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Totally Asynchronous Primal-Dual Convex

Optimization in Blocks
Katherine R. Hendrickson and Matthew T. Hale∗

Abstract

We present a parallelized primal-dual algorithm for solving constrained convex optimization problems. The

algorithm is “block-based,” in that vectors of primal and dual variables are partitioned into blocks, each of which is

updated only by a single processor. We consider four possible forms of asynchrony: in updates to primal variables,

updates to dual variables, communications of primal variables, and communications of dual variables. We show that

any amount of asynchrony in the communications of dual variables can preclude convergence, though the other forms

of asynchrony are permitted. A first-order primal-dual update law is then developed and shown to be robust to these

other forms of asynchrony. We next derive convergence rates to a Lagrangian saddle point in terms of the operations

agents execute, without specifying any timing or pattern with which they must be executed. These convergence rates

include an “asynchrony penalty” that we quantify and present ways to mitigate. Numerical results illustrate these

developments.

I. INTRODUCTION

A wide variety of machine learning problems can be formalized as convex programs [5], [8], [33], [34]. Large-

scale machine learning then requires solutions to large-scale convex programs, which can be accelerated through

parallelized solvers running on networks of processors. In large networks, it can be difficult to synchronize their

computations, which generate new information, and communications, which share this new information with other

processors. Accordingly, we are interested in asynchrony-tolerant large-scale optimization.

The challenge of asynchrony is that it causes disagreements among processors that result from generating and

receiving different information at different times. One way to reduce disagreements is through repeated averaging of

processors’ iterates. This approach dates back several decades [37], and approaches of this class include [13], [23],

[26]–[28], [35], [36], [40]. However, these averaging-based methods require bounded delays in some form, often

through requiring connectedness of agents’ communication graphs over intervals of a prescribed length [6, Chapter

7]. In some applications, delays are outside agents’ control, e.g., in a contested environment where communications

are jammed, and delay bounds cannot be easily enforced. Moreover, graph connectivity cannot be easily checked

individual agents, meaning even satisfaction or violation of connectivity bounds is not readily ascertained. In
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addition, these methods require multiple processors to update each decision variable, which can be prohibitive, e.g.,

in learning problems with billions of data points.

Therefore, in this paper we develop a totally asynchronous parallelized primal-dual method for solving large

constrained convex optimization problems. The term “totally asynchronous” dates back to [6] and describes scenarios

in which both computations and communications are executed without any assumptions on delay bounds. By

“parallelized,” we mean that each decision variable is updated only by a single processor. As problems grow,

this has the advantage of keeping each processor’s computational burden approximately constant. The decision

variables assigned to each processor are referred to as a “block,” and asynchronous block-based algorithms date

back several decades as well [4], [6], [37]. Those early works solve unconstrained or set-constrained problems,

in addition to select problems with functional constraints. Recent asynchronous block-based algorithms have also

been developed for some specific classes of problems with set or functional constraints [10], [11], [25], [31], [32].

To bring parallelization to arbitrary constrained problems, we develop a primal-dual approach that does not require

constraints to have a specific form.

Block-based methods have previously been shown to tolerate arbitrarily long delays in both communications

and computations in some unconstrained problems [4], [22], [38], eliminating the need to enforce and verify delay

boundedness assumptions. For constrained problems of a general form, block-based methods have been paired with

primal-dual algorithms with centralized dual updates [17], [19] and/or synchronous primal updates [24]. To the best

of our knowledge, arbitrarily asynchronous block-based updates have not been developed for convex programs of

a general form. A counterexample in [19] showed that arbitrarily asynchronous communications of dual variables

can preclude convergence, though that example leaves open the extent to which more limited dual asynchrony is

compatible with convergence.

In this paper, we present a primal-dual optimization algorithm that permits arbitrary asynchrony in primal

variables, while accommodating dual asynchrony to the extent possible. Four types of asynchrony are possible:

(i) asynchrony in primal computations, (ii) asynchrony in communicating primal variables, (iii) asynchrony in dual

computations, and (iv) asynchrony in communicating dual variables. The first contribution of this paper is to show

that item (iv) is fundamentally problematic. Specifically, we show that arbitrarily small disagreements among dual

variables can cause primal computations to disagree by arbitrarily large amounts. For this reason, we rule out

asynchrony in communicating dual variables. However, we permit all other forms of asynchrony, and, relative to

existing work, this is the first to permit arbitrarily asynchronous computations of dual variables in blocks.

The second contribution of this paper is to establish convergence rates. These rates are shown to depend

upon problem parameters, which lets us calibrate their values to improve convergence. Moreover, we show that

convergence can be inexact due to dual asynchrony, and thus the scalability of parallelization comes at the expense

of a potentially inexact solution. We term this inexactness the “asynchrony penalty,” and we give an explicit bound

on it, as well as methods to mitigate it. Simulation results show convergence of this algorithm and illustrate that

the asynchrony penalty is mild.

This paper is an extension of the conference paper [20]. This paper extends all previous results on scalar blocks to

non-scalar blocks, provides bounds on regularization error, provides techniques to mitigate the asynchrony penalty,
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and gives a simplified convergence analysis.

The rest of the paper is organized as follows. Section II provides background and a formal problem statement.

Section III presents our asynchronous algorithm. Convergence rates are developed in Section IV. Section V presents

simulation results, and Section VI concludes.

II. BACKGROUND AND PROBLEM STATEMENT

Real-world applications of multi-agent optimization may face challenges that prevent agents from computing or

communicating at specified times or intervals. For example, very large networks of processors may face difficulty in

synchronizing all of their clocks, and networks of autonomous agents in a contested environment may face jammed

communications that make information sharing sporadic. This asynchrony in computations and communications

motivates the development of algorithms that tolerate as much asynchrony as possible. Thus, we study the following

form of optimization problem.

Problem 1: Given f : Rn → R, g : Rn → Rm, and X ⊂ Rn, asynchronously solve

minimize f(x)

subject to g(x) ≤ 0

x ∈ X. ♦

We assume the following about f .

Assumption 1: The objective function f is twice continuously differentiable and convex. 4

We make a similar assumption about the constraints g.

Assumption 2: For all j ∈ {1, . . . ,m}, the function gj is twice continuously differentiable and convex. And g

satisfies Slater’s condition, i.e., there exists x̄ ∈ X such that g
(
x̄
)
< 0. 4

Assumptions 1 and 2 permit a wide range of functions to be used, such as all convex polynomials of all orders.

We impose the following assumption on the constraint set.

Assumption 3: The set X is non-empty, compact, and convex. It can be decomposed via X = X1 × · · · × XNp

where Np is the number of agents optimizing over x. 4

Assumption 3 permits many sets to be used, such as box constraints, which often arise in multi-agent optimiza-

tion [29]. This assumption allows agents to project their blocks of the decision variable onto the corresponding part

of the constraint set, i.e., for all i, agent i is able to project its updates onto Xi, which ensures that x ∈ X overall.

This property enables a distributed projected update law in which each agent ensures set constraint satisfaction of

its block of the decision variable. This form of decomposition has been used in [10], [11], [24], [25], [32], [40]

(and other works) for the same purpose.

We will solve Problem 1 using a primal-dual approach. This allows the problem to be parallelized across many

processors by re-encoding constraints through Karush-Kuhn-Tucker (KKT) multipliers. In particular, because the

constraints g couple the agents’ computations, they can be difficult to enforce in a distributed way. By introducing

KKT multipliers to encode constraints, we can solve an equivalent, higher-dimensional unconstrained problem.
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An ordinary primal-dual approach would find a saddle point of the Lagrangian associated with Problem 1,

defined as L(x, µ) = f(x) + µT g(x), where µ ≥ 0. That is, one would solve minx∈X maxµ≥0 L(x, µ), and, under

Assumptions 1-3, this would furnish a solution to Problem 1. However, L is affine in µ, which implies that L(x, ·)

is concave but not strongly concave. Strong convexity has been shown to provide robustness to asynchrony in

minimization problems [6], and thus we wish to endow the maximization over µ with strong concavity. We use a

Tikhonov regularization [14] in µ to form

Lδ(x, µ) = f(x) + µT g(x)− δ

2
‖µ‖2, (1)

where δ > 0 and ‖ · ‖ denotes the Euclidean norm. This ensures δ-strong concavity in µ. Thus, we will find a

saddle point (x̂δ, µ̂δ) of Lδ , which is approximately equal to a saddle point of L and thus approximately solves

Problem 1. We bound the error introduced by regularizing in Theorem 1 below.

One challenge in designing and analyzing an algorithm is that µ̂δ is contained in the unbounded domain Rm+ ,

which is the non-negative orthant of Rm. Because this domain is unbounded, gradients with respect to the dual

variable are unbounded. Specifically, dual iterates may not be within a bounded distance of the optimum and hence

they may produce gradients that are arbitrarily large. To remedy this problem, we will confine dual variables to a

set M⊂ Rm+ , defined as

M :=
{
µ ∈ Rm+ : ‖µ‖1 ≤ B

}
, B :=

f(x̄)− f∗

min
1≤j≤m

−gj(x̄)
, (2)

where x̄ is any Slater point. Here, f∗ denotes the optimal objective function value over X (but without g), though

any lower-bound for this value will suffice. For example, if f is non-negative, then one can substitute 0 in place

of f∗. We will show below in Lemma 1 that using M does not affect the final answer that is computed.

Instead of regularizing with respect to the primal variable x, we impose the following assumption in terms of

the Hessian H(x, µ) := ∇2
xLδ(x, µ). When convenient, we suppress the arguments x and µ and simply write H .

Assumption 4 (Diagonal Dominance): The Hessian matrix H = ∇2
xLδ(x, µ) is β-diagonally dominant for all µ ∈

M. That is, |Hii| − β ≥
∑n
j=1
j 6=i
|Hij |,∀i = 1, . . . , n. 4

It has been observed in the literature that Assumption 4 or a similar variant of diagonal dominance is necessary to

ensure the convergence of totally asynchronous algorithms [6, Section 6.3.2]. If this assumption does not hold, the

Lagrangian can be regularized with respect to x to help provide H’s diagonal dominance. If this is done, there may

be cases in which the regularization parameter required to satisfy Assumption 4 is large, and this can introduce large

regularization errors, which can be undesirable; see [24] for bounds on regularization error when both primal and

dual regularizations are used. Fortunately, numerous problems satisfy this assumption without regularizing in x [16],

and, for such problems, we proceed without regularizing in x to avoid unnecessarily introducing regularization error.

Diagonal dominance has been shown to arise in sum of squares problems [1], linear systems with sparse graphs [9],

matrix scaling and balancing [12], and quadratic programs [38]. We show in Section V that diagonal dominance

improves convergence of our algorithm, and this is in line with existing algorithms [1], [2], [9], [12], [15], [39].

Using the definition of M in (2) and Assumption 4, we now observe that M contains the optimum µ̂δ .

Lemma 1: Let Assumptions 1-4 hold. Then µ̂δ ∈M.
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Proof: Follows Section II-C in [18]. �

We now present the following saddle point problem that will be the focus of the rest of the paper.

Problem 2: Let Assumptions 1-4 hold and fix δ > 0. For Lδ defined in (1), asynchronously compute(
x̂δ, µ̂δ) := arg min

x∈X
arg max
µ∈M

Lδ(x, µ). ♦

The strong convexity of Lδ(·, µ) and strong concavity of Lδ(x, ·) imply that (x̂δ, µ̂δ) is unique. Due to reg-

ularizing, the solution to Problem 2 may not equal that of Problem 1, and regularization could also introduce

constraint violations. We next bound both regularization error in solutions and constraint violations in terms of the

regularization parameter δ.

Theorem 1: Let Assumptions 1-4 hold. Let (x̂, µ̂) denote a saddle point of L (without regularization applied).

Then the regularization error introduced by the Tikhonov regularization in (1) is bounded by ‖x̂δ − x̂‖2 ≤ δ
βB

2,

where δ is the regularization parameter and B is defined in Lemma 1. Furthermore, possible constraint violations

are bounded via gj(x̂δ) ≤MjB
√

δ
β , where Mj := maxx∈X ‖∇gj(x)‖.

Proof: See Appendix A. �

The error in solutions is O(δ) and the potential constraint violation is O(
√
δ), and thus both can be made

arbitrarily small. Moreover, if it is essential that a feasible point be computed, then, for all j, one can replace the

constraint gj(x) ≤ 0 with g̃j(x) = gj(x) −MjB
√

δ
β ≤ 0, which will ensure the generation of a feasible point.

And Slater’s condition in Assumption 2 implies that, for sufficiently small δ, there exist points that satisfy g̃j .

III. ASYNCHRONOUS PRIMAL-DUAL ALGORITHM

Solving Problem 2 asynchronously requires an update law that we expect to be robust to asynchrony and simple

to implement in a distributed way. In this context, first-order gradient-based methods offer some degree of inherent

robustness, as well as computations that are simpler than other methods, such as Newton-type methods. We apply a

projected gradient method to both the primal and dual variables, based on the seminal Uzawa algorithm [3]. Recall

that, given some x(0) and µ(0), at iteration k+ 1 the Uzawa algorithm computes the primal update, x(k+ 1), and

dual update, µ(k + 1), using

x(k + 1) = ΠX [x(k)− γ∇xLδ
(
x(k), µ(k)

)
] (3)

µ(k + 1) = ΠM[µ(k) + ρ∇µLδ
(
x(k), µ(k)

)
], (4)

where γ, ρ > 0 are stepsizes, ΠX is the Euclidean projection onto X , and ΠM is the Euclidean projection ontoM.

A. Overview of Approach

The Uzawa algorithm is centralized, and we will decentralize (3) and (4) among a number of agents while

allowing them to generate and share information as asynchronously as possible. We consider N agents indexed

over i ∈ I := {1, . . . , N}. We also define the sets Ip := {1, . . . , Np} and Id := {1, . . . , Nd}, where Np+Nd = N .

The set Ip contains indices of “primal agents” that update primal blocks (contained in x), while Id contains indices
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of “dual agents” that update dual blocks (contained in µ)1. Thus, x ∈ Rn is divided into Np blocks and µ ∈ Rm

into Nd blocks.

Primal agent i updates the ith primal block, x[i], and dual agent c updates the cth dual block, µ[c]. Let ni denote the

length of primal agent i’s block and mc the length of dual agent c’s block. Then n =
∑Np
i=1 ni and m =

∑Nd
c=1mc.

The block of constraints g that correspond to µ[c] is denoted by g[c] : Rn → Rmc and each dual agent projects its

computations onto a set Mc derived from Lemma 1, namely Mc =
{
ν ∈ Rmc+ : ‖ν‖1 ≤ B

}
.

Using a primal-dual approach, there are four behaviors that could be asynchronous: (i) computations of primal

variables, (ii) communications of the values of primal variables, (iii) computations of dual variables, and (iv)

communications of the values of dual variables. In all cases, we assume that communications arrive in finite time

and are received in the order they were sent. We examine these four behaviors here:

(i) Computations of Updates to Primal Variables: When parallelizing (3) across the Np primal agents, we

index all primal agents’ computations using the same iteration counter, k ∈ N. However, they may compute and

communicate at different times and they do not necessarily do either at all k. The subset of times at which primal

agent i ∈ Ip computes an update is denoted by Ki ⊂ N. For distinct i, j ∈ Ip, we allow Ki 6= Kj . These sets are

used only for analysis and need not be known to agents.

(ii) Communications of Primal Variables: Primal variable communications are also totally asynchronous. A

primal block’s current value may or may not be sent to other primal and dual agents that need it at each time k. Thus,

one agent may have onboard an old value of a primal block computed by another agent. We use Ni ⊂ Ip to denote

the set of indices of primal agents whose decision variables are needed for agent i’s computations. Formally, j ∈ Ni
if and only if ∇xiLδ(x, µ) explicitly depends on x[j]. The set Ni is referred to as agent i’s essential neighbors,

and only agent i’s essential neighbors need to communicate to agent i. In particular, primal communications are

not all-to-all. We use τ ij(k) to denote the time at which primal agent j originally computed the value of x[j] stored

onboard primal agent i at time k. We use σcj(k) to denote the time at which primal agent j originally computed

the value of x[j] stored onboard dual agent c at time k. These functions are used only for analysis, i.e., agents do

not need to know the values of τ ij(k) or σcj(k).

We impose the following assumption.

Assumption 5 (Primal Updates and Communications): For all i ∈ Ip, the set Ki is infinite. If {kn}n∈N is an

increasing set of times in Ki, then limn→∞ τ ji (kn) =∞ for all j ∈ Ip such that i ∈ Nj and limn→∞ σci (kn) =∞

for all c ∈ Id such that x[i] is constrained by g[c]. 4

This simply ensures that, for all i ∈ Ip, primal agent i never stops computing or communicating, though delays

can be arbitrarily large.

(iii) Computations of Updates to Dual Variables: Dual agents wait for every primal agent’s updated block

before computing an update to a dual variable. Dual agents may perform computations at different times because

1Although the same index may be contained in both Ip and Id, we define the sets in this way to avoid non-consecutive numbering of primal

agents and dual agents, which would be cumbersome in the forthcoming analysis. The meaning of an index will always be made unambiguous

by specifying whether it is contained in Ip or Id.
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they may receive updates to primal blocks at different times. In some cases, a dual agent may receive multiple

updates from a subset of primal agents prior to receiving all required primal updates. In this case, only the most

recently received update from a primal agent will be used in the dual agent’s computation. For all c ∈ Id, dual

agent c keeps an iteration count tc to track the number of updates it has completed.

(iv) Communications of Updated Dual Variables: Previous work [19, Section VI] has shown that allowing

primal agents to disagree arbitrarily about dual variables can preclude convergence. In particular, that work provides

an example problem in which such disagreements lead to oscillations in the primal variables that do not decay with

time, and thus agents do not even converge. This is explained by the following: fix µ1, µ2 ∈ M. Then a primal

agent with µ1 onboard is minimizing Lδ(·, µ1), while a primal agent with µ2 onboard is minimizing Lδ(·, µ2). If µ1

and µ2 can be arbitrarily far apart, then it is not surprising that the minima of L(·, µ1) and L(·, µ2) are arbitrarily

far apart, which is what is observed in [19, Section VI]. One may then conjecture that small disagreements in dual

variables lead to small distances between these minima. We next show that this is false.

Theorem 2: Fix any ε > 0 and any L > ε. Then, under Assumptions 1-4, there exists a problem and points µ1, µ2 ∈

M such that ‖µ1−µ2‖ < ε and ‖x̂1−x̂2‖ > L, where x̂1 = arg minx∈X Lδ(x, µ
1) and x̂2 = arg minx∈X Lδ(x, µ

2).

Proof: See Theorem 1 in the preliminary version of this work [21]. �

The counterexample in [19, Section VI] shows that primal agents need not even converge if they use different

dual variables that take them to minima that are far apart. Theorem 2 shows that arbitrarily small disagreements

in the values of dual variables can drive primal agents’ computations to points that are arbitrarily far apart. Thus,

by combining these two results, we see that any disagreement in the dual variables can preclude convergence.

Therefore, primal agents are allowed to operate totally asynchronously, but their computations must use the same

dual variable, formalized as follows.

Assumption 6 (Dual Communications): Any transmission sent from primal agent i to primal agent j while they

both have µ(t) onboard is only used by primal agent j in its own computations if it is received before the next

dual update. 4

However, we emphasize that this does not mean that the values of dual variables must be communicated

synchronously. Instead, primal agents can use any method to ensure that their computations use the same dual

variables. For example, when dual agent c sends its updated dual block to primal agents, it can also send its

iteration count tc. Primal agents can use these tc values to annotate which version of µ is used in their updates,

e.g., by appending the value of tc for each c to the end of the vector of primal variables they communicate. To

ensure that further primal updates rely upon the same dual value, other primal agents will disregard any received

primal updates that are annotated with an old iteration count for any block of the dual variable.

The algorithm we present is unchanged if any other method is used to ensure that the primal agents use the

same dual variable in their computations, e.g., primal agents may send each other acknowledgments of a new dual

variable prior to computing new iterations.

We also note that for many problems, dual agents may not be required to communicate with all primal agents.

Problems with a constraint function gc that depends only on a subset of primal variables will result in a dual
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entry µc that needs to be sent only to the corresponding subset of primal agents, which we illustrate next.

Example 1 (Dual-to-Primal Communications): Consider a problem with any objective function f , x ∈ R3, and

constraints g : R3 → R3 given by

g1(x) = x1 + x2 − b1, g2(x) = x2 − b2, g3(x) = x3 − b3,

where b1, b2, and b3 are some constants. The regularized Lagrangian associated with this problem is

Lδ(x, µ) = f(x) + µ1(x1 + x2 − b1) + µ2(x2 − b2) + µ3(x3 − b3)− δ

2
‖µ‖2.

We observe that, among µ1, µ2, and µ3, ∇x1
Lδ(x, µ) depends only on µ1. Similarly, ∇x2

Lδ(x, µ) depends only

on µ1 and µ2, and ∇x3Lδ(x, µ) depends only on µ3. Therefore, only primal agents computing x1 and x2 would

need to receive µ1, a primal agent computing x2 would need µ2, and only a primal agent computing x3 would

need µ3. For primal blocks that are scalar values, this leads to the required dual-to-primal communications shown

in Figure 1.

Furthermore, the primal and dual variables may instead be divided into the blocks shown in Figure 2, leading to

an even simpler communication requirement. In that case, only Primal Agent 1 needs updates from Dual Agent 1

and only Primal Agent 2 needs updates from Dual Agent 2.

x1 μ1

μ2

μ3x3

x2

Fig. 1: Required dual-to-primal communications in Example 1 with scalar blocks. This illustrates that some constraint

formulations will only require dual agents to communicate to a subset of primal agents.

x1 μ1

μ2

μ3x3

x2

Primal Agent 1

Primal Agent 2

Dual Agent 1

Dual Agent 2

Fig. 2: Required dual-to-primal communications in Example 1 when separating the primal and dual variables into

non-scalar blocks. By dividing blocks according to constraints, required dual-primal communications may be reduced

even further.
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The principle illustrated by this example is that, by using non-scalar blocks and exploiting the structure of a

problem, the required dual communications may be significantly reduced. Specifically, a dual block µ[c] only needs

to be sent to the primal agents whose decision variables appear in the block of constraints g[c]. This is reflected in

Step 7 our statement of Algorithm 1 below.

B. Glossary of Notation in Algorithm 1

The following glossary contains the notation used in our algorithm statement:

k The iteration count used by all primal agents.

Ki The set of times at which primal agent i computes updates.

∇x[i]
The derivative with respect to the i-th block of x. That is, ∇x[i]

:= ∂
∂x[i]

.

Ni Essential neighborhood of primal agent i.

Id Set containing the indices of all dual agents.

Ip Set containing the indices of all primal agents.

σcj(k) Time at which primal agent j originally computed the value of x[j] onboard dual agent c at time k.

τ ij(k) Time at which primal agent j originally computed the value of x[j] onboard primal agent i at time k. Note

that τ ii (k) = k for all i ∈ Ip.

t The vector of dual agent iteration counts. The cth entry, tc, is the iteration count for dual agent c’s updates.

xi[j] Primal or dual agent i’s value for the primal block j, which is updated/sent by primal agent j. If agent i is

primal, it is indexed by both k and t; if agent i is dual, it is indexed only by t.

x̂δ The primal component of the saddle point of Lδ . Part of the optimal solution pair (x̂δ, µ̂δ).

µc[d] Primal or dual agent c’s copy of dual block d, which is updated/sent by dual agent d.

µ̂δ The dual component of the saddle point of Lδ , (x̂δ, µ̂δ).

C. Statement of Algorithm

We now state the asynchronous primal-dual algorithm.
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Algorithm 1:
Step 0: Initialize all primal and dual agents with x(0) ∈ X and µ(0) ∈M. Set t = 0 ∈ RNd and k = 0 ∈ N.

Step 1: For all i ∈ Ip and all c ∈ Id, if primal agent i receives a dual variable update from dual agent c, it

sets

µi[c](tc) = µc[c](tc).

Step 2: For all i∈Ip, if k∈Ki, primal agent i executes

xi[i](k+1; t)=ΠXi [x
i
[i](k; t)−γ∇x[i]

Lδ(x
i(k; t), µi(t))].

If k /∈Ki, then xi[i](k+1; t)=xi[i](k; t).

Step 3: For all i ∈ Ip and all j ∈ Ni,

xi[j](k+1; t)=

x
j
[j](τ

i
j(k+1); t) i receives xj[j] at k+1

xi[j](k; t) otherwise

Step 4: For all i∈Ip, primal agent i may send xi[i](k + 1; t) to any primal or dual agent. Due to

communication delays, it may not be received for some time. Set k := k + 1.

Step 5: For c ∈ Id and i ∈ Ip, if dual agent c receives an update from primal agent i computed with dual

update t, it sets

xc[i](tc)= xi[i](σ
c
i (k); t).

Otherwise, xc[i](tc) remains constant.

Step 6: For c ∈ Id, if dual agent c has received an update from every primal agent constrained by g[c] that

was computed with the latest dual iteration t, dual agent c executes

µc[c](tc + 1) = ΠMc
[µc[c](tc) + ρ

∂Lδ
∂µ[c]

(xc(tc), µ
c(tc))].

Step 7: If dual agent c updated in Step 6, it sends µc[c](tc+1) to all primal agents that are constrained

by g[c]. Due to asynchrony, it may not be received for some time. Set tc := tc+1.

Step 8: Return to Step 1.

IV. OVERALL CONVERGENCE AND REDUCING THE ASYNCHRONY PENALTY

In this section, we present our main convergence result and strategies for reducing the asynchrony penalty, which

is an error term in that result that is due to asynchronous operations. First, let H(x, µ) = ∇2
xLδ(x, µ) and choose

the primal stepsize γ > 0 to satisfy

γ <
1

max
i

max
x∈X

max
µ∈M

∑n
j=1 |Hij(x, µ)|

. (5)

Recall that x and µ both take values in compact sets (cf. Assumption 3 and Lemma 1), and thus each entry Hij

is bounded. In particular, the upper bound on γ is positive.
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The main convergence result for Algorithm 1 is in terms of the number of operations that agents have executed,

counted in a specific order as follows. Upon the first primal agent’s receipt of a dual variable with iteration vector t,

we set ops(k, t) = 0. Then, after all primal agents have computed an update to their decision variable with µ(t)

and sent it to and had it received by all other primal agents in their essential neighborhoods, say by time k′,

we increment ops to ops(k′, t) = 1. After ops(k′, t) = 1, we then wait until all primal agents have subsequently

computed a new update (still using the same dual variable indexed with t) and it has been sent to and received

by all primal agents’ essential neighbors. If this occurs at time k′′, then we set ops(k′′, t) = 2, and then this

process continues. If at some time k′′′, primal agents receive an updated µ (whether just a single dual agent sent

an update or multiple dual agents send updates) with an iteration vector of t′, then the count would begin again

with ops(k′′′, t′) = 0.

A. Main Result

We now present our main result on the convergence of xi(k; t) to x̂δ . Recall that δ is the dual regularization

parameter, γ is the primal stepsize given in (5), and ρ is the dual stepsize.

Theorem 3: Let Assumptions 1-6 hold and fix δ > 0. Choose 0 < ρ < 2δ
δ2+2 . Let T (t) := minc tc be the minimum

number of updates any one dual agent has performed by time t and let K(t) be the minimum value of ops that

was reached for any primal block used to compute any dual block from µ(0) to µ(t). Then for agents executing

Algorithm 1, for all i, all k, and all t, we have

‖xi(k; t)−x̂δ‖2≤q2ops(k,t)
p 2nD2

x + q
T (t)
d

2M2

β2
‖µ(0)− µ̂δ‖2 + q2K(t)

p C1 + qK(t)
p C2 + C3,

where C1, C2, and C3 are positive constants given by

C1 :=
2nNdM

4D2
x(qd − ρ2)

β2(1− qd)
, C2 :=

4ρ2
√
nNdM

4D2
x

β2(1− qd)
, C3 :=

2NdM
4D2

x(qd − ρ2)

β2(1− qd)
,

and qd := (1−ρδ)2+2ρ2 ∈ [0, 1), qp := (1 − γβ) ∈ [0, 1), M := max
x∈X
‖∇g(x)‖, Dx := max

x,y∈X
‖x − y‖, n is the

length of the primal variable x, and Nd is the number of dual agents.

Proof: See Appendix B. �

Remark 1: The term C3 in Theorem 3 is termed the “asynchrony penalty” because it is an offset from reaching a

solution, and it is not reduced by changing the value of ops. It is due to asynchronously computing dual variables

and is absent when dual updates are centralized [19], [24]. In Corollary 1 below, we suggest methods to mitigate

this penalty.

Note that the terms premultiplied by qp are minimized when the exponent (determined by primal operations

through the ops term) is allowed to grow. In particular, if more primal operations occur before communications

are sent to dual agents, the terms are reduced. Similarly, if dual updates occur frequently and asynchronously, the

exponent will be reduced and hence the terms containing qp will become larger.
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Fig. 3: Network graph where Node 0 is the source and Node 1 is the target and edge thicknesses correspond to

their flow capacities. The paths may be divided into three groups (green, pink, and orange) such that there are no

shared edges for paths in different groups.

B. Reducing the Asynchrony Penalty

The asynchrony penalty may be addressed in a few ways: by completing a certain number of primal operations

prior to sending updates to dual agents, by completing more dual updates, and finally by choosing ρ and δ. These

are discussed explicitly in Corollary 1 below.

Corollary 1: Let all conditions and definitions of Theorem 3 hold. Let positive error bounds ε1 and ε2 be fixed.

Then there exist values of T (t), K(t), the dual stepsize ρ, and the regularization parameter δ such that

‖xi(k; t)−x̂δ‖2 ≤ ε1 + ε2.

In particular, set K(t) ≥ log(ε1)−log(4nD2
x+2C1+2C2)

log(qp)
, T (t) ≥ log(ε1β

2)−log(4M2‖µ(0)−µ̂δ‖2)
log(qd)

, ρ = δ
1+δ2 , and δ2 ≥

2NdM
4D2

x

ε2β2(1−qd) − 1.

Proof: See Appendix C. �

The lower bound on δ is dependent on the chosen ε2. If ε2 ≥ 2NdM
4D2

x

β2(1−qd) , then δ2 may take any positive value.

However, if ε2 ≤ 2NdM
4D2

x

β2(1−qd) , δ2 is lower bounded by a positive number. This illustrates the potential trade-off

between the asynchrony penalty and regularization error by showing that one cannot have arbitrarily small values

of both. However, given a desired value of one, it is possible to compute the other using Theorem 1, and, if needed,

make further adjustments to the numbers of updates and choices of parameters to ensure satisfactory performance.

V. NUMERICAL EXAMPLE

We consider a network flow problem where agents are attempting to route data over given paths from the source

(node 0) to the target (node 1)2. We consider an example whose network graph is given in Figure 3, where the

edge widths represent the edge capacities. We consider a problem in which we must route 15 different paths from

the source to the target along some combination of the 66 edges present. The primal variable is composed of

2The network graph in Figure 3 was generated using [30]. All other code for this section can be found at www.github.com/kathendrickson/dacoa.
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the traffic assigned to each path (with n = 15) and the limits for traffic sent along each edge are the constraints

(thus, m = 66). By construction, the paths and edges can be divided into three groups, with the edges in each

group being used only by that group’s paths. Each edge group (indicated by the green, pink, and orange colors in

Figure 3) contains five paths, corresponding to five entries of the primal variable. The objective function is

f(x) = −W
n∑
i=1

log(1 + xi),

where W is a positive constant. Primal variables xi are allowed to take any value between 0 and 10. The constraints

are given by Ax ≤ b, where the edge capacities, b, take random values between 5 and 40, with edges connected to

the source and target having capacities of 50. The matrix A is given by

Ak,i =

1 if flow path i traverses edge k

0 otherwise
.

Thus the regularized Lagrangian is given by

Lδ(x, µ) = −W
n∑
i=1

log(1 + xi) + µT
(
Ax− b

)
− δ

2
‖µ‖2,

where the Hessian matrix H is β-diagonally dominant and β = W
112 . We choose algorithm parameters γ =

0.01, δ = 0.1 and ρ = δ
δ2+1 ≈ .099. Communications between agents occur with a random probability called

the “communication rate,” which we vary across simulation runs below. We collect each primal agent’s block into

the combined primal variable x = (x1T[1] , . . . , x
NpT

[Np]
)T to measure convergence.

We use this simulation example to explore the benefit of using non-scalar blocks over our previous work with scalar

blocks [20]. Additionally, we examine the effect that the magnitude of diagonal dominance has on convergence. We

are also able to vary the communication rate and study its effect on convergence. Finally, this example demonstrates

the effectiveness of our algorithm with large-scale problems and the ease with which it is scaled up and distributed.

We begin by comparing scalar blocks to non-scalar blocks where primal agents have a 50% chance of computing

an update at every time k. When using scalar blocks, we assign one primal agent to each flow path and one dual

agent to each edge constraint. Thus, we have 15 primal agents and 66 dual agents in the scalar block case. For

dividing among non-scalar blocks, we assign one primal agent to compute all five flow paths in each network group

(indicated by the different colors in Figure 3). We then assign one dual agent to each group to handle all of the

edge constraints for that group. Thus, we have 3 primal agents and 3 dual agents in the non-scalar block case. For a

communication rate of 0.75 (primal agents have a 75% chance of communicating the latest update to another agent

at each time step), non-scalar blocks provide an advantage when considering the number of time steps needed to

converge, shown in Figure 4. In both cases, the algorithm converges to x̃ such that ‖x̃− x̂‖ ≤ 0.38, where x̂ is the

unregularized solution. This result is representative of other simulations by the authors in which the asynchrony

penalty is small in practice and the bound provided in Theorem 3 is loose.

Next we use the non-scalar blocks with primal agents performing updates at every time k to isolate the effects

of diagonal dominance and communication rate (communications do not necessarily happen at every k). We first

vary β over β ∈ {0.10, 0.25, 0.75}. To measure convergence, we take the 2-norm of the difference between x
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Fig. 4: Convergence for scalar and non-scalar blocks. Non-scalar blocks provide a significant advantage over scalar

blocks when considering the number of time steps needed to reach a solution, as indicated by the red dotted line

versus the solid blue line.
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Fig. 5: Effect of diagonal dominance on convergence. Here, we see that larger values of β lead to faster convergence.

at consecutive time steps. Figure 5 plots the time step k versus this distance for the varying values of β and a

communication rate of 0.75. As predicted by Theorem 3, a larger β correlates with faster convergence in general.

Varying the communication rate has a significant impact on the number of time steps required to converge as

shown in Figure 6. However, a solution is still eventually reached. This reveals that faster convergence can be

achieved both by increasing communication rates and increasing the diagonal dominance of the problem. In these

two plots, the abrupt decreases in distances between successive iterates are due to primal agents’ computations

reaching the boundary of the feasible region defined by X and g, which causes the iterates to make only small

progress afterwards (as the dual variables continue to slowly change).

VI. CONCLUSION

Algorithm 1 presents a primal-dual approach that is asynchronous in primal updates and communications and
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asynchronous in distributed dual updates. The error due to regularization was bounded and convergence rates were

established. Methods for mitigating the resulting asynchrony penalty were presented. A numerical example illustrates

the benefit of non-scalar blocks and the effect diagonal dominance has with other parameters upon convergence.

Future work will examine additional applications for the algorithm and implementation techniques to reduce error

and improve convergence.

APPENDIX

A. Proof of Theorem 1

The following proof generally follows that of Proposition 3.1 in [24], with differences resulting from this work

only regularizing with respect to the dual variable rather than regularizing with respect to both the primal and dual

variables. Let (x̂, µ̂) denote a saddle point of the unregularized Lagrangian L. Let (x̂δ, µ̂δ) denote a saddle point

of the dual-regularized Lagrangian Lδ . Then because (x̂δ, µ̂δ) is a saddle point, for all x ∈ X,µ ∈ Rm+ we have

the two inequalities Lδ(x̂δ, µ) ≤ Lδ(x̂δ, µ̂δ) ≤ Lδ(x, µ̂δ). Using µ̂ ∈ Rm+ and we can write

0 ≤ Lδ(x̂δ, µ̂δ)− Lδ(x̂δ, µ̂) =
∑
j

(µ̂δ,j − µ̂j)gj(x̂δ)−
δ

2
‖µ̂δ‖2 +

δ

2
‖µ̂‖2. (6)

Because each gj is convex, we have

gj(x̂δ)≤ gj(x̂)+∇gj(x̂δ)T(x̂δ − x̂)≤∇gj(x̂δ)T (x̂δ − x̂), (7)

where the last inequality follows from gj(x̂) ≤ 0 (which holds since x̂ solves Problem 1). Additionally, because

all dual variables are non-negative, we can multiply by µ̂δ,j to get∑
j

µ̂δ,jgj(x̂δ) ≤
∑
j

µ̂δ,j∇gj(x̂δ)T (x̂δ − x̂). (8)

By definition of Lδ , the right-hand side can be expanded as∑
j

µ̂δ,j∇gj(x̂δ)T (x̂δ − x̂) = ∇xLδ(x̂δ, µ̂δ)T (x̂δ − x̂)−∇f(x̂δ)
T (x̂δ − x̂). (9)
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Because x̂δ minimizes Lδ(·, µ̂δ), for all x ∈ X we have ∇xLδ(x̂δ, µ̂δ)T (x̂δ − x) ≤ 0. In particular, we can

set x = x̂ ∈ X to find ∇xLδ(x̂δ, µ̂δ)T (x̂δ − x̂) ≤ 0. Combining this with (9) and (8) gives∑
j

µ̂δ,jgj(x̂δ) ≤ −∇f(x̂δ)
T (x̂δ − x̂). (10)

By the convexity of each gj , we have gj(x̂δ) ≥ gj(x̂) +∇gj(x̂)T (x̂δ − x̂). By multiplying this inequality with the

non-positive −µ̂j and summing over j, we obtain

−
∑
j

µ̂jgj(x̂δ) ≤−
∑
j

µ̂jgj(x̂)−
∑
j

µ̂j∇gj(x̂)T (x̂δ−x̂).

By complementary slackness, we have µ̂T g(x̂) = 0 and thus

−
∑
j

µ̂jgj(x̂δ) ≤ −
∑
j

µ̂j∇gj(x̂)T (x̂δ − x̂). (11)

Expanding ∇xL(x̂, µ̂) = ∇f(x̂) +
∑
j µ̂j∇gj(x̂), we see that∑

j

µ̂j∇gj(x̂)T (x̂− x̂δ) = ∇xL(x̂, µ̂)T (x̂− x̂δ)−∇f(x̂)T (x̂− x̂δ) ≤ −∇f(x̂)T (x̂− x̂δ).

This follows from the fact that x̂ minimizes L(·, µ̂) over all x ∈ X and thus ∇xL(x̂, µ̂)T (x̂−x) ≤ 0 for all x ∈ X .

Then setting x = x̂δ gives the above bound. Combining this with (11) gives

−
∑
j

µ̂jgj(x̂δ) ≤ ∇f(x̂)T (x̂δ − x̂). (12)

Adding (10) and (12) gives

(µ̂δ − µ̂)T g(x̂δ) ≤ (∇f(x̂)−∇f(x̂δ))
T

(x̂δ − x̂) ≤ −β
2
‖x̂δ − x̂‖2,

where the last inequality is from the β-strong convexity of f (follows from Assumption 4 which holds for µ = 0).

Applying this to (6),

0 ≤ −β
2
‖x̂δ − x̂‖2 −

δ

2
‖µ̂δ‖2 +

δ

2
‖µ̂‖2.

This implies the final result ‖x̂δ − x̂‖2 ≤ δ
β

(
‖µ̂‖2 − ‖µ̂δ‖2

)
. Furthermore, we can use (7) to bound possible

constraint violations, where

gj(x̂δ) ≤ ∇gj(x̂δ)T (x̂δ − x̂) ≤ ‖∇gj(x̂δ)‖‖x̂δ − x̂‖ ≤ max
x∈X
‖∇gj(x)‖

√
δ

β
(‖µ̂‖2 − ‖µ̂δ‖2) ≤MjB

√
δ

β
. �

B. Main Result Proofs

1) Primal Convergence: Towards defining an overall convergence rate to the regularized optimal solution (x̂δ, µ̂δ),

we first find the primal convergence rate for a fixed dual variable. Given a fixed µ(t), centralized projected gradient

descent for minimizing Lδ(·, µ(t)) can be written as

h(x) = ΠX [x− γ∇xLδ(x, µ(t))] , (13)

where γ > 0. The fixed point of h is the minimizer of Lδ(·, µ(t)) and is denoted by x̂δ(t) = arg minx∈X Lδ(x, µ(t)).
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Leveraging some existing theoretical tools in the study of optimization algorithms [4], [7], we can study h in a

way that elucidates its behavior under asynchrony in a distributed implementation. According to [7], the assumption

of diagonal dominance guarantees that h has the contraction property

‖h(x)− x̂δ(t)‖∞ ≤ α‖x− x̂δ(t)‖∞

for all x ∈ X , where ‖v‖∞ = max
i
|vi| for v ∈ Rn, α ∈ [0, 1) and x̂δ(t) is a fixed point of h, which depends on

the choice of fixed µ(t). However, the value of α is not specified in [7], and it is precisely that value that governs

the rate of convergence to a solution. We therefore compute α explicitly.

Following the method in [4], two n× n matrices G and F must also be defined.

Definition 1: Define the n× n matrices G and F as

G =


|H11| −|H12| . . . −|H1n|

...
...

. . .
...

−|Hn1| −|Hn2| . . . |Hnn|

 and F = I − γG,

where I is the n× n identity matrix.

We now have the following.

Lemma 2: Let h, G, and F be as above and let Assumptions 1-6 hold. Then |h(x) − h(y)| ≤ F |x − y| for

all x, y ∈ Rn, where |v| denotes the element-wise absolute value of the vector v ∈ Rn and the inequality holds

component-wise.

Proof: We proceed by showing the satisfaction of three conditions in [4]: (i) γ is sufficiently small, (ii) G is

positive definite, and (iii) F is positive definite.

(i) γ is sufficiently small: Results in [7] require γ
∑n
j=1 |Hij | < 1 for all i ∈ {1, . . . , n}, which here follows

immediately from (5).

(ii) G is positive definite: By definition, G has only positive diagonal entries. By H’s diagonal dominance we

have the following inequality for all i ∈ {1, . . . , n}:

|Gii| = |Hii| ≥
n∑
j=1
j 6=i

|Hij |+ β >

n∑
j=1
j 6=i

|Hij | =
n∑
j=1
j 6=i

|Gij |.

Because G has positive diagonal entries, is symmetric, and is strictly diagonally dominant, G is positive definite

by Gershgorin’s Circle Theorem.

(iii) F is positive definite: Eq. (5) ensures the diagonal entries of F are always positive. And F is diagonally

dominant if, for all i ∈ {1, . . . , n},

|Fii| = 1− γ|Hii| > γ

n∑
j=1
j 6=i

|Hij | =
n∑
j=1
j 6=i

|Fij |.

This requirement can be rewritten as γ
∑n
j=1 |Hij | < 1, which was satisfied under (i). Because F has positive

diagonal entries, is symmetric, and is strictly diagonally dominant, F is positive definite by Gershgorin’s Circle

Theorem. �
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We next show that the gradient update law h in (13) converges with asynchronous, distributed computations.

Furthermore, we quantify the rate of convergence.

Lemma 3: Let γ and h be as defined in (5) and (13). Let Assumptions 1-6 hold and fix µ(t) ∈ M. Then for the

fixed point x̂δ(t) of h and for all x ∈ X ,

‖h(x)− h(x̂δ(t))‖∞ ≤ qp‖x− x̂δ(t)‖∞,

where qp := (1− γβ) ∈ [0, 1).

Proof: For all i, Assumption 4 and the definition of F give
n∑
j=1

Fij = 1− γ
(
|Hii| −

n∑
j=1
j 6=i

|Hij |
)
≤ 1− γβ.

This result, the definition of ‖ · ‖∞, and Lemma 2 give

‖h(x)− h(x̂δ(t))‖∞ = max
i
|hi(x)− hi(x̂δ(t))|

≤max
i

n∑
j=1

Fij |xj−x̂δ,j(t)|

≤max
l
|xl−x̂δ,l(t)|max

i

n∑
j=1

Fij

≤ max
l
|xl − x̂δ,l(t)|(1− γβ)

= (1− γβ)‖x− x̂δ(t)‖∞,

where the last inequality follows from Lemma 2. All that remains is to show (1− γβ) ∈ [0, 1). From (5) and the

inequality |Hii| ≥ β, for all x ∈ X and µ(t) ∈M ,

γβ<
β

max
i

∑n
j=1 |Hij(x, µ(t))|

≤ β

max
i
|Hii(x, µ(t))|

=1. �

Lemma 4: Let Assumptions 1-6 hold. Let µ(t) be the dual vector onboard all primal agents at some time k and

let kt0 denote the latest time that any primal agent received the dual variable µ(t) that agents currently have

onboard. Then, with primal agents asynchronously executing the gradient update law h, agent i has

‖xi(k; t)− x̂δ(t)‖∞ ≤ qops(k,t)
p max

j
‖xj(kt0; t)− x̂δ(t)‖∞,

where x̂δ(t) is the fixed point of h with µ(t) held constant.

Proof: From Lemma 3 we see that h is a qp-contraction mapping with respect to the norm ‖ · ‖∞. From Section

6.3 in [7], this property implies that there exist sets of the form

X(k) = {x ∈ Rn | ‖x− x̂δ(t)‖∞

≤ qkp max
j
‖xj(kt0; t)− x̂δ(t)‖∞}

that satisfy the following criteria from [19]:

i. · · · ⊂ X(k + 1) ⊂ X(k) ⊂ · · · ⊂ X
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ii. limk→∞X(k) = {x̂δ(t)}

iii. For all i, there are sets Xi(k) ⊂ Xi satisfying

X(k) = X1(k)× · · · ×XN (k)

iv. For all y ∈ X(k) and all i ∈ Ip, hi(y) ∈ Xi(k + 1), where hi(y) = ΠXi

[
yi − γ∇x[i]

Lδ(y, µ(t))
]
.

We will use these properties to compute the desired convergence rate. Suppose all agents have a fixed µ(t)

onboard. Upon receipt of this µ(t), agent i has xi(kt0; t) ∈ X(0) by definition. Suppose at time `i that agent i

computes an update. Then xi[i](`i + 1; t) ∈ Xi(1). For m = maxi∈Ip `i + 1, we find that xi[i](m; t) ∈ Xi(1) for

all i. Next, suppose that, after all updates have been computed, these updated values are sent to and received by

all agents that need them, say at time m′. Then, for any i ∈ Ip, agent i has xi[j](m
′; t) ∈ Xj(1) for all j ∈ Ip.

In particular, xi(m′; t) ∈ X(1), and this is satisfied precisely when ops has incremented by one. Iterating this

argument completes the proof. �

2) Dual Convergence: Towards defining the behavior during an update of a single dual block, we consider the

number of operations primal agents compute before communications are sent to a dual agent. In particular, we

are interested in defining the oldest primal block a dual agent uses in its own computations. Each of the received

primal blocks was sent when some number of operations had been completed by primal agents using the prior dual

update. Towards quantifying this, we are interested in defining the primal computation time of the oldest primal

block used by dual agent c when it computes update tc + 1.

Definition 2: For dual agent c computing update tc + 1, let κ(c, tc) denote the earliest primal computation time

for all blocks in xc(tc). That is, for all primal blocks used by dual agent c during update tc + 1, κ(c, tc) is the

oldest primal time any were computed.

Thus, the minimum number of operations completed by any primal agent for the blocks used by dual agent c

during update tc+ 1 is equal to ops(κ(c, tc), t). We next derive a block-wise convergence rate for the dual variable.

Lemma 5: Let Assumptions 1-6 hold. Let the dual stepsize ρ be defined such that ρ < 2δ
δ2+2 . Let tc ≥ 0 and consider

the case where dual agent c performs a single update denoted with the iteration counter tc + 1. Then the distance

from the optimal value for block c is bounded by

‖µc[c](tc + 1)− µ̂δ,[c]‖2 ≤ qd‖µc[c](tc)− µ̂δ,[c]‖
2 + q2ops(κ(c,tc),t)

p E1(c) + qops(κ(c,tc),t)
p E2(c) + E3(c),

where E1(c) := (qd−ρ2)nM2
[c]D

2
x, E2(c) := 2ρ2

√
nM2

[c]D
2
x and E3(c) := (qd−ρ2)M2

[c]D
2
x, qd := (1−ρδ)2+2ρ2 ∈

[0, 1), M[c] := max
x∈X
‖∇g[c](x)‖, Dx := max

x,y∈X
‖x− y‖, and n is the length of the primal variable x.

Proof: Define x̂δ(t) = arg minx∈X Lδ(x, µ(t)) and x̂δ = arg minx∈X Lδ(x, µ̂δ). Let xct := xc(tc) for brevity of
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notation. Expanding the dual update law and using the non-expansiveness of ΠM, we find

‖µc[c](tc+1)− µ̂δ,[c]‖2 = ‖ΠMc [µ
c
[c](tc) + ρ(g[c](x

c
t)− δµc[c](tc))]−ΠMc [µ̂δ,[c] + ρ(g[c](x̂δ)− δµ̂δ,[c])]‖2

≤ ‖µc[c](tc) + ρ(g[c](x
c
t)− δµc[c](tc))− µ̂δ,[c] − ρ(g[c](x̂δ)− δµ̂δ,[c])‖2

= ‖(1− ρδ)(µc[c](tc)− µ̂δ,[c])− ρ(g[c](x̂δ)− g[c](xct))‖2

≤ (1− ρδ)2‖µc[c](tc)− µ̂δ,[c]‖
2 + ρ2‖g[c](xct)− g[c](x̂δ)‖2

−2ρ(1−ρδ)(µc[c](tc)−µ̂δ,[c])
T (g[c](x̂δ)−g[c](xct)).

Adding g[c] (x̂δ(t))− g[c] (x̂δ(t)) inside the last set of parentheses gives

‖µc[c](tc+1)− µ̂δ,[c]‖2 ≤ (1− ρδ)2‖µc[c](tc)− µ̂δ,[c]‖
2 + ρ2‖g[c](xct)− g[c](x̂δ)‖2

− 2ρ(1− ρδ)(µc[c](tc)− µ̂δ,[c])
T
(
g[c](x̂δ)− g[c] (x̂δ(t))

)
− 2ρ(1−ρδ)(µc[c](tc)−µ̂δ,[c])

T (g[c] (x̂δ(t))−g[c](xct)). (14)

We can write

0 ≤ ‖(1− ρδ)
(
g[c](x̂δ)− g[c] (x̂δ(t))

)
+ ρ(µc[c](tc)− µ̂δ,[c])‖

2,

which can be expanded and rearranged to give

−2ρ(1− ρδ)(µc[c](tc)− µ̂δ,[c])
T
(
g[c](x̂δ)− g[c] (x̂δ(t))

)
≤ (1−ρδ)2‖g[c](x̂δ)−g[c] (x̂δ(t)) ‖2 + ρ2‖µc[c](tc)−µ̂δ,[c]‖

2.

Similarly,

−2ρ(1− ρδ)(µc[c](tc)− µ̂δ,[c])
T (g[c] (x̂δ(t))− g[c](xct))

≤ (1−ρδ)2‖g[c] (x̂δ(t))−g[c](xct)‖2+ρ2‖µc[c](tc)−µ̂δ,[c]‖
2.

Applying these inequalities to (14) gives

‖µc[c](tc + 1)− µ̂δ,[c]‖2 ≤ (1− ρδ)2‖µc[c](tc)− µ̂δ,[c]‖
2

+ρ2‖g[c](xct)−g[c](x̂δ)‖2+(1−ρδ)2‖g[c](x̂δ)−g[c] (x̂δ(t)) ‖2

+2ρ2‖µc[c](tc)−µ̂δ,[c]‖
2+(1−ρδ)2‖g[c] (x̂δ(t))−g[c](xct)‖2

≤ ((1−ρδ)2+2ρ2)‖µc[c](tc)− µ̂δ,[c]‖
2 +ρ2‖g[c](xct)−g[c](x̂δ)‖2

+ (1−ρδ)2‖g[c](x̂δ)−g[c] (x̂δ(t)) ‖2 +(1−ρδ)2‖g[c] (x̂δ(t))−g[c](xct)‖2. (15)

In (15), we next use ρ2‖g[c](xct)− g[c](x̂δ)‖2 = ρ2‖g[c](xct)− g[c] (x̂δ(t)) + g[c] (x̂δ(t))− g[c](x̂δ)‖2, then expand,

and combine like terms to find

‖µc[c](tc + 1)− µ̂δ,[c]‖2 ≤ ((1−ρδ)2+2ρ2)‖µc[c](tc)−µ̂δ,[c]‖
2 + ((1− ρδ)2 + ρ2)‖g[c](xct)− g[c] (x̂δ(t)) ‖2

+ 2ρ2‖g[c](xct)− g[c] (x̂δ(t)) ‖‖g[c] (x̂δ(t))− g[c](x̂δ)‖

+ ((1− ρδ)2 + ρ2)‖g[c] (x̂δ(t))− g[c](x̂δ)‖2.
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Using the Lipschitz property of g[c], we can write

‖µc[c](tc + 1)− µ̂δ,[c]‖2 ≤ ((1−ρδ)2+2ρ2)‖µc[c](tc)−µ̂δ,[c]‖
2 + ((1− ρδ)2 + ρ2)M2

[c]‖x
c
t − x̂δ(t)‖2

+ 2ρ2M2
[c]‖x

c
t − x̂δ(t)‖‖x̂δ(t)− x̂δ‖+ ((1− ρδ)2 + ρ2)M2

[c]‖x̂δ(t)− x̂δ‖
2.

Using ‖x̂δ(t)− x̂δ‖ ≤ Dx, the inequality simplifies to

‖µc[c](tc + 1)− µ̂δ,[c]‖2 ≤ ((1−ρδ)2+2ρ2)‖µc[c](tc)−µ̂δ,[c]‖
2 + ((1−ρδ)2+ρ2)M2

[c]‖x
c
t−x̂δ(t)‖2

+ 2ρ2M2
[c]Dx‖xct−x̂δ(t)‖+ ((1−ρδ)2+ρ2)M2

[c]D
2
x. (16)

Using Definition 2, define x̃c(tc) as the primal variable whose distance is greatest from the optimal value at

primal time κ(c, tc). That is, x̃c(tc) := maxj∈Ip ‖xj(κ(c, tc), tc)− x̂δ(t)‖. Using this, the contraction property of

primal updates from Lemma 4, and the definition of Dx, we find

‖xct − x̂δ(t)‖ ≤ ‖x̃c(tc)− x̂δ(t)‖ ≤
√
n‖x̃c(tc)− x̂δ(t)‖∞ ≤ qops(κ(c,tc),t)

p

√
nDx.

Applying this result to (16) above gives

‖µc[c](tc + 1)− µ̂δ,[c]‖2 ≤ ((1−ρδ)2+2ρ2)‖µc[c](tc)−µ̂δ,[c]‖
2 + ((1−ρδ)2+ρ2)nM2

[c]q
2ops(κ(c,tc),t)
p D2

x

+ 2ρ2
√
nM2

[c]D
2
xq

ops(κ(c,tc),t)
p + ((1−ρδ)2+ρ2)M2

[c]D
2
x.

Using ρ < 2δ
δ2+2 , we have qd = (1− ρδ)2 + 2ρ2 ∈ (0, 1), completing the proof. �

Lemma 6: Let all conditions and definitions of Lemma 5 hold. Let T (t) = minc tc be the minimum number of

updates any one dual agent has performed by time t and let K(t) be the minimum number of operations primal

agents completed on any primal block used to compute any dual block from µ(0) to µ(t). Then, Algorithm 1’s

convergence for µ obeys

‖µ(t)−µ̂δ‖2≤qT (t)
d ‖µ(0)−µ̂δ‖2+

(
q2K(t)
p (qd−ρ2)nNdM

2D2
x

+ qK(t)
p 2ρ2

√
nNdM

2D2
x + (qd − ρ2)NdM

2D2
x

) 1

1− qd
,

where M := max
x∈X
‖∇g(x)‖ and Nd is the number of dual agents.

Proof: Let Kc(tc) be the minimum number of operations primal agents completed on any primal block used to

compute µ[c] from µ[c](0) to µ[c](tc). Then recursively applying Lemma 5 and using the definition of Kc(tc) gives

‖µc[c](tc)−µ̂δ,[c]‖
2≤qd‖µc[c](tc − 1)− µ̂δ,[c]‖2 + q2Kc(tc)p E1(c) + qKc(tc)p E2(c) + E3(c)

≤ qtcd ‖µ
c
[c](0)−µ̂δ,[c]‖2+

tc−1∑
i=0

qid

(
q2Kc(tc)p E1(c) + qKc(tc)p E2(c) + E3(c)

)
≤ qtcd ‖µ

c
[c](0)− µ̂δ,[c]‖2 +

(
q2Kc(tc)p E1(c) + qKc(tc)p E2(c) + E3(c)

)1− qtcd
1− qd

, (17)
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where the last inequality uses qd ∈ [0, 1) and sums the geometric series. We now derive a bound on the entire µ

vector at time t. Expanding ‖µ(t)− µ̂δ‖2 allows us to write

‖µ(t)− µ̂δ‖2 =

Nd∑
c=1

‖µc[c](tc)−µ̂δ,[c]‖
2

≤
Nd∑
c=1

qtcd ‖µ
c
[c](0)− µ̂δ,[c]‖2 +

(
q2Kc(tc)p E1(c) + qKc(tc)p E2(c) + E3(c)

)1− qtcd
1− qd

≤
Nd∑
c=1

qtcd ‖µ
c
[c](0)−µ̂δ,[c]‖2 +

(
q2K(t)
p (qd−ρ2)nNdM

2D2
x

+ qK(t)
p 2ρ2

√
nNdM

2D2
x + (qd − ρ2)NdM

2D2
x

) 1

1− qd
,

where the first inequality applies (17) and the second uses Kc(tc) ≥ K(t), M2
[c] ≤ NdM

2, and simplifies. Applying

the summation and definition of T (t) completes the proof. �

3) Proof of Theorem 3: We see that

‖xi(k; t)−x̂δ‖2 = ‖xi(k; t)−x̂δ(t) + x̂δ(t)−x̂δ‖2

≤ 2‖xi(k; t)− x̂δ(t)‖2 + 2‖x̂δ(t)− x̂δ‖2

≤ 2n‖xi(k; t)− x̂δ(t)‖2∞ +
2M2

β2
‖µ(t)− µ̂δ‖2,

where the last line applies Lemma 4.1 in [24]. Next, applying Lemmas 4 and 6 gives

‖xi(k; t)−x̂δ‖2≤2nq2ops(k,t)
p max

j
‖xj(kt0; t)−x̂δ(t)‖2∞

+ q
T (t)
d

2M2

β2
‖µ(0)−µ̂δ‖2 +

(
q2K(t)
p

2nNdM
4D2

x(qd−ρ2)

β2

+ qK(t)
p

4ρ2
√
nNdM

4D2
x

β2
+

2NdM
4D2

x(qd − ρ2)

β2

)
1

1− qd
.

Defining C1, C2, and C3 completes the proof. �

C. Proof of Corollary 1:

We first simplify by noting that 2ops(k, t) ≥ K(t) and 2K(t) ≥ K(t). This allows us to factor the bound in

Theorem 3 with qK(t)
p

(
2nmax

j
‖xj(kt0; t)−x̂δ(t)‖2∞ +C1 +C2

)
. Setting this less than or equal to ε1

2 and solving

gives the lower bound on K(t). Similarly, setting q
T (t)
d

2M2

β2 ‖µ(0) − µ̂δ‖2 ≤ ε1
2 gives the lower bound on T (t).

Finally, we set ρ = δ
1+δ2 which results in (qd − ρ2) = 1

1+δ2 . Applying this to C3 and setting less than or equal

to ε2 gives the final bound on δ2. �
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