : X → Y1 and K∞ functions α and ρ are polynomial.

Under Assumption 4, one can reformulate conditions of Definition 3.1 and Definition 3.9 to an SOS optimization
problem in order to search for a polynomial LCBF Bi(·, ·) and Bi(·), and their corresponding control policies.
In the following Lemmas, SOS formulations are provided.

Lemma 6.1. Suppose Assumption 4 holds and sets Xa, Xb, X,W can be defined by vectors of polynomial
inequalities Xa = {x ∈ R

n | ga(x) ≥ 0}, Xb = {x ∈ R
n | gb(x) ≥ 0}, X = {x ∈ R

n | g(x) ≥ 0}, and
W = {w ∈ R

p | gw(w) ≥ 0}, where the inequalities are defined element-wise. Suppose there exists a sum-

of-square polynomial B(x, x̂), constants γ̄, ψ̃ ∈ R≥0, λ̄ ∈ R>0, 0 < κ̃ < 1, functions α ∈ K∞, ρ̃ ∈ K∞ ∪ {0},
polynomials lυj

(x̂, ŵ) corresponding to the jth input in υ(k) = (υ1(k), υ2(k), . . . , υm(k)) ∈ U ⊆ R
m, and vectors

of sum-of-squares polynomials lz(x), l̂z(x̂) for z ∈ {0, 1, 2, 3}, and lw(w), l̂w(ŵ), of appropriate dimensions such
that the following expressions are sum-of-square polynomials:

B(x, x̂)−
[
lT0 (x) l̂

T
0 (x̂)

] [g(x)
g(x̂)

]
− α(

[
h1(x)
h1(x̂)

]T [
h1(x)
h1(x̂)

]
), (6.1)

− B(x, x̂)−
[
lT1 (x) l̂T1 (x̂)

] [ga(x)
ga(x̂)

]
+ λ̄, (6.2)

B(x, x̂)−
[
lT2 (x) l̂T2 (x̂)

] [gb(x)
g(x̂)

]
+ γ̄, (6.3)

−E

[
B
(
f(x(k), υ(k), w(k), ς1(k)), f̂(x̂(k), υ(k), ŵ(k), y2(k))

)
,
∣∣ x(k), x̂(k), υ(k), w(k), ŵ(k)

]
+ κ̃B(x(k), x̂(k))

+ ρ̃(

[
w(k)
ŵ(k)

]T [
w(k)
ŵ(k)

]

2p
) + ψ̃

m∑

j=1

(υj(k)− lυj
(x̂(k), ŵ(k)))−

[
lT3 (x(k)) l̂T3 (x̂(k)

] [g(x(k))
g(x̂(k))

]

−
[
lTw(w(k)) l̂Tw(ŵ(k))

] [gw(w(k))
gw(ŵ(k))

]
,

(6.4)
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where p is the dimension of the internal inputs w and ŵ. Then B(x, x̂) satisfies conditions (3.2)-(3.15) in
Definition 3.1 and υ(k) = [lυ1(x̂(k), ŵ(k)); . . . ; lυm

(x̂(k)ŵ(k))] is the corresponding safety controller, with

κ̄ =Id − (Id − π1) ◦ (Id − κ̃),

ρ =(Id + π2) ◦ (Id − κ̃)−1 ◦ π−1
1 ◦ π3 ◦ ρ̃,

ψ̄ =(Id + π−1
2 ) ◦ (Id − κ̃)−1 ◦ π−1

1 ◦ π3 ◦ (π3 − Id)
−1 ◦ (ψ̃),

where π1, π2, π3 being some arbitrarily chosen K∞ functions so that (Id − π1) ∈ K∞, and (π3 − Id) ∈ K∞.

The proof follows the same argument as in [JSZ20, Lemma 5.9], and is omitted here due to lack of space.

Remark 6.2. Inequalities (3.2) and (3.5) consider infinity norms over
[
h1(x);h1(x̂)

]
and

[
w; ŵ

]
, respectively.

Since such norms cannot be expressed as polynomials, we convert infinity norms to Euclidean ones and that
is the reason constant 2p appears as a denominator in (6.4).

We now state another lemma for the computation of LCBF as in Definition 3.9.

Lemma 6.3. Suppose Assumption 4 holds and sets Xa, X
ǫ
b , X,W, Y2 can be defined by vectors of polynomial

inequalities Xa = {x ∈ R
n | ga(x) ≥ 0}, Xǫ

b = {x ∈ R
n | gǫb(x) ≥ 0}, X = {x ∈ R

n | g(x) ≥ 0}, W = {w ∈ R
p |

gw(w) ≥ 0}, and Y2 = {y2 ∈ R
q | gy(y2) ≥ 0} where the inequalities are defined element-wise. Suppose there

exists a sum-of-square polynomial B(x), constants γ̄, ψ̃ ∈ R≥0, λ̄ ∈ R>0, 0 < κ̃ < 1, functions α ∈ K∞, ρ̃ ∈
K∞ ∪{0}, polynomials lυj

(x̂, ŵ) corresponding to the jth input in υ(k) = (υ1(k), υ2(k), . . . , υm(k)) ∈ U ⊆ R
m,

and vectors of sum-of-squares polynomials lz(x) for z ∈ {0, 1, 2}, l̂3(x̂), l̂w(ŵ) and ly(y2) of appropriate
dimensions such that the following expressions are sum-of-square polynomials:

B(x)− lT0 (x)g(x) − α(h1(x)
Th1(x)), (6.5)

−B(x)− lT1 (x)ga(x) + λ̄, (6.6)

B(x)− lT2 (x)g
ǫ
b(x) + γ̄, (6.7)

−E

[
B
(
f̂(x̂(k), υ(k), ŵ(k), y2(k))

)
| x̂(k), υ(k), ŵ(k)

]
+ κ̃B(x̂(k)) + ρ̃(

ŵT (k)ŵ(k)

p
) + ψ̃

−
m∑

j=1

(υj(k)− lυj
(x̂(k), ŵ(k)))− l̂T3 (x̂(k))g(x̂(k))− l̂Tw(ŵ(k))gw(ŵ(k))− lTy (y2(k))gy(y2(k)), (6.8)

where p is the dimension of the internal input w. Then B(x̂) satisfies conditions (3.12)-(3.15) in Definition
3.9 and υ(k) = [lυ1(x̂(k), ŵ(k)); . . . ; lυm

(x̂(k), ŵ(k))] is the corresponding safety controller, where κ̄, ρ, ψ̄ can

be acquired based on κ̃, ρ̃, ψ̃ similar to Lemma 6.1.

Remark 6.4. In order to compute the sum-of-square polynomials B(x, x̂) and B(x) fulfilling reformulated
conditions (6.1)-(6.4), and (6.5)-(6.8), one can employ existing software tools such as SOSTOOLS [PPP02]
together with a semidefinite programming solver such as SeDuMi [Stu99].

7. Case Study

In this section, we illustrate our proposed results by applying them to an adaptive cruise control (ACC) system
consisting of N vehicles in a platoon (see Fig. 2). This model is adapted from [SSGB17]. The evolution of
states can be described by the interconnected PO-dt-SCS

Σ :

{
x(k + 1) = Āx(k) + B̄υ(k) + ς1(k),

y(k) = C̄x(k) + ς2(k),
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Figure 2. Platoon model for N = 1000 vehicles.

where Ā is a block matrix with diagonal blocks A, and off-diagonal blocks Ai(i−1) = Aw, i ∈ {2, . . . , N}, where

A =

[
1 −1
0 1

]
, Aw =

[
0 τ
0 0

]
,

with τ = 0.01 being the interconnection degree, and all other off-diagonal blocks being zero matrices of
appropriate dimensions. Moreover, B̄ is a partitioned matrix with main diagonal blocks B = [0 ; 1], and all
other off-diagonal blocks being zero matrices of appropriate dimensions. The matrix C̄ is a partitioned matrix
with main diagonal blocks C = [1 ; 0]T and all other off-diagonal blocks being zero matrices of appropriate
dimensions. Moreover, x(k) = [x1(k); . . . ;xN (k)], υ(k) = [υ1(k); . . . ; υN (k)], ς1(k) = [ς11(k); . . . ; ς1N (k)], and
ς2(k) = [ς21(k); . . . ; ς2N (k)]. Let us consider each individual vehicle Σi described as

Σi :





xi(k + 1) = Axi(k) +Bυi(k) +Awwi(k) + ς1i(k),

y1i(k) = C1xi(k),

y2i(k) = C2xi(k) + ς2i ,

where y1i(k) = y1i(i+1)
(k) = C1xi(k), i ∈ {1, . . .N}, (with C1 = [0 ; 1] and y1N(N+1)

= 0) and C2 = C. One can

readily verify that Σ = I(Σi, . . . ,ΣN ), where wi(k) = [0;wi(i−1)(k)], i ∈ {1, . . . , N}, (with wi(i−1) = y1(i−1)i
=

C1xi−1, w1,0 = 0). The state of the i-th vehicle is defined as xi = [di; vi], for i ∈ {1, . . . , N}, where di denotes
the relative distance between the vehicle i and its proceeding vehicle i − 1 (the 0-th vehicle represents the
leader), vi is its velocity in the leader’s frame, and υi ∈ [−1, 1] is the bounded control input. The overall
control objective in ACC is for each vehicle to adjust its speed in order to maintain a safe distance from the
vehicle ahead [JF18]. For the system Σi, we design a proper estimator of the following form

Σ̂i :

{
x̂i(k + 1) = Ax̂i(k) +Bυi(k) +Awŵi(k) +K(y2i(k)− C2x̂i(k)),

ŷ1i(k) = C1x̂i(k),

where K = [1.7;−0.72] is the estimator gain. We consider a network of N = 1000 vehicles where the regions
of interest for each vehicle are X ∈ [0, 3.5]× [−2, 3], Xa ∈ [1, 1.5]× [−0.4, 0.4], and Xb ∈ [0, 0.5]× [−2,−1.5]∪
[3, 3.5]×[2.5, 3]. Now, for each vehicle we compute LCBFs while compositionally synthesizing safety controllers
for a bounded-time horizon. We construct LCBFs using the two methods introduced in Section 3 and employ
the software SOSTOOLS to search for LCBFs as described in Section 6. According to Section 3.1, we compute
the LCBF Bi(xi, x̂i) of an order 4 and its corresponding controller as the following:

υi = 0.06d̂i − 0.7v̂i + 0.02v̂i−1 − 0.07, (7.1)

for i ∈ {1, . . . , N}. Moreover, the corresponding constants and functions in Definition 3.1 are quantified as
αi(s) = 10−5s, s ∈ R≥0, γ̄i = 0.12, λ̄i = 1, κ̄i = 0.95, ρi(s) = 2×10−8s, s ∈ R≥0, ψ̄i = 0.001. Now, we check the
small gain condition (5.1) that is required for the compositionality result. By taking σi(s) = s, i ∈ {1, . . . , N},
the condition (5.1), and as a result the condition (5.2) are always satisfied without any restriction on the
number of vehicles. Hence, B(x, x̂) = maxi Bi(xi, x̂i) is a CBF for Σ satisfying conditions in Definition 3.2
with γ = 0.12, λ = 1, κ = 0.95, ψ = 0.001. By employing Theorem 3.4, one can guarantee that states of the
interconnected system staring from Xa remain in the safe set X\Xb within the time horizon Td = 10 with
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Figure 3. Closed-loop state (distance and velocity) and input trajectories of a representative
vehicle with different noise realizations in a network of 1000 vehicles under controller (7.1).

a probability of at least 87.12%. Closed-loop state and input trajectories of a representative vehicle with
different noise realizations are illustrated in Fig. 3 with only 10 trajectories.

We now construct the LCBF Bi(x̂i) of an order 4 for the estimator, as described in Section 3.2, and compute
its corresponding controller as

υi = 0.09d̂i − v̂i + 0.03v̂i−1 − 0.09, (7.2)

for i ∈ {1, . . . , N}. The corresponding constants and functions in Definition 3.9 are quantified as αi(s) =
10−5s, s ∈ R≥0, γ̄i = 0.12, λ̄i = 1, κ̄i = 0.95, ρi(s) = 2×10−8s, s ∈ R≥0, ψ̄i = 0.001. Similar to the first method,
we check the small gain condition (5.1) for the compositionality result. By taking σi(s) = s, i ∈ {1, . . . , N}, the
condition (5.1), and as a result the condition (5.2) are both satisfied. Hence, B(x̂) = maxi Bi(x̂i) is a CBF for
Σ satisfying conditions in Definition 3.10 with γ = 0.12, λ = 1, κ = 0.95, ψ = 0.001. By employing the result of
Theorem 3.4, one can guarantee that the states of the estimator staring from Xa will not reach Xǫ

b within the
time horizon Td = 10 with a probability of at least 87.12%. Now, in order to compute the exit probability bound
for the interconnected system, we search for an SPSF of a quadratic form φi(xi, x̂i) = (xi − x̂i)

TM(xi − x̂i),
whereM is a positive-definite matrix. Since the dynamic of the system is linear, the conditions in Definition 3.6
reduce to solving the following matrix inequality:

(1 + 2/π̃)(A −KC2)
TM(A−KC2) ≤ µ̄M,

where K is the estimator gain, and π̃ > 0. By using the tool YALMIP [Lof04], we compute M as

M =

[
0.0257 0.0259
0.0259 0.0262

]
,

with π̃ = 1. The functions and constants associated with this SPSF are computed by following the compo-
sitional construction method for linear systems introduced in [LSZ20d, Theorem 6.10] as ε(s) = 0.3s2, s ∈
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Figure 4. Closed-loop state (distance and velocity) and input trajectories of a representative
vehicle with different noise realizations in a network of 1000 vehicles under controller (7.2).

R≥0, µ̄ = 0.4, ̺(s) = 0.002s2, s ∈ R≥0, c̄ = 10−5. Hence, φ(x, x̂) = maxi φi(xi, x̂i) is an SSF from Σ̂ to Σ satis-
fying the conditions in Definition 3.7 with ε(s) = 0.3s2, s ∈ R≥0, µ = 0.4, c = 10−5, ǫ = 0.01. An upper bound
of 3.61% on the probability of the estimation accuracy is computed according to Theorem 3.8 within the time
horizon Td = 10. Employing Theorem 3.11, the probability that the solution process of the system starting
from the initial region Xa and not reaching Xb is at least 83.51%. Closed-loop state and input trajectories of
a representative vehicle with different noise realizations are illustrated in Fig. 4.

8. Conclusions

In this paper, we proposed a compositional approach based on control barrier functions for the synthesis
of safety controllers for networks of POMDP by utilizing small-gain type reasoning. The proposed scheme
provides an upper bound on the probability that the interconnected system reaches an unsafe region in a
finite-time horizon. In this respect, we first quantified probability bounds without any prior information of
the estimation accuracy. This is achieved by constructing local barrier functions over an augmented system
composed of subsystems and their corresponding estimators. Alternatively, we formulated local barrier func-
tions based on only estimators’ dynamics and computed the exit probability by utilizing the probability bound
on the estimation accuracy computed via notions of stochastic simulation functions. We finally demonstrated
the effectiveness of our proposed results by applying them to an adaptive cruise control problem.
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9. Appendix

Proof. (Theorem 3.4) According to condition (3.7), Xb × X ⊆ {(x, x̂) ∈ X × X | B(x, x̂) ≥ λ}. Then we
have

P
[
xaυ(k) ∈ Xb ∧ x̂âυ(k) ∈ X for some k ∈ [0, Td]

∣∣ a, â, υ
]

≤ P
[

sup
0≤k≤Td

B(xaυ(k), x̂âυ(k)) ≥ λ
∣∣ a, â, υ

]
≤ δ. (9.1)

The proposed bounds in (3.9) follow directly by applying [Kus65, Theorem 3, Chapter III] to the above
inequality and employing conditions (3.8) and (3.6), respectively. Inequality (9.1) is obtained by utilizing the
result of [Kus67, Theorem 1]. Now we get

P
[
xaυ(k) ∈ Xb ∧ x̂âυ(k) ∈ X for some k ∈ [0, Td]

∣∣ a, â, υ
]

≤ P
[
xaυ(k) ∈ Xb for some k ∈ [0, Td] | a, υ

]

+ P
[
x̂âυ(k) ∈ X for some k ∈ [0, Td]

∣∣ â, υ
]

− P
[
xaυ(k) ∈ Xb ∨ x̂âυ(k) ∈ X for some k ∈ [0, Td]

∣∣ a, â, υ
]
.

Since, the second and last terms trivially hold with probability 1, one has

P
[
xaυ(k) ∈ Xb ∧ x̂âυ(k) ∈ X for some k ∈ [0, Td]

∣∣ a, â, υ
]

≤ P
[
xaυ(k) ∈ Xb for some k ∈ [0, Td]

∣∣ a, υ
]
.

Now, since the right term of the conjunction (i.e., ∧) holds for all time, the inequality above becomes an
equality and one gets P

[
xaυ(k) ∈ Xb for some k ∈ [0, Td]

∣∣ a, υ
]
≤ δ which concludes the proof. �
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E

[
B(f(x(k), υ(k), ς1(k)), f̂(x̂(k), υ(k), y(k)))

∣∣ x(k), x̂(k), υ(k)
]

= E

[
max
i

{
σ−1
i (Bi(fi(xi(k),υi(k),wi(k),ς1i(k)),f̂i(x̂i(k),υi(k),ŵi(k),y2i(k))))

} ∣∣x(k),x̂(k),υ(k),w(k),ŵ(k)
]

≤ max
i

{
σ−1
i (E

[
Bi(fi(xi(k),υi(k),wi(k), ς1i(k)),f̂i(x̂i(k),υi(k),ŵi(k),y2i(k)))

∣∣ x(k),x̂(k),υ(k),w(k), ŵ(k)
]
)
}

= max
i

{
σ−1
i (E

[
Bi(fi(xi(k),υi(k),wi(k),ς1i(k)),f̂i(x̂i(k),υi(k),ŵi(k),y2i(k)))

∣∣xi(k),x̂i(k),υi(k),wi(k),ŵi(k)
]
)
}

≤ max
i

{
σ−1
i (max{κ̄i(Bi(xi(k), x̂i(k))), ρi(‖

[
wi(k)
ŵi(k)

]
‖

2

), ψ̄i})
}

= max
i

{
σ−1
i (max{κ̄i(Bi(xi(k), x̂i(k))), ρi(max

j,j 6=i
‖

[
wij(k)
ŵij(k)

]
‖

2

), ψ̄i})
}

= max
i

{
σ−1
i (max{κ̄i(Bi(xi(k), x̂i(k))), ρi(max

j,j 6=i
‖

[
y1ji(k)
ŷ1ji(k)

]
‖

2

), ψ̄i})
}

≤ max
i

{
σ−1
i (max{κ̄i(Bi(xi(k), x̂i(k))), ρi(max

j,j 6=i
‖

[
h1j (xj(k))
h1j (x̂j(k))

]
‖

2

), ψ̄i})
}

≤ max
i

{
σ−1
i (max{κ̄i(Bi(xi(k), x̂i(k))), ρi(max

j,j 6=i
{α−1

j (Bj(xj(k), x̂j(k)))}), ψ̄i})
}

= max
i,j

{
σ−1
i (max{κ̄ij(Bi(xi(k), x̂i(k))), ψ̄i})

}
= max

i,j

{
σ−1
i (max{κ̄ij ◦ σj ◦ σ

−1
j (Bj(xj(k), x̂j(k))), ψ̄i})

}

≤ max
i,j,l

{
σ−1
i (max{κ̄ij ◦ σj ◦ σ

−1
l (Bl(xl(k), x̂l(k))), ψ̄i})

}

= max
i,j

{
σ−1
i (max{κ̄ij ◦ σj(B(x(k), x̂(k))), ψ̄i})

}
= max{κ(B(x(k), x̂(k))), ψ̄

}
. (9.2)

Proof. (Theorem 3.8) Since φ is a stochastic pseudo-simulation function from Σ̂ to Σ, one has

P

[
sup

0≤k≤Td

‖xaυ(k)− x̂âυ(k)‖ ≥ ǫ
∣∣ a, â, υ

]

= P

[
sup

0≤k≤Td

ε(‖xaυ(k)− x̂âυ(k)‖) ≥ ε(ǫ)
∣∣ a, â, υ

]

≤ P

[
sup

0≤k≤Td

φ(xaυ(k), x̂âυ(k)) ≥ ε(ǫ)
∣∣ a, â, υ

]
≤ θ.

The equality holds due to the fact that ε is a K∞ function. The second inequality holds based on the first
condition of Definition 3.7, and the last inequality follows from the result in [Kus65, Theorem 1]. �

Proof. (Theorem 5.2) We first show that conditions (3.6) and (3.7) in Definition 3.2 hold. For any (x, x̂) ∈

Xa ×Xa, with Xa =
∏N

i=1Xai , and from (3.3), we have

B(x, x̂) = max
i

{
σ−1
i (Bi(xi, x̂i))

}
≤ max

i

{
σ−1
i (γ̄i)

}
= γ,

and simply for any (x, x̂) ∈ Xb ×X , with Xb =
∏N

i=1Xbi , X =
∏N

i=1Xi and from (3.4), we have

B(x, x̂) = max
i

{
σ−1
i (Bi(xi, x̂i))

}
≥ max

i

{
σ−1
i (λ̄i)

}
= λ,

satisfying conditions (3.3) and (3.4) with γ = maxi
{
σ−1
i (γ̄i)

}
and λ = maxi

{
σ−1
i (λ̄i)

}
. Moreover, λ > γ

according to (5.3). Now we show that condition (3.8) holds, as well. Let κ(s) = maxi,j{σ
−1
j ◦ κ̄ij ◦ σj(s)}. It

follows from (5.2) that κ < Id. Since maxiσ
−1
i is concave, one can readily acquire the chain of inequalities in

(9.2) using Jensen’s inequality. Hence, B is a CBF for the augmented system Σ̃ = [Σ; Σ̂], which completes the
proof. �
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