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Abstract—We study the problem of distributed cooperative
learning, where a group of agents seeks to agree on a set of
hypotheses that best describes a sequence of private observations.
In the scenario where the set of hypotheses is large, we propose a
belief update rule where agents share compressed (either sparse
or quantized) beliefs with an arbitrary positive compression
rate. Our algorithm leverages a unified communication rule that
enables agents to access wide-ranging compression operators
as black-box modules. We prove the almost sure asymptotic
exponential convergence of beliefs around the set of optimal
hypotheses. Additionally, we show a non-asymptotic, explicit,
and linear concentration rate in probability of the beliefs on
the optimal hypothesis set. We provide numerical experiments
to illustrate the communication benefits of our method. The
simulation results show that the number of transmitted bits can
be reduced to 5 − 10% of the non-compressed method in the
studied scenarios.

Index Terms—Distributed algorithms, compressed communi-
cation, algorithm design and analysis, Bayesian update.

I. INTRODUCTION

During the past decade, the analysis of distributed systems

has seen a dramatic rise in interest. Fundamental limitations

and structural properties of distributed systems such as limited

memory, communication bandwidth, and lack of a central

coordinator require coordination by distributed information

sharing. Analysis of social networks as well as sensor net-

works [1]–[4], distributed inference [5]–[7], and multi-agent

control [8], [9] are applications of distributed learning.

We consider the problem of decision-making in a network,

where agents observe a stream of private signals and exchange

their beliefs to agree on hypothesis set that best describes their

observations. Fully Bayesian solutions require agents to have

a complete knowledge of the whole distributed system, such

as each other’s likelihood functions [10], [11]. On the other

hand, locally Bayesian or non-Bayesian methods [12]–[14]

alternatively suggest agents (i) update their beliefs internally

using the Bayes rule and (ii) combine their beliefs locally

among neighbors using a fusion rule.

A broad line of research has been developed to address dif-

ferent aspects of social/cooperative learning [15]–[17], among

which efficient communication is one of the most fundamental

challenges [18]–[20]. In such decentralized problems, agents

are restricted only to access the information from their local

neighbors. Several works investigated non-Bayesian learn-

ing from various perspectives for fixed undirected networks.

Likewise, other communication setups such as directed, non-

connected, and time-varying networks [21]–[23], as well as

adaptive update rules [24], [25] have been explored thoroughly.

Conventional non-Bayesian algorithms require agents to

share their beliefs on all hypotheses with their neighbors [4],

[13], [26]. This, however, imposes large communication loads

should the set of hypotheses be large. Similarly, the idea

of quantized communication has been extensively studied

previously [27]–[30]. Several methods have been recently

proposed to address the communication bottlenecks over the

networks [31]–[35]. In social learning moreover, it may not be

crucial that agents exchange all their beliefs with each other;

instead, a set of compressed messages could be shared through

the network. Works in [36] and [37] propose algorithms

with a compressed message sharing with the assumption of

a unique common parameter locally optimal for all agents.

Furthermore, these algorithms consider unweighted mixing

matrices for communication besides specific sparsification and

quantization methods. More importantly, no non-asymptotic

analysis is available even under those stronger assumptions. In

this paper, we work with milder assumptions such as weighted

networks and conflicting hypotheses, i.e., the set of parameters

that best describes all agents’ observations (on average) may

not be locally optimal for all agents. We furthermore seek

to provide the first non-asymptotic analysis for non-Bayesian

learning with compressed communication. Besides, our al-

gorithm provides a unified framework that accommodates a

wide range of compression operators (Section II). In [38],

authors study the possibility of answering binary questions

about a particular hypothesis by sending a subset of beliefs.

They propose an algorithm with partial information sharing

to reduce communication. In contrast, we will present a

more general approach that contains various quantization and

sparsification operators.

This paper proposes a distributed non-Bayesian algorithm

for social learning where agents exchange their compressed

beliefs. The core of our algorithm is inspired by CHOCO-

GOSSIP [33], but we develop a modified version of their

results to show convergence in our algorithm. Our proposed

algorithm inherits CHOCO’s benefits like arbitrary compres-

sion rate and mild assumptions on the quantizer.

In summary, the contributions of this paper are threefold:

• We propose a novel algorithm for non-Bayesian dis-

tributed learning with (possibly) arbitrary compressed

communication per round. Our algorithm follows a uni-

fied consensus mechanism covering various compression

operators, including sparsification and quantization func-
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tions. Thus, it provides a simple and general communi-

cation rule for agents to leverage a proper compression

operator as a black-box module. We also show a memory-

efficient version of the algorithm.

• We provide a non-asymptotic, explicit, and linear con-

vergence rate of beliefs for our algorithm in probability.

We work under the conflicting hypotheses setup, where

optimal hypotheses of each agent locally need not be

the optimal hypotheses of the network. We also prove

exponential asymptotic convergence of the beliefs around

the set of optimal hypotheses almost surely.

• Finally, we show the communication advantages of our al-

gorithm through numerical experiments on various com-

pression operators and multiple network topologies.

The remainder of this paper is organized as follows. In

Section II, we describe the problem setup and state our main

algorithm and results. In Section III, we prove the almost

sure asymptotic exponential convergence rate for the proposed

algorithm. Likewise, we provide the non-asymptotic conver-

gence rate in probability for our algorithm in Section IV. In

Section V, we illustrate the proposed algorithm via numerical

experiments. Finally, we end with concluding remarks and

discussing future works in Section VI.

Notation: We write [n] to denote the set {1, . . . , n}. We use

the notation of bolding for vectors and matrices. For a matrix

A ∈ R
n×n, we write [A]ij or Aij to denote the entry in the

i-th row and j-th column. We use In for the identity matrix

of size n× n as well as 1n for the vector of all one with size

n where we drop the subscript for brevity. We refer to agents

and time by subscripts and superscripts, respectively. We write

λi(A) to denote the i-th eigenvalue of matrix A in terms

of magnitude where |λ1(A)| ≥ |λ2(A)| ≥ · · · ≥ |λn(A)|. For

arbitrary vectors x,y ∈ R
n, logx, x.y, and x/y denote

element-wise log, product, and division, respectively. ‖x‖
denotes 2-norm of vector x.

II. PROBLEM SETUP AND MAIN RESULTS

We begin by describing the communication network struc-

ture, observation model, and distributed non-Bayesian method

for the social learning problem. We state the corresponding

optimization formulation and discuss its properties. We then

explain the properties of our desired compression operators

and introduce some examples that satisfy those properties.

We further present our algorithm and provide a detailed

explanation for it. Finally, we present our two main theorems

(asymptotic and non-asymptotic convergence) along with the

assumption that guarantees the underlying results.

Communication Network Structure: We consider a group

of n agents interacting over a fixed, undirected, and connected

communication network G = {[n], E} where E ⊂ [n]× [n] is

the set of edges. If there exists an edge between agent i
and agent j, they may communicate to each other, i.e., send

and receive information through the corresponding link. We

also consider an arbitrary doubly stochastic and symmet-

ric mixing matrix A compliant with network G such that

Aij = 0 for (i, j) /∈ E with positive diagonal entries, thus

1 = λ1(A) > |λ2(A)|. Let δ , 1− |λ2(A)| denote the spec-

tral gap of A which is in interval (0, 1]. Given the description

of the network, we next formally describe the observation

model along with the social learning problem and discuss its

formal objective function.

Social Learning Problem: Let each agent i ∈ [n] observe

a sequence of i.i.d. random variables S1
i , S

2
i , . . . with real-

izations s1i , s
2
i , . . . over the course of time. The underlying

random variables St
i , for all t ≥ 1, take values in some

measurable space (Si,Ai), where Si is the realization space

and Ai is the corresponding σ-algebra. We assume that random

variables {St
i} are independent and identically distributed

according to a common unknown distribution (measure) fi
on (Si,Ai), i.e., St

i ∼ fi, for all t. Let Θ = {θ1, θ2, . . . , θm}
denote a set of m parameters (hypotheses) which in social

learning is referred to as the possible states of the world. We

also assume that each agent i knows a likelihood statistical

model {ℓi (.|θk)}mk=1, conditional on the set of parameters

Θ, where ℓi (.|θk) is a probability distribution on Si, for

all k ∈ [m]. We additionally assume that the probability

distributions are independent across the agents. In this setup,

we do not require that the existence of a single (unique) θ ∈ Θ
such that ℓi (.|θ) = fi(.) almost everywhere, for all i ∈ [n].
For an agent i ∈ [n] and a hypothesis θ ∈ Θ, we denote

P
θ
i =

⊗∞
t=1 ℓi (.|θ) as the probability measure of the sequence

of observed signals
(
s1i , s

2
i , . . .

)
. We therefore use Eθ[.] to

denote the joint expectation operator associated with measures

P
θ
1,P

θ
2, . . . ,P

θ
n. We now describe the objective function and

then introduce the distributed non-Bayesian method.

Given the described setup above, we now formally state

the set optimal hypotheses and the corresponding objective

function for this problem. The set of agents collaboratively

try to solve the following optimization problem:

Θ⋆ = argmin
θ∈Θ

F (θ) ,
1

n

n∑

i=1

DKL (fi‖ℓi (.|θ)) , (1)

where DKL (fi‖ℓi (.|θ)) is Kullback-Leibler (KL) divergence

between the unknown distribution fi and the conditional

distribution ℓi (.|θ), Θ⋆ is the set of optimal parameters. We

denote F ⋆ to be the optimal objective value, i.e., F ⋆ = F (θw)
for an arbitrary θw ∈ Θ⋆. The objective in Eq. (1) incorporates

the scenario with conflicting hypotheses and does not impose

the existence of any θ such that ℓi (.|θ) = fi, for all i ∈ [n].
In other words, the above optimization problem returns a

subset of Θ that best describes the unknown distributions

fi, on average. This optimization problem does not require

any optimal parameter θw ∈ Θ⋆ to be also locally optimal

for all agents i ∈ [n], thus some level of resiliency to noisy

scenarios (see [26, Fig. 7]). We refer the reader to [1], [26]

for the comparison between the distributed and centralized

frameworks.

We now provide an explanation of the distributed non-

Bayesian learning approach using the concept of beliefs.

Distributed Non-Bayesian Learning: Each agent i ∈ [n]
starts with a prior probability distribution, namely the set

of prior beliefs µ̃0
i = [µ̃0

i (θ1), . . . , µ̃
0
i (θm)]⊤, on the finite
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measurable space (Θ, 2Θ). At round (t + 1), for t ≥ 0, each

agent i updates its probability measure µ̃t+1
i , based on (i)

its recently observed signal st+1
i , and (ii) (some information

of) the probability distributions µ̃t
j , for all j ∈ [n] such that

(i, j) ∈ E , using a Bayesian-type update rule. We refer to

such methods as non-Bayesian or locally Bayesian methods.

See [1], [26], [36] for more detailed descriptions.

We hitherto introduced the objective function and gave an

outline of distributed non-Bayesian learning. Before presenting

a detailed explanation of our algorithm, we first describe our

interesting class of compression operators.

Compression Operator: In classical non-Bayesian frame-

works, agents usually exchange their beliefs of dimension m
at each round. Thus, given b bits baseline for a floating-point

scalar, agent i has to send mb bits to each of its neighbors for

a single message. Our algorithm proposes compressing mes-

sages with a proper compression operator under a feedback-

error pipeline before communication. Here, we first introduce

our desired class of compression operators, and later we will

discuss our algorithm using it.

Inspired by works in [30], [33], [39], we consider a

class of randomized compression operators (potentially biased)

Q : Rm ×Z × (0, 1] → R
m, that satisfy

Eζ

[

‖Q(x, ζ, ω)− x‖2
]

≤ (1− ω) ‖x‖2 , ∀x ∈ R
m, (2)

where ω ∈ (0, 1] is the desired compression ratio, ζ is a

random variable with output space Z , and Eζ [.] indicates

the expectation over the internal randomness of the operator.

To be more specific, assume that (Z,F) is some measurable

space from which Q(.) takes samples according to a uniform

measure on the realizations. Also, note that realization ζ called

by Q(.) are independent across the time and agents. In other

words, assuming a sequence {xt
i} for each agent i ∈ [n], and

at any time t ≥ 0, the operator calls Q(xt
i, ζ

t
i, ω), where ζt

i

are all independent from each other. From here onwards, we

drop ζ, ω, and write Q(x) for brevity. With an abuse of the

notation, for a matrix X = [x1,x2, . . . ,xn]
⊤ of size n × m,

we denote Q(X) = [Q(x1), Q(x2), . . . , Q(xn)]
⊤ as the row-

wise compressed function with independent ζ1, ζ2, . . . , ζn and

a common corresponding ω. A wide range of compression

operators, containing both sparsification and quantization func-

tions, satisfy Eq. (2), including:

• randk or rand100ω%: Randomly selecting k out of m
coordinates and setting the rest to zero.

• topk or top100ω%: Selecting k out of m coordinates with

highest magnitude and setting the rest to zero.

• qsgdk bits: Rounding each coordinate of |x|/‖x‖ to one

of the u = 2k−1 − 1 quantization levels or zero (k − 1
bits), and one bit for the sign of the coordinate. The

quantization operator is defined as follows:

Q (x) = qsgdk bits (x) =
ω sign(x).‖x‖

u

⌊

u
|x|
‖x‖ + ζ

⌋

,

with ω =
(
1 + min

{
m/u2,

√
m/u

})−1
, (3)

where ζ∼[0, 1]m uniformly at random, and all operators

(sign(.), ⌊.⌋, and products) are element-wise.

TABLE I: Some example compression operators satisfying

Eq. (2) and their encoding bits, given b bits baseline for

floating-point scalars, and m-dimensional vectors. For randk
and topk, k ∈ [m] indicates the number of coordinates (out

of m) being transferred. For qsgdk bits, k ∈ [b] indicates the

number of bits by which we quantize each coordinate.

Q operator type ω encoding bits

randk sparsification k/m k (b+ logm)
topk sparsification k/m k (b+ logm)
qsgdk bits quantization Eq. (3) mk + b
full no compression 1 mb

Table I summarizes the compression ratio ω and the number

of bits required for encoding an m-dimensional message with

each of the above three operators. For a more comprehensive

list of operators (biased or unbiased), see [32], [40].

Remark 1 (Deterministic Compression). Compression oper-

ators such as topk and deterministic qsgdk bits
1, provide a

unique mapping given fixed x, ω. Thus, the following inequal-

ity holds for the class of deterministic operators (cf. Eq. (2)):

‖Q(x)− x‖2 ≤ (1− ω) ‖x‖2 , ∀x ∈ R
m. (4)

We are now ready to explain our algorithm, distributed non-

Bayesian learning with compressed communication.

Main Algorithm: Agent i begins with some prior beliefs

µ̃0
i , then at each round t+ 1 for all t ≥ 0, observing a new

signal and exchanging (some information of) its beliefs with

the neighbors, seeks to update its beliefs using a non-Bayesian

rule. We also denoted µ̃t
i as agent i’s beliefs (probability mea-

sure) at time t. We furthermore denote µt
i and µ̂

t
i , respectively

as beliefs without normalization and their approximation,

where µ0
i = µ̃0

i , and µ̂
0
i = 1m. Note that unlike µ̃t

i which

is a probability measure, the elements of µt
i or µ̂

t
i do not

add up to one. Classical methods for distributed non-Bayesian

learning require the agents to communicate all m beliefs

with their neighbors [1], [26]. We however propose an error-

feedback scheme inspired by [30], [33], [34], where in each

agent i ∈ [n] transmits some compressed version of the ratio

between µt
i and µ̂

t
i to its neighbors, at round (t+1) (for t ≥ 0).

This way, agent i’s neighbors can internally recover µ̂
t+1
i ,

i.e., the approximation of µt
i, and use it to update their µt+1

j

by a Bayesian rule. Our method is thoroughly described in

Algorithm 1 wherein Steps 3, 6, and 9 respectively specify the

compression procedure, approximation update, and Bayesian

update. Through Steps 3-7, agent i and its neighbors modify

their estimation of agent i’s beliefs. One can simply see that

as of Step 3, the communication can be reduced per round.

Note that in our proposed algorithm, the agents interact with

each other synchronously (i.e., in parallel). We emphasize this

fact, in the corresponding step of the pseudo-code.

We now summarize our algorithm with the following update

rule: for all i ∈ [n], and θ ∈ Θ,

µ̂t+1
i (θ) = µ̂t

i(θ) exp
{
Qθ
(
log
(
µt

i/µ̂
t
i

))}
, (5a)

1Deterministic quantization of each entry to its closest quantization level.
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Algorithm 1 Distributed Non-Bayesian Learning with Com-

pressed Communication

Input: initial beliefs µ̃0
i ∈ R

m, mixing matrix A, compression

ratio ω ∈ (0, 1], and learning stepsize γ ∈ (0, 1]
Procedure :

1: initialize µ̂
0
i := 1m, and µ0

i := µ̃0
i , for all i ∈ [n]

2: for t in 0, . . . , T − 1, in parallel for all i ∈ [n] do

3: qt
i := Q(logµt

i − log µ̂t
i)

4: for j ∈ [n] such that Aij > 0 (including j = i) do

5: Send qt
i and receive qt

j

6: for all θ ∈ Θ:

µ̂t+1
j (θ) = µ̂t

j(θ). exp
(
qtj(θ)

)

7: end for

8: Observe st+1
i

9: for all θ ∈ Θ:

µt+1
i (θ) = µt

i(θ)
n∏

j=1

(

µ̂t+1
j (θ)

µ̂t+1
i (θ)

)γAij

.ℓi
(
st+1
i |θ

)

10: µ̃t+1
i = 1

1⊤µ
t+1

i

µt+1
i

11: end for

Output: final beliefs µ̃T
i ∈ R

m, for all i ∈ [n]

µt+1
i (θ) = µt

i(θ)

n∏

j=1

(

µ̂t+1
j (θ)

µ̂t+1
i (θ)

)γAij

.ℓi(s
t+1
i |θ), (5b)

µ̃t+1
i (θ) = µt+1

i (θ)
/ m∑

k=1

µt+1
i (θk), (5c)

where γ ∈ (0, 1] is the learning stepsize, and Qθ indicates the

entry corresponding to θ (recall that the output of Q(.) is a

vector). The value of γ depends on the network topology δ
and the compression ratio ω. Figure 1 for example portrays the

interaction between 3 agents on a path network. In Section III,

we will discuss how our algorithm, i.e., Eq. (5), turns into a

variation of [26, Eq. (2)] without normalization, when ω = 1.

Memory-Efficient Algorithm: Algorithm 1 requires all

agents to keep the approximation of their neighbors’ beliefs

locally. So, it initially seems that the memory requirements for

each node are proportional to its degree. However, a simple

memory-efficient implementation similar to [33, Appendix E]

can be employed to address this problem. Specifically, each

agent i, can keep three vectors (3m parameters) µt
i , µ̂

t
i, and

cti =
∏

j:Aij>0

(
µ̂

t
i

)Aij

where the power and product opera-

tors are entrywise. Figure 1 illustrates which parameters should

be replaced with cti , for the path example three agents. The

memory-efficient pseudo-code is presented in Appendix A.

Next, we state our assumptions on the initial conditioning

and conditional likelihood distributions. This will guarantee

the convergence properties of our algorithm.

Assumption 1. For all agents i ∈ [n] and parameters θ ∈ Θ,

the following properties hold:

(a) ∃α1 > 0 such that µ̃0
i (θ) > α1,

(b) ∃α2 > 0 such that if fi(s
t
i) > 0 then ℓi (s

t
i|θ) > α2.

For instance, uniform prior beliefs on all hypotheses,

µ̃0
i = 1

m1m, satisfy Assumption 1(a), and is reasonable when

there is no prior information. Furthermore, Assumption 1(b)

Fig. 1: A group of three agents communicating over a path

network. The parameters required in the local memory of each

node are shown around it. In accordance with step 6 of Algo-

rithm 1, each node keeps an approximation of its neighbors’

beliefs. A memory-efficient variation could be obtained by

keeping a geometric average of neighbors’ parameters.

implies a lower bound on the likelihood measures. This

assumption has been studied before and it is common in the

literature [16], [17], [26], [41].

We now state our first result on asymptotic convergence of

the beliefs generated by Eq. (5). We indeed show that the loga-

rithm of the ratio between any non-optimal and optimal beliefs

is strictly decreasing. This, in turn, implies the concentration

of beliefs around the set of optimal hypotheses, almost surely.

Theorem 1 (Asymptotic Convergence). Let Assumption 1

holds and the compression operator Q(.) satisfies Eq. (2).

There exists γ > 0, such that µ̃t
i(θ) generated by Eq. (5),

has the following property: for all i ∈ [n], θv /∈ Θ⋆, θw ∈ Θ⋆,

lim
t→∞

1

t
Eζ

[

log
µ̃t
i(θv)

µ̃t
i(θw)

]

= −Cv a.s.,

where Cv , F (θv)− F ⋆ is a positive constant.

A detailed proof of Theorem 1 is presented in Section III.

Note that two sources of randomness play roles in the above

result, (i) the almost sure convergence refers to the randomness

associated with the observation spaces (Si,Ai) and likelihood

measures P
θ
i , while (ii) the expectation Eζ [.] indicates the

randomness originated by the compression operator. The re-

sults of Theorem 1 imply that asymptotically, the randomness

of the beliefs will depend only on the internal randomness

of the compression operator, not on the randomness of the

observations. Next we state Corollary 1, where we specify the

asymptotic result for a class of deterministic operators (see

Remark 1) and show that normalized beliefs µ̃t
i(θv) for any

non-optimal hypotheses θv /∈ Θ⋆ converges to zero, almost

surely.

Corollary 1 (Asymptotic Convergence: Deterministic Com-

pression Operator). Let Assumption 1 holds and compression

operator Q(.) satisfies Eq. (4). If there exists only one optimal

belief, i.e., Θ⋆ = {θ⋆}, then with the same γ as Theorem 1,

lim
t→∞

µ̃t
i(θ

⋆) = 1 a.s. for all i ∈ [n], and θ⋆ ∈ Θ⋆.

Theorem 1 and Corollary 1 state asymptotic convergence

guarantees. We now present our theoretical result regarding

the explicit non-asymptotic convergence rate.
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Theorem 2 (Non-Asymptotic Convergence Rate). Let As-

sumption 1 holds, the compression operator Q(.) satisfies

Eq. (2), and set γ , δ2ω/(32δ + 2δ2 + 8β2 + 4δβ2 − 8δω).
For an arbitrary probability ρ ∈ (0, 1), µ̃t

i(θ) generated by

Eq. (5) has the following property: there is some integer

T (ρ) ≥ 0 such that, with probability at least 1− ρ,

Eζ

[
log µ̃t

i(θv)
]
≤ − t

2
C1 + C2 for all i ∈ [n], and θv /∈ Θ⋆,

for all t ≥ T (ρ), where

C1 , min
θv /∈Θ⋆

(F (θv)− F ⋆) , C2 ,
162

√
nm

δ2γω
log

1

α
,

and T (ρ) ,
8

C2
1

(logα)
2
log

1

ρ
,

with α = min{α1, α2}, and β = ‖I−A‖2.

We will present the proof for Theorem 2 in Section IV.

Before stating the analysis, we first discuss the non-asymptotic

result for the case of deterministic compression operator in

Corollary 2, and next, seek to construe the convergence rate.

Corollary 2 (Non-Asymptotic Convergence Rate: Determinis-

tic Compression Operator). Under the same scenario as The-

orem 2, with the additional assumption that the compression

operator Q(.) satisfies Eq. (4), then with probability at least

1− ρ, the following property holds:

µ̃t
i(θv) ≤ exp

(

− t

2
C1 + C2

)

for all i ∈ [n], and θv /∈ Θ⋆,

with the same C1, C2, and T (ρ) as in Theorem 2.

We now briefly discuss the convergence of Corollary 2.

Convergence Rate Interpretation: Corollary 2 suggests

an explicit linear rate in terms of t, providing a probabilistic

upper-bound on the beliefs outside the optimal set. This

implies that with a high probability, µ̃t
i(θv) exponentially van-

ishes to zero, for all i ∈ [n], and any non-optimal hypothesis

θv /∈ Θ⋆. Formally, for an arbitrary ǫ > 0, with probability at

least 1− ρ, we have µ̃t
i(θv) ≤ ǫ, after at least

t ≥ max

{
2

C1

(

C2 + ln
1

ǫ

)

, T (ρ)

}

, (6)

iterations (rounds). First of all, note that parameters C1 and

T (ρ) are the same as that of [26], where C1 is proportional to

the difference between the first and second optimal values of

function F in Eq. (1). Second of all, the constant parameter

C2 in [26] is of O
(
δ−1 logn

)
.

In our algorithm, we however know that the constant

parameter C2 depends on the choice of learning stepsize γ. Ac-

cording to the suboptimal choice γ = O(δ2ω) in Theorem 2,

we can infer that C2 = O
(
δ−4ω−2n

1
2m

1
2

)
in our analysis.

Therefore, due to the fact that T (ρ) is also proportional to

C−2
1 , in scenarios with small enough C1, the number of rounds

required for our algorithm to reach an ǫ-convergence can be

roughly the same as that of [26]. Thus, in setups with small

enough C1 (e.g., inversely proportional to constant C2 in our

analysis, C1 = O
(
δ4ω2

√
nm

)
), our algorithm can save a significant

number of bits.

One should keep in mind that C1, T (ρ), and particularly

C2, γ, all take conservative values. The suboptimal choice of

γ in Theorem 2, is indeed borrowed from [33] that guarantees

the convergence of the algorithm for any ω, while one can

modify the stepsize given certain scenarios. We will see in

Section V that our algorithm converges fast in practice while

reduces the communication significantly.

The following two sections are respectively dedicated to

the almost sure asymptotic and probabilistic non-asymptotic

proofs.

III. ASYMPTOTIC CONVERGENCE ANALYSIS

In this section, we seek to prove Theorem 1. We therefore

consider virtual parameters νt
i, ν̂

t
i, with an update rule similar

to µt
i, µ̂

t
i , but without any compression, i.e., ω = 1. Our proof

technique is to show that µt
i(θ) converges to the same value

as of νti (θ). Initially, consider the following update rule

ν̂t+1
i (θ) = νti (θ), (7a)

νt+1
i (θ) = νti (θ)

n∏

j=1

(

ν̂t+1
j (θ)

ν̂t+1
i (θ)

)γAij

.ℓi(s
t+1
i |θ), (7b)

which is an update rule without compression, i.e., ω = 1.

Eq. (7a) implies that ν̂t+1
i which is supposed to be the approx-

imation of the most recent parameter νti , is exactly retrieved

by agent i’s neighbors, or equivalently ω = 1. Moreover, given

the fact that A is row-stochastic with positive diagonal entries,

and due to Eq. (7a), the update rule in Eq. (7b) can be

simplified as follows:

νt+1
i (θ) =

n∏

j=1

νtj(θ)
Bij ℓi(s

t+1
i |θ), (8)

where B , (1− γ)I+ γA is also a doubly stochastic ma-

trix with spectral gap γδ. By construction, we initialize

ν0i (θ) = µ0
i (θ), for all i ∈ [n] and θ ∈ Θ. Therefore, following

the proof for [26, Theorem 1] (without normalization), we can

conclude that, for all i ∈ [n], θv /∈ Θ⋆, θw ∈ Θ⋆,

lim
t→∞

1

t
log

νti (θv)

νti (θw)
= −Cv a.s., (9)

with the same Cv as in Theorem 1. It is worth mentioning

the update rule in [26] also requires a normalization step, but

all of their proofs is agnostic to the normalization value, as

they focus on the ratio between the beliefs. Further, let define

ξti(θ) = log
(
νti (θ)/ν

t−1
i (θ)

)
as the ratio of each belief for

two subsequent steps. As we mentioned earlier ξti indicates

the vector of [ξti(θ1), . . . , ξ
t
i (θm)]⊤. The following lemma

provides an upper bound on ‖ξti‖.

Lemma 1 (Bounded ratio). Let Assumption 1 holds and

α = min{α1, α2}. The νti (θ) generated by Eq. (8) has the

following property:

n∑

i=1

‖ξti‖2 < R2, t = 1, 2, . . . ,

where R , 4
√
nm log(1/α)/(γδ).

The proof of Lemma 1, can be found in Appendix B,

We further state an auxiliary result that will help us prove
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the compressed communication property of our algorithm.

Consider an update rule over xt
i, x̂

t
i ∈ R

m with the presence

of some exogenous noise ξti ∈ R
m

x̂t+1
i = x̂t

i +Q
(
xt
i − x̂t

i + ξti
)
− ξti,

xt+1
i = xt

i + γ

n∑

j=1

Aij(x̂
t+1
j − x̂t+1

i ),
(10)

where x̂0
i = 0, for all i ∈ [n]. Let xt be the average con-

sensus at round t, i.e., 1
n

∑n
i=1 x

t
i. Let matrix Xt ∈ R

n×m

represents [xt
1,x

t
2, . . . ,x

t
n]

⊤
. Similarly, we denote n × m

matrices X̂t = [x̂t
1, x̂

t
2, . . . , x̂

t
n]

⊤
, X

t
=
[
xt, . . . ,xt

]⊤
, and

Zt =
[
ξt1, ξ

t
2, . . . , ξ

t
n

]⊤
. Thus, the update rule in Eq. (10) can

be written in the following matrix-wise format:

X̂t+1 = X̂t +Q
(

Xt − X̂t + Zt
)

− Zt,

Xt+1 = Xt + γ (A− I) X̂t+1,
(11)

where Q(.) addresses rows of the matrix. Also, note that

X
t
= 1

n11
⊤Xt by definition. Hence, due to the fact that

1
n11

⊤ (A− I) = 0 and the consensus rule in Eq. (11), we

can conclude that X
t+1

= X
t
. Thus, a fixed average during

the time, namely xt = x. The following lemma describes the

behaviour of the update rule in Eq. (10).

Lemma 2 (A variation of Theorem 2 from [33]). The update

rule in Eq. (10), has the following property:

et ≤
(

1− δ2ω

164

)

et−1 + Lzt,

when using the stepsize γ , δ2ω
32δ+2δ2+8β2+4δβ2−8δω , where

β = ‖I−A‖2, et , Eζ

[
∑n

i=1

(

‖xt
i − x‖2 +

∥
∥xt

i − x̂t+1
i

∥
∥
2
)]

,

zt ,
∑n

i=1

∥
∥ξ

t
i

∥
∥
2
, and L , (1− ω)(2− ω)/ω.

The key difference between Lemma 2 and [33, Theorem 2]

is the existence of noise signals ξti in Eq. (10), thus a

slight difference in our proposed upper bound. The proof for

Lemma 2 is provided in Appendix C. We are now ready to

present the proof for Theorem 1.

Proof. (Theorem 1)

For each hypothesis θ, we divide Eq. (5a) and Eq. (5b)

respectively by Eq. (7a) and Eq. (7b), and take logarithm of

the result, therefore

log
µt+1

i

νt+1
i

= log
µt

i

νt
i

+ γ

n∑

j=1

Aij

(

log
µ̂

t+1
j

ν̂
t+1
j

− log
µ̂

t+1
i

ν̂
t+1
i

)

,

log
µ̂

t+1
i

ν̂
t+1
i

= log
µ̂

t
i

ν̂
t
i

+ log
ν̂
t
i

ν̂
t+1
i

+Q

(

log
µt

i

νt
i

− log
µ̂

t
i

ν̂
t
i

+ log
ν̂
t+1
i

ν̂
t
i

)

, (12)

where all fractions are entrywise divisions as men-

tioned beforehand. Let’s define xt
i(θ) = log (µt

i(θ)/ν
t
i (θ))

and x̂t
i(θ) = log (µ̂t

i(θ)/ν̂
t
i (θ)), then Eq. (12) turns into

Eq. (10). Hence, in line with Lemma 2, we know that

η = 1− (δ2ω/164) so, η ∈ [0, 1). Lemma 1 also tells us that

zt is bounded by R2, then

et ≤ ηte0 + L
t∑

k=1

ηt−kzk ≤ ηte0 +
LR2(1− ηt)

1− η
, (13)

where dividing by t2, we can derive

1

t2
Eζ

[∥
∥
(
xt
i − x

)∥
∥
2
]

≤ et
t2

≤ 1

t2

(

ηte0 +
LR2(1− ηt)

1− η

)

⇒

lim
t→∞

1

t
Eζ

[∥
∥
(
xt
i − x

)∥
∥
]
= 0 a.s. for all i ∈ [n], (14)

where x = 0 by proper initialization, ν0i (θ) = µ0
i (θ), for all

i ∈ [n] and θ ∈ Θ. Equation (14) suggests L2 convergence

where replacing xt
i with its equivalent expression (entrywise),

we have 1
tEζ

[∥
∥
∥log

µt
i(θ)

νt
i
(θ)

∥
∥
∥

]

→ 0. Also, due to the fact that

L2 convergence implies L1 convergence [42, page 201], i.e.,
1
tEζ

[∣
∣
∣log

µt
i(θ)

νt
i
(θ)

∣
∣
∣

]

→ 0, it is inferred that for any ǫ > 0, there

exists a T such that for all t ≥ T

1

t

∣
∣
∣
∣
Eζ

[

log
µt
i(θ)

νti (θ)

]∣
∣
∣
∣
≤ 1

t
Eζ

[∣
∣
∣
∣
log

µt
i(θ)

νti (θ)

∣
∣
∣
∣

]

< ǫ, (15)

where the first inequality follows Jensen’s inequality. We now

consider the inequality in Eq. (15) for two arbitrary hypotheses

θv /∈ Θ⋆ and θw ∈ Θ⋆, therefore

1

t

∣
∣
∣
∣
Eζ

[

log
µt
i(θv)

νti (θv)
− log

µt
i(θw)

νti (θw)

]∣
∣
∣
∣
<

1

t

∣
∣
∣
∣
Eζ

[

log
µt
i(θv)

νti (θv)

]∣
∣
∣
∣
+

1

t

∣
∣
∣
∣
Eζ

[

log
µt
i(θw)

νti (θw)

]∣
∣
∣
∣
<2ǫ,

as a result of triangle inequality. Thus, we have:
∣
∣
∣
∣

1

t
Eζ

[

log
µt
i(θv)

µt
i(θw)

]

− 1

t
log

νti (θv)

νti (θw)

∣
∣
∣
∣
< 2ǫ, (16)

so the two expressions inside Eq. (16), converge to the same

value in limit. Also, from Eq. (9) we know that the second

term converges to −Cv , almost surely, thus

lim
t→∞

1

t
Eζ

[

log
µt
i(θv)

µt
i(θw)

]

= −Cv, a.s.,

which is our desired result.

The previous result shows the asymptotic exponential con-

vergence of the ratio between any two non-optimal and optimal

hypotheses almost surely. This means that in the limit, the set

of optimal hypotheses dominates.

IV. NON-ASYMPTOTIC CONVERGENCE ANALYSIS

In this section, we state a proof for Theorem 2, which pro-

vides an explicit convergence rate for our proposed algorithm

in Eq. (5). Lemma 3 helps us to connect the convergence of

the quantized process to that of the non-quantized process.

Lemma 3 (Variation range). Let Assumption 1 holds. Further,

assume that the update rules in Eq. (5) and Eq. (7) have the

same initial values and the stepsize in Theorem 2. Then, for
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each agent i, parameter θ ∈ Θ, and t = 0, 1, . . . , the following

inequality holds
∣
∣Eζ

[
logµt

i(θ)
]
− log νti (θ)

∣
∣ ≤ G1 const.

where G1 = 73
√
nm

δ2γω log 1
α , with α = min{α1, α2}.

The proof for Lemma 3 is provided in Appendix D. Now,

we prove Theorem 2.

Proof. (Theorem 2) By Lemma 3, for a non-optimal hypoth-

esis θv ∈ Θ⋆ and an optimal hypothesis θw ∈ Θ⋆

∣
∣
∣
∣
Eζ

[

log
µt
i(θv)

µt
i(θw)

]

− log
νti (θv)

νti (θw)

∣
∣
∣
∣
≤
∣
∣
∣
∣
Eζ

[

log
µt
i(θv)

νti (θv)

]∣
∣
∣
∣

(17)

+

∣
∣
∣
∣
Eζ

[

log
µt
i(θv)

νti (θv)

]∣
∣
∣
∣
≤ 2G1.

Further, by [26, Lemma 10], the following inequality holds:

Eθv,θw

[

log
νti (θv)

νti (θw)

]

≤ max
i

log
ν0i (θv)

ν0i (θw)
+

12 logn

1− λ2(B)
log

1

α2

− t min
θv /∈Θ⋆

(F (θv)− F ⋆) ,

where the expectation Eθv,θw [.], indicates the randomness of

observations. By Assumption 1 and the definition of B, the

above inequality can be modified as follows:

Eθv ,θw

[

log
νti (θv)

νti (θw)

]

≤ −tC1 +G2, (18)

where C1 = minθv /∈Θ⋆ (F (θv)− F ⋆) and G2 = 16 logn
γδ log 1

α .

On the other hand, we have

Eζ

[
log µ̃t

i(θv)
]
≤ Eζ

[

log
µ̃t
i(θv)

µ̃t
i(θw)

]

= Eζ

[

log
µt
i(θv)

µt
i(θw)

]

,

(19)

thus the following inequalities hold:

P

(

Eζ

[
log µ̃t

i(θv)
]
≥ − t

2
C1 + 2G1 +G2

)

≤P

(

Eζ

[

log
µt
i(θv)

µt
i(θw)

]

≥ − t

2
C1 + 2G1 +G2

)

≤P

(

log
νti (θv)

νti (θw)
≥ − t

2
C1 +G2

)

+P

(

Eζ

[

log
µt
i(θv)

µt
i(θw)

]

≥ log
νti (θv)

νti (θw)
+ 2G1

)

︸ ︷︷ ︸

=0, by Eq. (17)

≤P

(

log
νti (θv)

νti (θw)
− Eθv ,θw

[

log
νti (θv)

νti (θw)

]

≥ t

2
C1

)

,

where the first inequality follows Eq. (19), the second inequal-

ity follows union bound, and the third inequality holds as

a result of Eq. (18). With a similar approach to the proof

for [26, Theorem 2], we can use McDiarmid’s inequality to

bound the above expression by probability ρ. Therefore, for

all t ≥ T (ρ) = 8
C2

1

(logα)
2
log 1

ρ , with a probability at least

1− ρ, the following inequality holds:

Eζ

[
log µ̃t

i(θv)
]
≤ − t

2
C1 + 2G1 +G2 ≤ − t

2
C1 + C2,

where C2 = 162
√
nm

δ2γω log 1
α .

We provided a probabilistic finite-time convergence result

for our algorithm. The rate of convergence C1 in our result is

same as that of [26, Theorem 2], but the constant C2 has worse

dependencies on parameters n,m, δ. However, we believe the

bound is loose, and it can be greatly improved. This remains

for future work.

V. NUMERICAL EXPERIMENTS

Our analysis in Section IV suggests that with a high prob-

ability and after a sufficient time, the agents’ beliefs linearly

concentrate around the set of optimal hypotheses, under the

update rule proposed in our algorithm (Eq. (5)). As illustrated

in Theorem 2, the convergence rate depends on C1 which is

the difference between the first and second optimal values for

function F (θ) in (1), and C2, which depends on the network’s

size and topology, number of beliefs, compression ratio, and

initial conditioning of the problem. Furthermore, the validity

of the bound is guaranteed after T (ρ) rounds which also

is inversely proportional to C2
1 . In this section, we quantify

the performance through a series of empirical experiments.

Specifically, we validate the compression capability of our

algorithm for various network structures, the number of agents

and beliefs, and several compression operator ratios.

We evaluate our algorithm on path and ring networks with

low connectivity (i.e., δ−1 = O(n2)), as well as Erdős-Rényi

(ER), torus, and complete topologies that have better connec-

tivity. Topologies such as path and ring have mixing times

of O(n2), which increases the message sharing dependency

on the number of nodes quadratically. Therefore, the required

number of iterations in such topologies is higher than their

dense counterparts such as torus, fully connected (complete),

or expander graphs [43]. The connectivity of Erdős-Rényi

graphs depends on their edge probabilities, thus we consider

both p1 = O (logn/n) and p2 = O (1/
√
n) in our experi-

ments, where the former obviously provides sparser graphs.

Note that from each of the two classes of ER graphs, we

select a connected realization and fix it over the corresponding

experiments. For a complete list of mixing times, see [43].

Setup: We begin by considering a group of n = 100
agents respectively on path, ring, ER-p1, torus, ER-p2, and

complete topologies with weights 1/max{di + 1, dj + 1} for

off-diagonal pairs (i, j) ∈ E , where di is the degree of agent

i. We select a large hypothesis set with m = 400 as well

as a finite set of observations Si with size |Si| = 20 for

each agent i. We also generate a family of random probability

distributions, {ℓi (.|θk)}mk=1, as well as a random fi on each

Si such that |Θ⋆| = 1. This way, the optimal hypothesis is not

required to be locally optimal for all agents, by construction.

We partition our numerical simulations into two compo-

nents. First, we fix a sequence of observations, sampled from

fi, for each agent i ∈ [n], and apply our algorithm with one of

the compression operators. In the case of randomized operators

such as qsgdk bits, and rand100ω%, we repeat the experiment

10 times and compute the average as the final performance.

This would show how randomness in the operators affects

the behavior of the individual belief realization. Second, we
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Fig. 2: Plots corresponding to the randomized operators are

the average of 10 simulations. Convergence of the update rule

in Eq. (5) using compression operators in Table I with the

update rule in [26, Eq. (2)] over (a) path, (b) ring, (c) Erdős-

Rényi with edge probability p1 = O (logn/n), (d) torus, (e)

Erdős-Rényi with edge probability p2 = O (1/
√
n), and (f)

complete topologies, with n = 100 agents and m = 400
hypotheses. In all experiments, we consider a fixed sequence

of observations for the agents, and select γ by a grid search.

(left) Belief evolution of one agent on the optimal hypothesis.

(right) Convergence error per the number of transmitted bits

through the corresponding network.

run 100 Monte Carlo runs of the algorithm with a real-time

sampling of the observations.

Beliefs Evolution: We first compare the performance of our

algorithm using the three compression operators introduced in

Table I versus the update rule with perfect communication [26,

Eq. (2)]. For this experiment, we consider the scenario with

a fixed path of observations for the agents. We consider

qsgdk bits with k = 2 bits (least precision) and b = 64
bits baseline. According to Eq. (3), this quantization satisfies

Eq. (2) with ω ≈ 0.05, so we select the other two operators

rand5% and top5% with the same omega. We also consider

top1% with a lower compression ratio. For the deterministic

operators, we run the corresponding algorithm only once,

but for the randomized operators with repeat the simulations

10 times and consider the average. For the choice of γ in

all experiments, we apply a grid line search over the set

{ω/4, ω/2, ω, 2ω, 4ω} to pick the value that converges faster

in practice. Figure 2 illustrates the result of this experiment,

wherefrom the top (path graph) to the bottom (complete

graph), the connectivity among agents increases, i.e., the

spectral gap grows.

In the left-hand plots of Fig. 2, we see the belief evolution of

one agent on the optimal hypothesis for different compression

operators. In the right-hand plots, we report the convergence

error 1
n

∑n
i=1

∥
∥µ̃t

i − µ⋆
∥
∥, per the number of transmitted bits,

where µ⋆ is the vector with 1 at the entry corresponding

to θ⋆ and the rest zero. As shown for example in the torus

graph results (Fig. 2d, our proposed algorithm requires less

communication cost (about 5% − 20% of the full) to reach

an ǫ = 10−5 error compared to the algorithm in [26, Eq. (2)].

Nonetheless, the number of iterations required for convergence

grows which is an inevitable consequence of arbitrary com-

pression. Further, we can see that qsgd2bits converges faster

than top5%, but with decreasing the compression ratio ω to

0.01, the top1% achieves a better performance than qsgd2bits
in terms of the transmitted bits, but requires more iterations to

converge (left figures). Complied to our intuition, qsgd2bits,
top5%, and top1% outperform rand5% operator.

Networks Size: We further quantify the mutual ef-

fect of compression ratio ω with the network size n, as

well as the hypotheses size m on the convergence rate

in Fig. 3 and Fig. 4, respectively. We first fix m = 400
and for different network sizes n ∈ {25, 50, 100, 200}, we

initialize beliefs uniformly and run 100 Monte Carlo

runs of Eq. (5) with compression operator top100ω% for

ω ∈ {0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.2, 0.5}. For the

choice of optimal γ we apply a fine geometric grid search.

In the top row of Fig. 3, we see the number of iterations

required for agents to reach ǫ = 10−8 accuracy of the optimal

hypothesis. In the bottom row, the number of bits required

for the same experiments is shown. For example, in Fig. 3b

regarding the torus topology, we can see that for different agent

numbers n, the number of iterations required for consensus

is very similar. In addition, the number of transmitted bits

decays to 2.5% with top1 communication (ω = 0.0025). More

importantly, with ω = 0.1, the number of transmitted bits will

be decreased to 10% of the full communication with roughly

the same number of iterations.

Number of Hypotheses: Next, we fix n = 100 and for dif-

ferent number of hypotheses m ∈ {100, 200, 500, 100, 2000},
we run the same set of experiments. For each m, we consider

the set of ω ≥ 1/m. In the top and bottom rows of Fig. 4,

the number of iterations and transmitted bits required for

ǫ-convergence (see Corollary 2, and the discussion on the

convergence rate) are shown, respectively. In Fig.4a, we can

for example see that for a path graph with n = 100 agents

and m = 2000 hypotheses, the communication cost can be

decreased to 2%.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a distributed non-Bayesian update rule where

agents exchange compressed messages with an arbitrary com-
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Fig. 3: The empirical mean over 100 Monte Carlo runs of

the number of iterations (top) and transmitted bits (bottom),

required for µ̃t
i(θ) < ǫ for all agents on every θ /∈ Θ⋆ with

m = 400 hypotheses and top100ω% operator over (a) path, (b)

torus, and (c) complete topologies. Each line corresponds to

a separate value of n for different values of ω.
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Fig. 4: The empirical mean over 100 Monte Carlo runs of

the number of iterations (top) and transmitted bits (bottom),

required for µ̃t
i(θ) < ǫ for all agents on every θ /∈ Θ⋆ with

n = 100 agents and top100ω% operator over (a) path, (b)

torus, and (c) complete topologies. Each line corresponds to

a separate value of m for different values of ω.

pression ratio to reach a consensus [33]. Our algorithm lever-

ages a unified compression mechanism that can embrace a

wide range of quantization and sparsification operators. Our

main results show that the beliefs generated by our proposed

algorithm exponentially concentrates around the set of optimal

hypotheses. Furthermore, we presented a probabilistic explicit

convergence rate for our method. Finally, we presented em-

pirical evidence suggesting that given a proper compression

precision, our algorithm can reduce the required communica-

tion load compared to existing approaches (cf. [26]).

Our theoretical analyses and numerical results suggest a

strong dependency of convergence rate on the topology of

the network. In future work, we will explore how to reduce

this dependency. Other aspects of future work would be to

use social sampling in compression to provide more com-

prehensive models for agents’ behavior in social networks.

Future work should also study the convergence rates for the

concentration of beliefs on time-varying and directed networks

and robustness to stubborn agents.
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[4] A. Nedić, A. Olshevsky, and C. Uribe, “Distributed Learning for
Cooperative Inference,” ArXiv, vol. abs/1704.02718, 2017.

[5] Y. Chen, S. Kar, and J. Moura, “Resilient Distributed Estimation: Sensor
Attacks,” IEEE Transactions on Automatic Control, vol. 64, pp. 3772–
3779, 2019.

[6] S. Al-Sayed, A. Zoubir, and A. Sayed, “Robust Distributed Estimation
by Networked Agents,” IEEE Transactions on Signal Processing, vol.
65, pp. 3909–3921, 2017.

[7] R. Nassif, S. Vlaski, and A. Sayed, “Distributed Inference over Networks
under Subspace Constraints,” ICASSP 2019 - 2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
5232–5236, 2019.
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APPENDIX

A. Memory-Efficient Algorithm

Here, we present a memory-efficient version of Algorithm 1.

In summary, we suggest each agent i ∈ [n] to keep the

geometric average of its neighbors’ beliefs with weights corre-

spondent to matrix A. In other words, each agent i, instead of

allocating a distinguished part of its memory to save vectors

µ̂
t
j (for all j ∈ [n] such that (i, j) ∈ E), can simply keep a

weighted geometric average of them. Algorithm 2 shows the

pseudo-code of a memory-efficient implementation.

Algorithm 2 Memory-Efficient Distributed Non-Bayesian

Learning with Compressed Communication

Input: initial beliefs µ̃0
i ∈ R

m, mixing matrix A, compression

ratio ω ∈ (0, 1], and learning stepsize γ ∈ (0, 1]
Procedure :

1: µ̂
0
i := 1m, c0i := 1m, and µ0

i := µ̃0
i , for all i ∈ [n]

2: for t in 0, . . . , T − 1, in parallel for all i ∈ [n] do

3: qt
i := Q(logµt

i − log µ̂t
i)

4: for j ∈ [n] such that Aij > 0 (including j = i) do

5: Send qt
i and receive qt

j

6: end for

7: Observe st+1
i

8: for all θ ∈ Θ:

(a) µ̂t+1
i (θ) = µ̂t

i(θ). exp (q
t
i(θ))

(b) ct+1
i (θ) = cti(θ).

n∏

j=1

exp
(
qtj(θ)

)Aij

(c) µt+1
i (θ) = µt

i(θ).
(

ct+1

i
(θ)

µ̂t+1

i
(θ)

)γ

.ℓi
(
st+1
i |θ

)

9: µ̃t+1
i = 1

1⊤µ
t+1

i

µt+1
i

10: end for

Output: final beliefs µ̃T
i , for all i ∈ [n]

B. Proof of Lemma 1

Proof. (Lemma 1) Let Lt
i(θ) = log

(
ℓi
(
st+1
i |θ

)
/ℓi (s

t
i|θ)
)

be likelihood ratio of two consecutive observations. Also,

we define vectors ξt(θ) = [ξt1(θ), ξ
t
2(θ), . . . , ξ

t
n(θ)]

⊤ and

L
t(θ) = [Lt

1(θ),Lt
2(θ), . . . ,Lt

n(θ)]
⊤. According to Eq. (8):

ξt+1(θ) = Bξt(θ) +L
t(θ)

= Btξ1(θ) +

t∑

r=1

Bt−r
L

r(θ)

= Btξ1(θ) +

t∑

r=1

(

Bt−r − 1

n
11⊤

)

L
r(θ)

+
1

n
11⊤

t∑

r=1

L
r(θ), ∀θ ∈ Θ.

First notice that by Eq. (8), the following relation holds:

ξ1i (θ) = log
ν1i (θ)

ν0i (θ)
=

n∑

j=1

Bij log
ν0j (θ)

ν0i (θ)
+ ℓi

(
s1i |θ

)
,

where for all i, j ∈ [n],
∣
∣log

(
ν0i (θ)/ν

0
j (θ)

)∣
∣ ≤ log (1/α1)

by Assumption 1(a). Similarly, for all t1, t2 ≥ 0, we know

that
∣
∣log

(
ℓi
(
st1i |θ

)
/ℓi
(
st2i |θ

))∣
∣ ≤ log (1/α2) by Assump-

tion 1(b). Thus, we can infer that

∥
∥ξ1(θ)

∥
∥ ≤

√
n log

1

α1α2
≤ 2

√
n log

1

α
, (20)

where the second inequality holds since α = min{α1, α2}.

Also, by definition of Lt
i(θ), we have

t∑

r=1

Lr
i (θ) =

t∑

r=1

log
ℓi
(
sr+1
i |θ

)

ℓi (sri |θ)
= log

ℓi
(
st+1
i |θ

)

ℓi (s1i |θ)
,

therefore, it holds that

max

{

‖Lr(θ)‖ ,
∥
∥
∥
∥
∥

t∑

r=1

L
r(θ)

∥
∥
∥
∥
∥

}

≤
√
n log

1

α
. (21)

Further, recall that B = (1−γ)I+γA. Then, the spectral gap

of B is equal to γδ, hence
∥
∥
∥
∥
Bk − 1

n
11⊤

∥
∥
∥
∥
≤ (1− γδ)k,

which helps us to show that
∥
∥
∥
∥
∥

t∑

r=1

(

Bt−r − 1

n
11⊤

)

L
r(θ)

∥
∥
∥
∥
∥
≤

t∑

r=1

(1− γδ)t−r ‖Lr(θ)‖ ≤
(

1− (1− γδ)
t
)

γδ

√
n log

1

α2
≤

√
n

γδ
log

1

α
. (22)

Using the triangle inequality along with referring to

Eq. (20), Eq. (21), and Eq. (22), we finally have the following

result:

∥
∥ξt+1(θ)

∥
∥ ≤

∥
∥Btξ1(θ)

∥
∥+

∥
∥
∥
∥
∥

1

n
11⊤

t∑

r=1

L
r(θ)

∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥

t∑

r=1

(

Bt−r − 1

n
11⊤

)

L
r(θ)

∥
∥
∥
∥
∥

≤
∥
∥ξ1(θ)

∥
∥+

∥
∥
∥
∥
∥

t∑

r=1

L
r(θ)

∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥

t∑

r=1

(

Bt−r − 1

n
11⊤

)

L
r(θ)

∥
∥
∥
∥
∥

≤
(

3 +
1

γδ

)√
n log

1

α
≤ 4

√
n

γδ
log

1

α
, ∀θ ∈ Θ,

where by definition of ξti and ξt(θk),

n∑

i=1

∥
∥ξti
∥
∥
2
=

m∑

k=1

∥
∥ξt(θk)

∥
∥ ≤ 16nm

γ2δ2
(logα)

2
,

which is constant and does not depend on t.

C. Proof of Lemma 2

Proof. (Lemma 2) From [33, Lemma 17], we know that

∥
∥Xt+1 −X

∥
∥
2

F
≤ (1− γδ)

2
(1 + τ1)

∥
∥Xt −X

∥
∥
2

F

+γ2
(
1 + τ−1

1

)
β2
∥
∥
∥X

t − X̂t+1
∥
∥
∥

2

F
, (23)



12

so, it is enough to modify [33, Lemma 18] as follows:

Eζ

[∥
∥
∥X

t+1 − X̂t+2
∥
∥
∥

2

F

]

≤ (1− ω)
∥
∥
∥X

t+1 − X̂t+1 + Zt+1
∥
∥
∥

2

F

≤ (1 + τ0) (1− ω)
∥
∥
∥X

t+1 − X̂t+1
∥
∥
∥

2

F

+
(
1 + τ−1

0

)
(1− ω)

∥
∥Zt+1

∥
∥
2

F
, (24)

where the second inequality follows [33, Remark 9]. Note

that Eζ [.] appears when Q(.) is a randomized compression

operator, however, if we assume a deterministic operator, we

can simply drop the expectation. Finally, according to the

analysis for [33, Lemma 18], we know that:
∥
∥
∥X

t+1 − X̂t+1
∥
∥
∥

2

F
≤ γ2β2

(
1 + τ−1

2

) ∥
∥Xt −X

∥
∥
2

F

+
(
1 + γβ2

)
(1 + τ2)

∥
∥
∥X

t − X̂t+1
∥
∥
∥

2

F
. (25)

By definition of et and Eq. (23), Eq. (24), and Eq. (25), we

have

et+1 ≤ U(γ)
∥
∥Xt −X

∥
∥
2

F

+ V (γ)
∥
∥
∥X

t − X̂t+1
∥
∥
∥

2

F

+ L
∥
∥Zt+1

∥
∥
2

F

≤ max{U(γ), V (γ)}et + Lzt,

where

U(γ) = (1− γδ)
2
(1 + τ1)

+ (1 + τ0) (1− ω) γ2β2
(
1 + τ−1

2

)
,

V (γ) = γ2β2
(
1 + τ−1

1

)

+ (1 + τ0) (1− ω) (1 + γβ)
2
(1 + τ2) ,

L =
(
1 + τ−1

0

)
(1− ω) ,

(26)

thus it is enough to select γ, τ1, τ2, τ0 such that there exists a

constant η < 1, such that

max{U(γ), V (γ)} ≤ η < 1.

So, let fix τ0 , ω
2(1−ω) > 0, where the fact that ω > 0,

guarantees τ0 > 0. So, we can infer that

(1 + τ0) (1− ω) = 1− ω

2
= 1− ω̂,

where ω̂ = ω
2 . Therefore, parameters in Eq. (26) turns into the

following setting:

U(γ) = (1− γδ)
2
(1 + τ1)

+ (1− ω̂) γ2β2
(
1 + τ−1

2

)
,

V (γ) = γ2β2
(
1 + τ−1

1

)

+ (1− ω̂) (1 + γβ)
2
(1 + τ2) ,

L =
(1− ω)(2− ω)

ω
,

thus, according to the proof of [33, Theorem 2], for the choice

of hyperparameters

τ0 ,
ω

2(1− ω)
, τ1 ,

γδ

2
, τ2 ,

ω̂

2
=

ω

4
,

γ⋆ ,
δ2ω

32δ + 2δ2 + 8β2 + 4δβ2 − 8δω
,

the following statement holds:

max{U(γ⋆), V (γ⋆)} ≤ 1− δ2ω̂

82
= 1− δ2ω

164
,

thus η , 1− δ2ω
164 .

D. Proof of Lemma 3

Proof. (Lemma 3) We showed in Eq. (13) that et defined in

Lemma 2 is bounded. By definition of et, xi, and the fact that

x = 0, the following inequality holds

Eζ

[∣
∣logµt

i(θ)− log νti (θ)
∣
∣
2
]

≤Eζ

[∥
∥logµt

i − log νt
i

∥
∥
2
]

≤
n∑

i=1

Eζ

[∥
∥logµt

i − log νt
i

∥
∥
2
]

≤et ≤ ηte0 +
LR2(1− ηt)

1− η
,

and by Jensen’s inequality, we have
∣
∣Eζ

[
log µt

i(θ)
]
− log νti (θ)

∣
∣ ≤Eζ

[∣
∣logµt

i(θ) − log νti (θ)
∣
∣
]

≤
(

Eζ

[∣
∣logµt

i(θ)− log νti (θ)
∣
∣
2
]) 1

2

.

It is therefore enough to compute an upper bound for the

right-hand side of Eq. (13). Further, ∀i ∈ [n], µ0
i = ν0

i , and

µ̂
0
i = 1, so

e0 = Eζ

[
n∑

i=1

∥
∥x̂1

i

∥
∥
2

]

= Eζ

[
n∑

i=1

∥
∥log µ̂1

i − log ν̂1
i

∥
∥
2

]

= Eζ

[
n∑

i=1

∥
∥Q
(
logµ0

i

)
− log ν0

i

∥
∥
2

]

≤ (1− ω)

n∑

i=1

∥
∥logµ0

i

∥
∥
2 ≤ (1− ω)nm (logα)

2
.

Finally, we can conclude that

ηte0 +
LR2(1− ηt)

1− η
≤ e0 +

LR2

1− η
<

nm (logα)
2

(

1 +
2624(1− ω)(2− ω)

δ4γ2ω2

)

<

5249

δ4γ2ω2
nm (logα)2 ⇒

∣
∣Eζ

[
logµt

i(θ)
]
− log νti (θ)

∣
∣ ≤ 73

√
nm

δ2γω
log

1

α
.
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