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Distributed Control for a Multi-Agent System to
Pass through a Connected Quadrangle Virtual Tube

Yan Gao, Chenggang Bai, Quan Quan

Abstract—In order to guide the multi-agent system in a
cluttered environment, a connected quadrangle virtual tube is
designed for all agents to keep moving within it, whose basis
is called the single trapezoid virtual tube. There is no obstacle
inside the tube, namely the area inside the tube can be seen as a
safety zone. Then, a distributed swarm controller is proposed for
the single trapezoid virtual tube passing problem. This issue is
resolved by a gradient vector field method with no local minima.
Formal analyses and proofs are made to show that all agents are
able to pass the single trapezoid virtual tube. Finally, a modified
controller is put forward for convenience in practical use. For
the connected quadrangle virtual tube, a modified switching
logic is proposed to avoid the deadlock and prevent agents from
moving outside the virtual tube. Finally, the effectiveness of the
proposed method is validated by numerical simulations and real
experiments.

Index Terms—Multi-agent system, virtual tube, distributed
control, vector field, artificial potential field.

I. INTRODUCTION

Recently, it is a typical challenge for a multi-agent system
to pass through a cluttered environment and reach the ap-
pointed area [1]. The multi-agent system, especially the multi-
multicopter system, must be capable of planning movements
for all agents reliably and safely. Not only should each agent
avoid collision with obstacles, but the agents also need to avoid
collision with each other [2].

Numerous approaches in the existing literature have been
put forward for controlling a multi-agent system to operate
in a cluttered environment. For a large multi-agent system, it
can be classified into two types according to the number of
agents [1]: formation less than one hundred and swarm up
to thousands. The difference in quantity leads to differences
in behavior and control methods. The formation consists of
cooperative interactions among all agents, the relationship
of which is well-defined for designated objectives [3]. Each
agent in the formation usually remains a prespecified pose
and makes the formation stable and robust [4], [5], [6]. The
affine formation maneuver control is especially suitable for
the transformation control [7]. However, the formation is not
perfect in all circumstances. If there are hundreds or even
thousands of agents in the multi-agent system, the formation
will be too big to maintain feasibility. The increase in quantity
leads to the expansion of physical size, which is infeasible
in many narrow spaces. Besides, when some agents need to
change their locations, it may cause chaos in the formation,
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Fig. 1. A connected quadrangle virtual tube is designed for guiding multiple
multicopters in a cluttered environment.

and the formation controller will become too complex to
maintain the formation stability. Under this circumstance, a
swarm is the best choice, which generally displays emergent
behavior arising from local interactions among the agents [1].
The methods designed for the swarm also suit the formation,
which implies that the swarm has a wider application range
and suits more situations.

For swarm navigation and control, the control-based meth-
ods are widely used because of their simplicity and accessibil-
ity [8]. Although the control-based methods possess a weaker
control performance compared with the multi-agent trajectory
planning [9], [10], they are more suitable for the large-scale
multi-agent system. Control-based methods directly guide the
agents’ movement according to the global path and current
local information [11], [12], [13]. Distributed multi-agent
trajectory planning needs any of the agents to share its
planned trajectory with others via wireless communication,
which brings a huge communication pressure when the number
of agents increases [9]. Control-based methods usually use
a simple controller formula to react to obstacles or other
agents, which have a good quality to achieve a fast and
reactive response to a dynamic environment and a low demand
for computation and communication resources. In [14], the
authors solve the problem of coordinating the motion of a team
of robots with limited field of view in the traditional gradient
systems. The conclusions in this paper is helpful for our future
work. Besides, the control barrier function (CBF) method
is also popular in recent years, which is summarized as a
quadratic programming (QP) problem with better performance
and higher demand on the computational resources [13].

The method proposed in this paper is a type of artificial
potential field (APF) method belonging to control-based meth-
ods [15]. The APF method can be seen as a gradient vector
field method. In contrast, there are also non-potential vector
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field methods, whose curls are non-zero. However, the function
forms of the non-potential vector field methods are limited,
the stability proof of which are also non-trivial [16], [17].
Compared with the CBF method, the APF method is especially
suitable for dealing with multi-objective compositions at the
same time, which is rather complicated for the CBF method, as
multiple hard safety constraints may cause no feasible solution.
Existing literature is limited to the combination of similar
and complementary objectives, such as collision avoidance
and connectivity maintenance [18]. For the APF method, each
control objective can be described as a potential function. By
summing up all potential functions, the corresponding vector
field is directly generated with a negative gradient operation.
Nevertheless, inappropriate definitions of the potential field
will cause various problems, in which the most serious is local
minima [19]. The local minima problem is the appearance of
unexpected equilibrium points where the composite potential
field vanishes.

Motivated by the current studies, we present a connected
quadrangle virtual tube to guide the multi-agent system in
a cluttered environment, whose basis is a single trapezoid
virtual tube. The term “virtual tube” appears in the AIRBUS’s
Skyways project [20]. In our previous work [11], the straight-
line virtual tube is proposed for the air traffic control as flight
routes are usually composed of several line segments. There is
no obstacle inside the virtual tube, which implies that the area
inside can be seen as a safety zone. In this paper, the concept
of the virtual tube is generalized. The connected quadrangle
virtual tube is more suitable for guiding the multi-agent system
to move within a narrow corridor, through a window or a
doorframe. Besides, as a trapezoid or a quadrangle becomes
a rectangle when edges are perpendicular to each other, this
novel virtual tube can also be used for the air traffic control.
As shown in Fig. 1, the concept of the connected quadrangle
virtual tube is similar to the lane for autonomous road vehicles
in [21] and the corridor for a multi-UAV system in [22], [23].

For the connected quadrangle virtual tube, two problems
are summarized, namely connected quadrangle virtual tube
planning problem and connected quadrangle virtual tube pass-
ing problem. This paper only aims to solve the latter one.
For the former problem, the virtual tube can be automatically
generated from a given environment with the traditional path
planning algorithm [24], [25]. Another feasible approach is to
expand an existing path, which performs like a “teach-and-
repeat” system [26]. When there are M agents, the distributed
multi-agent trajectory planning has to plan M trajectories,
while our method only needs one trajectory to generate a
virtual tube. The connected quadrangle virtual tube passing
problem is solved in this paper with a distributed vector field
method, which can be seen as a modified APF method.

From the straight-line virtual tube in [11] to the connected
quadrangle virtual tube, the main challenge is the controller
design. As the width of the virtual tube in this paper is
not immutable, the controller for a single straight-line virtual
tube cannot directly apply to a single trapezoid virtual tube.
Otherwise, there may exist a deadlock problem. Besides, the
switching logic between adjacent quadrangles should be de-
signed carefully to avoid the deadlock. There is no uncertainty

considered in this paper, and all agents are able to obtain the
information clearly and execute the velocity command exactly.
In real practice, the separation theorem in our previous work
[27] can be introduced to deal with the position estimate
noise, the broadcast delay, the packet loss and the transient
performance caused by some filters and observers. In short, all
uncertainties are considered in the design of the safety radius,
and the controller is irrelevant to uncertainties. Besides, in our
recent work [28], it is shown that the cohesion behavior and the
velocity alignment behavior of the flocking algorithm are able
to reduce the influence of the position measurement drift and
the velocity measurement error, respectively. Relative control
terms can be added to the controller proposed in this paper.

In this paper, two models for agents and trapezoid virtual
tubes are first proposed. Then, two problems to be solved
are defined. A new type of Lyapunov function, called Line
Integral Lyapunov Function, is designed to guide agents to
reach the finishing line. Besides, the single panel method and
a Lyapunov-like barrier function are proposed for restricting
agents to moving inside the virtual tube and avoiding collision
with each other. Finally, a distributed swarm controller with a
necessary saturation constraint is designed. For practical use, a
modified swarm controller with a similar control effect is also
presented. For the connected quadrangle virtual tube passing
problem, a modified switching logic is proposed. We prove
that the multi-agent system is able to pass through the single
trapezoid virtual tube and the connected quadrangle virtual
tube based on the invariant set theorem [29, p. 69]. The major
contributions of this paper are summarized as follows:

• Based on the straight-line virtual tube introduced in our
previous work [R1], the connected quadrangle virtual tube
is proposed, which is especially suitable for guiding a multi-
agent system in cluttered environments, such as moving
within a narrow corridor, passing through a window or a
doorframe. The connected quadrangle virtual tube makes
a significant advance over existing planning and formation
methods. Also, this work opens a new way of planning from
a single agent having a one-dimensional path to multiple
agents sharing a two-dimensional virtual tube.

• A local minima-free potential field controller is proposed for
guiding the agents inside the trapezoid virtual tube. As the
width of the virtual tube in this paper is not immutable, the
proposed controller is different from the controller in [R1].
Otherwise, there may exist a deadlock problem. Besides, we
present a switching logic to transfer the quadrangle control
problem to several single trapezoid control problems. When
agents are transitioning between trapezoids, the switching
logic is designed properly to avoid the deadlock.

• A formal proof is proposed to show that there is no collision
among agents, and all agents can keep within the virtual tube
and pass through the finishing line without getting stuck.
The key to the proof is the use of the single panel method,
which is a part of the final local minima-free potential field
function. The single panel method ensures that the angle
between the orientation of the virtual tube keeping term
and the orientation of the line approaching term is always
smaller than 90◦.
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Fig. 2. Single trapezoid virtual tube.

II. PROBLEM FORMULATION

A. Agent Model

In this paper, the multi-agent system considered consists of
M agents in a horizontal plane R2. Each agent is velocity-
controlled with a single integral holonomic kinematics

ṗi = vc,i, (1)

in which vc,i ∈ R2, pi ∈ R2 are the velocity command and
position of the ith agent, respectively. Besides, vm,i > 0 is
set as the maximum permitted speed of the ith agent. Hence
it is necessary to make vc,i subject to a saturation function
vc,i = sat

(
v′c,i, vm,i

)
= κvm,i

(
v′c,i
)
v′c,i, where v′c,i ∈ R2 is

the original velocity command and

sat
(
v′c,i, vm,i

)
,

v′c,i
∥∥v′c,i∥∥ ≤ vm,i

vm,i
v′c,i

‖v′c,i‖
∥∥v′c,i∥∥ > vm,i

,

κvm,i

(
v′c,i
)
,

{
1

∥∥v′c,i∥∥ ≤ vm,i
vm,i

‖v′c,i‖
∥∥v′c,i∥∥ > vm,i

.

It is obvious that 0 < κvm,i

(
v′c,i
)
≤ 1. In the following,

κvm,i

(
v′c,i
)

will be written as κvm,i for short. Besides, v′c,i and
vc,i always have the same direction. When an agent is modeled
as a single integrator just like (1), such as multicopters,
helicopters and certain types of wheeled robots equipped with
omni-directional wheels [2], the designed velocity command
vc,i can be directly applied to control the agent. When the
model considered is more complicated, such as a second-
order integrator model, additional control laws are necessary
[30]. Besides, in our previous work [11], we propose a filtered
position model converting a second-order model to a first-order
model just like (1).

B. Connected Quadrangle Virtual Tube Model

As any quadrangle can be considered to be contained in a
trapezoid, we first propose a model for the single trapezoid
virtual tube. Then the model for the connected quadrangle
virtual tube is presented.
• Single Trapezoid Virtual Tube. As shown in Fig. 2, a

single trapezoid virtual tube T (pfr,pfl ,psl,psr) locates in
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Fig. 3. Connected quadrangle virtual tube.

a horizontal plane R2. Points pfl,pfr,psl,psr ∈ R2 are four
vertices of the trapezoid. Sometimes, T (pfr,pfl ,psl,psr)
will be written as T for short. There are two parallel bases in
the trapezoid, namely [pfr,pfl] and [psr,psl]. Line segments
[pfr,psr] and [pfl,psl] are two legs. Then the trapezoid virtual
tube T is expressed as

T =
{
x ∈ R2 : nT

l (x− pfl) ≥ 0,nT
r (x− pfr) ≥ 0,

−tT
c (x− pfr) ≥ 0,−tT

c (x− psr) ≤ 0
}
.

And the boundary of T is shown as

∂T =
{
x ∈ T : nT

l (x− pfl) = 0 ∪ nT
r (x− pfr) = 0

}
,

where unit vectors nl,nr ∈ R2 are linearly independent
of unit vector tc ∈ R2. Moreover it is obtained that
nT

l (psl − pfl) = 0, nT
r (psr − pfr) = 0, tT

c (psr − psl) = 0.
• Cross Section. For any point p ∈ T , a cross section passing
p is defined as

C (p) =
{
x ∈ R2 : tT

c (x− p) = 0 ∩ T
}
.

Here, C (pf) = C (pfr) = C (pfl) is called the fin-
ishing line or finishing cross section, where pf is any
point located on the finishing line. Furthermore, points
pl (p) ,pr (p) ∈ R2 are the intersection points of
the cross section C (p) with the tube boundary ∂T ,
namely pl (p) =

{
x ∈ C (p) : nT

l (x− pfl) = 0
}

, pr (p) ={
x ∈ C (p) : nT

r (x− pfr) = 0
}
. The width of C (p) is de-

noted by 2rt (p) , which is defined as

rt (p) ,
1

2
‖pr (p)− pl (p)‖ .

The width of the trapezoid virtual tube is further de-
fined as rt (T ) = inf

p∈T
rt (p). Besides, the middle point

m (p) ∈ C (p) of the cross section C (p) is defined as
m (p) , 1

2 (pl (p) + pr (p)) .
• Connected Quadrangle Virtual Tube. As shown in Fig.

3, we further define the model of a connected quadrangle
virtual tube with the definition of a single trapezoid virtual
tube. Here a connected quadrangle virtual tube Q composed
of N quadrangles is proposed as

Q = ∪
q=1,··· ,N

Qq (pfr,q,pfl,q,pfl,q−1,pfr,q−1) , (2)

where Qq is the qth quadrangle, q = 1, · · · , N . And the
boundary of Q is

∂Q = ∪
q=1,··· ,N

∂Qq (pfr,q,pfl,q,pfl,q−1,pfr,q−1) ,
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where ∂Qq is the boundary of the qth quadrangle. The
quadrangle Qq has two similar but different definitions in
the following

Q′q =
{
x ∈ R2 : nT

l,q (x− pfl,q) ≥ 0,nT
r,q (x− pfr,q) ≥ 0,

−tT
c,q (x− pfr,q) ≥ 0, tT

c,q−1 (x− pfl,q−1) ≥ 0
}

or

Q′′q =
{
x ∈ R2 : nT

l,q (x− pfl,q) ≥ 0,nT
r,q (x− pfr,q) ≥ 0,

−tT
c,q (x− pfr,q) ≥ 0, tT

c,q−1 (x− pfr,q−1) ≥ 0
}
.

And ∂Qq is shown as

∂Qq =
{
x ∈ Qq :nT

l,q (x− pfl,q) = 0∪nT
r,q (x− pfr,q) = 0

}
.

The unit vectors nl,q,nr,q ∈ R2 are linearly independent
of unit vector tc,q ∈ R2, q = 1, · · · , N . Different from
the trapezoid, two bases in the quadrangle, [pfr,q,pfl,q]
and [psr,q,psl,q], are not necessarily parallel. Without loss
of generality, as any quadrangle can be contained in a
corresponding trapezoid, we let the quadrangle Q1 be a
trapezoid, namely

Q1 (pfr,1,pfl,1,pfl,0,pfr,0) = T (pfr,1,pfl,1,pfl,0,pfr,0) . (3)

Obviously, it is obtained thatQq∩Qq+1 = [pfl,q,,pfr,q] ,Qp∩
Qr = ∅, |p− r| ≥ 2, where q = 1, · · · , N − 1, p =
1, · · · , N, r = 1, · · · , N.

C. Two Areas around an Agent

Similarly to our previous work [11], two types of circu-
lar areas around an agent are introduced for the avoidance
control, namely safety area and avoidance area. At the time
t > 0, the safety area Si of the ith agent is defined
as Si (t) =

{
x ∈ R2 : ‖x− pi (t)‖ ≤ rs

}
, where rs > 0

is the safety radius. For all agents, no conflict with each
other implies that Si ∩ Sj = ∅, namely ‖pi − pj‖ > 2rs,
where i, j = 1, · · · ,M, i 6= j. Besides, the avoidance area
is defined for starting the avoidance control. At the time
t > 0, the avoidance area Ai of the ith agent is defined
as Ai (t) =

{
x ∈ R2 : ‖x− pi (t)‖ ≤ ra

}
, where ra > 0 is

the avoidance radius. For collision avoidance with any pair
of agents, if there exist Ai ∩ Sj 6= ∅ and Aj ∩ Si 6= ∅,
namely ‖pi − pj‖ ≤ ra + rs, then the ith and jth agents
should avoid each other. The set Nm,i is defined as the
collection of all labels of other agents whose safety areas have
intersection with the avoidance area of the ith agent, namely
Nm,i = {j : Ai ∩ Sj 6= ∅} , where i, j = 1, · · · ,M, i 6= j.
Besides, when the jth agent or the tube boundary just enters
the avoidance area Ai of the ith agent, it is required that there
is no conflict in the beginning. Therefore, at least we set that
ra > rs.

D. Virtual Tube Passing Problem Formulation

With the descriptions above, some extra assumptions are
proposed to get the main problem of this paper.

Assumption 1. The agents’ initial conditions satisfy
Si (0) ⊂ T (for the single trapezoid virtual tube passing
problem) or Si (0) ⊂ Q (for the connected quadrangle virtual

tube passing problem), and Si (0) ∩ Sj (0) = ∅, where
i, j = 1, · · · ,M, i 6= j.

Assumption 2. Once an agent arrives at the finishing
line C (pf) = [pfr,,pfl] (for the single trapezoid virtual tube
passing problem, pf ∈ [pfr,pfl]) or C (pf) = [pfr,N ,pfl,N ]
(for the connected quadrangle virtual tube passing problem,
pf ∈ [pfr,N ,pfl,N ]), it will quit the virtual tube not to affect
other agents behind. Mathematically, given ε0 > 0, an agent
arrives near C (pf) if

− tT
c (pi − pf) ≤ ε0, (4)

where −tc is the moving direction of the single trapezoid
virtual tube or the last quadrangle virtual tube.

Based on Assumptions 1, 2, two main problems are stated
in the following.
• Single trapezoid virtual tube passing problem. Under

Assumptions 1, 2, design the velocity command vc,i to guide
all agents to pass the finishing line C (pf) = [pfr,pfl] of the
trapezoid virtual tube T , meanwhile avoiding collision with
other agents (Si (t) ∩ Sj (t) = ∅) and keeping within the
virtual tube (Si (t) ∩ ∂T = ∅), where i, j = 1, · · · ,M, i 6=
j, t > 0.

• Connected quadrangle virtual tube passing problem.
Under Assumptions 1, 2, design the velocity command vc,i
to guide all agents to pass the finishing line C (pf) =
[pfr,N ,pfl,N ] of the connected quadrangle virtual tube Q,
meanwhile avoiding collision with other agents (Si (t) ∩
Sj (t) = ∅) and keeping within the virtual tube (Si (t) ∩
∂Q = ∅), where i, j = 1, · · · ,M, i 6= j, t > 0.
Remark 1. Since there exists the relationship (3), the single

trapezoid virtual tube passing problem can be considered as the
first quadrangle virtual tube passing problem of the connected
quadrangle virtual tube passing problem. Besides, the number
of agents is not limited, as long as the virtual tube can contain
these agents in the beginning.

III. DISTRIBUTED CONTROL FOR PASSING A SINGLE
TRAPEZOID VIRTUAL TUBE

A. Preliminaries

1) Line Integral Lyapunov Function for Vectors: A new
type of Lyapunov function for vectors, called Line Integral
Lyapunov Function, is designed as

Vli (y) =

∫
Sy

sat (x, a)
T dx, (5)

where a > 0, x ∈ R2, Sy is a smooth curve from 0 to y ∈ R2.
In the following lemma, we will show its properties.

Lemma 1 [11]. Suppose that the line integral Lyapunov
function Vli (y) is defined as (5). Then it is obtained that (i)
Vli (y) > 0 if ‖y‖ 6= 0; (ii) if ‖y‖ → ∞, then Vli (y) → ∞;
(iii) if Vli (y) is bounded, then ‖y‖ is bounded.

2) Two Smooth Functions: Two smooth functions are de-
fined for the design of Lyapunov-like barrier functions in our
previous work [11]. The first is

σ (x, d1, d2)=

 1
Ax3+Bx2+Cx+D

0

x ≤ d1
d1 ≤ x ≤ d2
d2 ≤ x

(6)



5

with A = −2
/

(d1 − d2)
3
, B = 3 (d1 + d2)

/
(d1 − d2)

3
,

C = −6d1d2

/
(d1 − d2)

3 , D = d22 (3d1 − d2)
/

(d1 − d2)
3 .

And the other is

s (x, εs)=


x

(1−εs) +

√
ε2s−(x− x2)2

1

0 ≤ x ≤ x1
x1 ≤ x ≤ x2
x2 ≤ x

(7)

with x2 = 1 + 1
tan 67.5◦ εs and x1 = x2 − sin 45◦εs.
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Fig. 4. Vector field of a single panel [31].

3) Single Panel Method: Panel methods are widely used
in aerodynamics calculations to obtain the solution to the
potential flow problem around arbitrarily shaped bodies [31].
Here the single panel method is used to represent the repulsive
potential field of the tube boundary. Assume that there is a
line segment [a,b], the potential at any point p induced by
the sources contained within a small element dx is shown as

dφ = ln

(∥∥∥∥p− (a + x
b− a

‖b− a‖

)∥∥∥∥− d) dx,

where d ≥ 0 is the threshold distance. The induced repulsive
potential function by the whole panel [a,b] is expressed as

φ (p,a,b, d)

=

∫ ‖b−a‖
0

ln

(∥∥∥∥p− (a + x
b− a

‖b− a‖

)∥∥∥∥− d) dx. (8)

Given a = [0 − 1]
T, b = [0 1]

T, d = 0, the corresponding
negative vector field −∂φ/∂p is shown in Fig. 4. It can be
seen that the orientation is orthogonal to the line segment [a,b]
when the point p locates at the line y = 0. The orientation
is parallel to [a,b] when the point p locates at the line x =
0. As the potential function φ is smooth and differentiable,
the orientation of the vector field also changes smoothly. This
phenomenon is important for the proof of no deadlock in the
following.

4) Error Definition: Here two errors are defined. The first
is the projection error between the ith agent and the finishing
line C (pfr), namely

p̃l,i , Pt (pi − pfr) ,

where i = 1, · · · ,M and the matrix Pt = PT
t = tct

T
c is a

positive semi-definite projection matrix mapping a vector in

the direction of tc. The second is a position error between the
ith and jth agent, which is shown as

p̃m,ij , pi − pj ,

where i, j = 1, · · · ,M, i 6= j. Then, according to (1), the
derivatives of these errors are shown as

˙̃pl,i = Ptvc,i, (9)
˙̃pm,ij = vc,i − vc,j . (10)

B. Lyapunov-Like Function Design and Analysis
1) Line Integral Lyapunov Function for Approaching Fin-

ishing Line: Define a smooth curve Sp̃l,i from 0 to p̃l,i. The
line integral of sat (x, vm,i) along Sp̃l,i is shown as

Vl,i =

∫
Sp̃l,i

sat (k1x, vm,i)
T dx, (11)

where k1 > 0. From the definition, it is obtained that Vl,i ≥ 0.
According to the line integrals of vectors, the function (11) is
rewritten as [11]

Vl,i =

∫ t

0

sat (k1p̃l,i (τ) , vm,i)
T ˙̃pl,i (τ) dτ

=

∫ t

0

sat (k1p̃l,i (τ) , vm,i)
T
Ptvc,i (τ) dτ. (12)

The objective of the designed velocity command is to make
Vl,i zero, which implies that ‖p̃l,i‖ = 0 according to (12),
namely the ith agent arrives at the finishing line C (pf).

2) Barrier Function for Avoiding Conflict among Agents:
According to two smooth functions introduced in (6) and (7),
the barrier function for the ith agent to avoid conflict with the
jth agent is defined as

Vm,ij =
k2σm (‖p̃m,ij‖)

(1 + εm) ‖p̃m,ij‖ − 2rss
(
‖p̃m,ij‖

2rs
, εs

) , (13)

where k2, εm, εs > 0. Based on the definitions of the safety
area and the avoidance area, the smooth function σ (·) in (6) is
defined as σm (x) , σ (x, 2rs, ra + rs). The detailed properties
of Vm,ij is presented in our previous work [11]. The objective
of the designed velocity command is to make Vm,ij zero or as
small as possible, which implies that ‖p̃m,ij‖ > 2rs, namely
the ith agent will not conflict with the jth agent. Compared
with other traditional potential field functions and barrier
functions, our barrier function (13) has a boarder domain of
definition and more threshold distances.

3) Barrier Function for Keeping within Virtual Tube: As
shown in Fig. 5, we first define two extended tube boundaries,
[pfl,psle] and [pfr,psre], which satisfy

[pfl,psl] ⊆ [pfl,psle] , (14)
[pfr,psr] ⊆ [pfr,psre] , (15)

namely the line segments [pfl,psle], [pfr,psre] are longer than
[pfl,psl], [pfr,psr], respectively. According to the potential
function of the single panel (8), two barrier functions for the
ith agent to keep within the virtual tube are defined as

Vtl,i = k3φ (pi,psle,pfl, rs) , (16)
Vtr,i = k3φ (pi,psre,pfr, rs) , (17)
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flp
slp

srp

ct

srep

frp

Fig. 5. Vector field of the left extend tube boundary [pfl,psle].

where k3 > 0. For deadlock avoidance, the chosen of points
psle, psre must meet the following requirements

−tT
c

(
∂Vtl,i

∂pi

)T

≥ 0,pi ∈ T , (18)

−tT
c

(
∂Vtr,i

∂pi

)T

≥ 0,pi ∈ T . (19)

As shown in Fig. 5, the constraints (18), (19) imply that the
angles between negative gradient directions of Vtl,i, Vtr,i inside
the virtual tube T and the moving direction tc must keep
smaller than 90◦, which plays a crucial role in the stability
proof. It is obvious that if line segments [pfl,psle], [pfr,psre]
are long enough, the constraints (18), (19) are always satisfied.

The objective of the designed velocity command is to
make Vtl,i and Vtr,i as small as possible, which implies that
dist (pi, [pfl,psle]) > rs and dist (pi, [pfr,psre]) > rs, where
the function dist (·) is defined as the Euclidean distance,
namely the ith agent will keep within the virtual tube.

C. Distributed Swarm Controller

The velocity command of the ith agent is designed as

vc,i =− sat

Ptsat (k1p̃l,i, vm,i)︸ ︷︷ ︸
Line Approaching

+
∑

j∈Nm,i

− bijp̃m,ij︸ ︷︷ ︸
Agent Avoidance

+

(
∂Vtl,i

∂pi

)T

+

(
∂Vtr,i

∂pi

)T

︸ ︷︷ ︸
Virtual Tube Keeping

, vm,i

 , (20)

where bij = − ∂Vm,ij

∂‖p̃m,ij‖
1

‖p̃m,ij‖ . The controller (20) is a dis-
tributed swarm control form and can work autonomously
without wireless communication. The ID of any neighboring
agent is not required. Consider a scenario that an agent is
moving within a trapezoid virtual tube, in the middle of which
there exists the other agent. Fig. 6 shows the potential field of
this trapezoid virtual tube. It can be observed that the value
of the potential field near the line x = 0m is larger than the
value near the line x = 10m. Besides, the positions near the
tube boundary and the other agent have very large values of

the potential field. Hence, the agent with its initial position
at the line x = 0m will “slide down to” the line x = 10m
meanwhile avoiding collision with the other agent and keeping
moving inside the virtual tube.

Fig. 6. Potential field of the trapezoid virtual tube. There are some small
modifications on the value, whose purpose is to make the figure more intuitive.

D. Stability Analysis

In order to investigate the stability of the proposed con-
troller, a function is defined as follows

V =

M∑
i=1

Vl,i +
1

2

M∑
j=1,j 6=i

Vm,ij + Vtl,i + Vtr,i

 ,

where Vl,i, Vm,ij , Vtl,i, Vtr,i are defined in (12), (13), (16), (17)
respectively. According to (9), (10), the derivative of V is
shown as

V̇ =

M∑
i=1

(
sat (k1p̃l,i, vm,i)

T
Ptvc,i

−1

2

M∑
j=1,j 6=i

bijp̃
T
m,ij (vc,i − vc,j) +

∂Vtl,i

∂pi
vc,i +

∂Vtr,i

∂pi
vc,i


=

M∑
i=1

Ptsat (k1p̃l,i, vm,i) +
∑

j∈Nm,i

−bijp̃m,ij

+

(
∂Vtl,i

∂pi

)T

+

(
∂Vtl,i

∂pi

)T
)T

vc,i.

With the definitions of Nm,i and Vm,ij , there exists∑M
j=1,j 6=i bijp̃m,ij =

∑
j∈Nm,i

bijp̃m,ij . By using the velocity
command (20) for all agents, V̇ satisfies V̇ ≤ 0.

Before introducing the main result, an important lemma is
needed.

Lemma 2. [11] Under Assumptions 1, 2, suppose that
the velocity command is designed as (20). Then there exist
sufficiently small εm, εs > 0 in bij such that ‖p̃m,ij (t)‖ > 2rs,
dist (pi (t) , [pfl,psl]) > rs, dist (pi (t) , [pfr,psr]) > rs, t ∈
[0,∞) for all pi(0), i, j = 1, · · · ,M, i 6= j.

With Lemmas 1, 2 in hand, the main result is stated as
follows.

Theorem 1. Under Assumptions 1, 2, suppose that (i) the ve-
locity command is designed as (20); (ii) given ε0 > 0, if (4) is
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satisfied, then bij ≡ 0, (∂Vtl,i/∂pi)
T ≡ 0, (∂Vtr,i/∂pi)

T ≡ 0,
which implies that the ith agent is removed from the virtual
tube mathematically. Then, given ε0 > 0, there exist suffi-
ciently small εm, εs > 0 in bij and t1 > 0 such that all agents
can satisfy (4) at t ≥ t1, meanwhile ensuring ‖p̃m,ij (t)‖ >
2rs, dist (pi (t) , [pfl,psl]) > rs, dist (pi (t) , [pfr,psr]) > rs,
t ∈ [0,∞) for all pi(0), i, j = 1, · · · ,M, i 6= j.

Proof. See Appendix. �

E. Modified Distributed Swarm Controller
The controller (20) has two apparent imperfections in use.

• The first problem is that any agent can approach the finishing
line but its speed will slow down to zero. The reason is that
p̃l,i = 0 when pi locates on C (pf).

• The second problem is that the values of psle, psre are diffi-
cult to obtain. The specific mathematical forms of ∂Vtl,i/∂pi

and ∂Vtr,i/∂pi are also very complicated and inconvenient
for practical use.
To solve the first problem, we define a modified finish-

ing line C (p′fr) as shown in Fig. 2, denoted by C (p′fr) ={
x ∈ R2 : tT

c (x− p′fr) = 0
}
, where p′fr = pfr + γtc, γ =

max(vm,i)
k1

. In this case, the line approaching term becomes

Ptsat (k1Ptp̃l,i, vm,i)

= Ptsat (k1Pt (pi − pfr)−max (vm,i) tc, vm,i) = −vm,itc.

To solve the second problem, a non-potential term is in-
troduced to approximate the performance of ∂Vtl,i/∂pi and
∂Vtr,i/∂pi. An Euclidean distance error is defined between
the ith agent and the tube boundary, which is shown as

dt,i , rt (pi)− ‖pi −m (pi)‖ .
The derivative of this error is shown as

ḋt,i =

(
∂rt (pi)

∂pi
− (pi −m (pi))

T

‖pi −m (pi)‖

(
I2 −

∂m (pi)

∂pi

))
vc,i.

For ensuring Si∩∂T = ∅, at least dt,i > rs is required. How-
ever, this constraint is not enough because the real distance
from pi to ∂T , which may be dist (pi, [pfr,psr]), is usually
smaller than dt,i as shown in Fig. 7. Hence, we put forward a
revised safety radius and have the following proposition.

( )im p

ip

r

( )i i−p m p

( ) ( )t i i ir − −p p m p

srp

frp

 ( )fr srdist , ,ip p p

Fig. 7. The reason for proposing the revised safety radius.

Proposition 1. For any pi ∈ T , if and only if dt,i > r′s,
then Si∩∂T = ∅. The constant r′s is the revised safety radius,
which is defined as

r′s =
rs

min
(
−tT

c
psl−pfl
‖psl−pfl‖ ,−t

T
c

psr−pfr
‖psr−pfr‖

) . (21)

Proof. Define θr as the angle between the line psrpfr
and the vector −tc. And θl is the angle between the line
pslpfl and the vector −tc. These two angles satisfy cos θr =
−tT

c
psr−pfr
‖psr−pfr‖ and cos θl = −tT

c
psl−pfl
‖psl−pfl‖ . For any pi ∈

T , as shown in Fig. 7, the distance from pi to ∂T is
shown as dist (pi, ∂T ) = cos θl (rt (pi)− ‖pi −m (pi)‖) or
dist (pi, ∂T ) = cos θr (rt (pi)− ‖pi −m (pi)‖). If and only
if Si ∩ ∂T = ∅, then dist(pi, ∂T ) > rs. �

Then the barrier function for the ith agent to keep within
the virtual tube is defined as

Vt,i =
k3σt (dt,i)

(1 + εt) dt,i − r′ss
(

dt,i
r′s
, εs

) , (22)

where εt > 0. Here the smooth function σ (·) in (6) is
defined as σt (x) , σ (x, r′s, ra) . The function Vt,i has similar
properties to Vm,ij . The objective of the designed velocity
command is to make Vt,i zero or as small as possible. This
implies that dt,i > r′s, namely the ith agent will keep within
the virtual tube.

0 2 4 6 8 10

X/m

0

1

2

3

4

5

6

7

8

9

10

Y
/m

Fig. 8. Vector field of a trapezoid virtual tube with the modified controller
(23).

Let p be the collection (p1, · · · ,pM ). Then the modified
distributed swarm controller is shown as

vc,i =v (T ,pi,p, r
′
s) (23)

=−sat

−vm,itc −
∑

j∈Nm,i

bijp̃m,ij + (I2 −Pt) ci, vm,i

 ,

where (I2 −Pt) ci is the modified virtual tube keeping term
and ci is expressed as

ci =
∂Vt,i

∂dt,i

(
∂rt (pi)

∂pi
− (pi −m (pi))

T

‖pi −m (pi)‖

(
I2 −

∂m (pi)

∂pi

))T

.

Consider a scenario that an agent is moving within a trapezoid
virtual tube, in the middle of which there exists another agent.
Fig. 8 shows the vector field of this trapezoid virtual tube with
the modified swarm controller (23).

Remark 2. The term ci is the gradient of Vt,i, namely
ci = (∂Vt,i/∂pi)

T, which is orthogonal to the line psrpfr
or pslpfl. And (I2 −Pt) ci is a non-potential velocity com-
mand component, which is always orthogonal to tc. To avoid
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sl,q
p

fl,qp

fr,qp

( )fl, 1 sl,q q−p p

fr,q
p

(a) Case A

(b) Case B

( )fl, 1 sl,q q−
p p

( )fr, 1 sr,q q−p p

fl,qp

fr,qpsr,q
p

fl,q
p

sl,qp Quadrangle
Inscribed 

trapezoid

Circumscribed 

trapezoid
Bottom 

trapezoid

Quadrangle

Circumscribed 

trapezoid

Inscribed 

trapezoid

Bottom 

trapezoid

( )fr, 1 sr,q q−
p psr,qp

Fig. 9. Inscribed trapezoid, circumscribed trapezoid and bottom trapezoid of
a quadrangle.

deadlock, directly applying ci in (20) is not feasible. Hence
the use of the single panel method is necessary. Suppose that
there exists [pfl,psl] ⊂ [pfle,psle] and [pfr,psr] ⊂ [pfre,psre],
the orientation changes of ∂Vtl,i/∂pi and ∂Vtr,i/∂pi inside the
virtual tube may be negligibly small if [pfle,psle] and [pfre,psre]
are long enough. Hence, we can choose appropriate points
pfle, psle, pfre, psre so that the orientations of ∂Vtl,i/∂pi and
∂Vtr,i/∂pi are both approximately orthogonal to tc, which
explains why (I2 −Pt) ci can approximate ∂Vtl,i/∂pi and
∂Vtr,i/∂pi. Hence, Theorem 1 also remains valid if its con-
dition (i) is replaced with the velocity command designed as
(23).

Remark 3. Compared with Vtl,i, Vtr,i in (16), (17), the bar-
rier function Vt,i in (22) has its unique advantage of the broader
application. In practice, the case such as dist (pi, ∂T ) < rs
may still happen in practice due to unpredictable uncertainties.
Under this circumstance, the potential functions Vtl,i and Vtr,i
have computation errors, while Vt,i still works well and the
modified keeping term (I2 −Pt) ci dominates the velocity
command v (T ,pi,p, r

′
s), which implies that dt,i will be

increased very fast so that the ith agent can keep away from
the tube boundary immediately.

IV. DISTRIBUTED CONTROL FOR PASSING A CONNECTED
QUADRANGLE VIRTUAL TUBE

A. Control Aeras of a Quadrangle

As in (2), a connected quadrangle virtual tube Q is com-
posed of N single quadrangles. In (23), the distributed swarm
controller for a trapezoid virtual tube has been proposed. How-
ever, this controller is not suitable for an arbitrary quadrangle,
of which any pairs of edges may not be parallel. Hence it is
necessary to transform a quadrangle to several trapezoids.

To design the swarm controller for a connected quadrangle
virtual tube, three areas are defined in a general quadrangle.
First, for the qth quadrangle, the inscribed trapezoid TQq i and
the circumscribed trapezoid TQqc are defined as TQq i = TQ′q ∩
TQ′′q , TQqc = TQ′q ∪ TQ′′q , where

TQ′q =
{
x ∈ R2 : nT

l,q (x− pfl,q) ≥ 0,nT
r,q (x− pfr,q) ≥ 0,

−tT
c,q (x− pfr,q) ≥ 0, tT

c,q (x− pfl,q−1) ≥ 0
}
,

TQ′′q =
{
x ∈ R2 : nT

l,q (x− pfl,q) ≥ 0,nT
r,q (x− pfr,q) ≥ 0,

−tT
c,q (x− pfr,q) ≥ 0, tT

c,q (x− pfr,q−1) ≥ 0
}
. (24)

It is easy to see that TQq i ⊆ Qq ⊆ TQqc. For example,
as shown in Fig. 9, the inscribed trapezoid TQq i and the
circumscribed trapezoid TQqc of the quadrangle Qq are TQq i =

T
(
pfr,q,pfl,q,p

′
sl,q,p

′
sr,q

)
, TQqc = T

(
pfr,q,pfl,q,psl,q,psr,q

)
.

Then, the bottom trapezoid TQqb of Qq is defined as

TQqb =
{
x ∈ R2 : nT

l,q (x− pfl,q) ≥ 0,nT
r,q (x− pfr,q) ≥ 0

}
∩ ((A ∪ B)− (A ∩ B)) ,

where A =
{
x ∈ R2 : tT

c,q−1
(
x− p′sl,q

)
≥ 0
}

, B ={
x ∈ R2 : tT

c,q−1
(
x− p′sr,q

)
≥ 0
}

. As shown in Fig. 9, TQqb
is a trapezoid with a base [pfr,q−1,pfl,q−1] and a diagonal[
p′sl,q,p

′
sr,q

]
, where

[
p′sl,q,p

′
sr,q

]
is further a base of TQq i. Ob-

viously, there exists TQqb ⊂ Qq. Then a following proposition
is proposed.

Proposition 2. If tc,q = tc,q−1, then there exists Qq =
TQq i = TQqc and TQqb = ∅.

Proof. If tc,q = tc,q−1, then Qq is expressed as

Q′q =
{
x ∈ R2 : nT

l,q (x− pfl,q) ≥ 0,nT
r,q (x− pfr,q) ≥ 0,

−tT
c,q (x− pfr,q) ≥ 0, tT

c,q (x− pfl,q−1) ≥ 0
}

or

Q′′q =
{
x ∈ R2 : nT

l,q (x− pfl,q) ≥ 0,nT
r,q (x− pfr,q) ≥ 0,

−tT
c,q (x− pfr,q) ≥ 0, tT

c,q (x− pfr,q−1) ≥ 0
}
.

Recalling (24), there exists Qq = TQ′q , Qq = TQ′′q . Conse-
quently, it is obtained that pfl,q−1 = p′sl,q = psl,q , pfr,q−1 =
p′sr,q = psr,q . This implies that the points p′sl,q and p′sr,q are
on the line pfl,q−1,pfr,q−1. Since tc,q = tc,q−1, we further
have A = B. Therefore, (A ∪ B) − (A ∩ B) = ∅. Thus it is
obtained that TQqb = ∅. �

B. A Direct Switching Logic for Moving across Two Quad-
rangles

When an agent moves across the finishing line of the
quadrangle Qq , it will enter the next quadrangle Qq+1. So
it is necessary to build up a control switching logic between
two adjoint quadrangles. First a direct and straightforward
switching logic is designed as

vc,i = v
(
TQqc,pi,p, r

′
s,q

)
if pi ∈ Qq (25)

where

r′s,q =
rs

min
(
−tT

c,q
psl,q−pfl,q
‖psl,q−pfl,q‖ ,−t

T
c,q

psr,q−pfr,q
‖psr,q−pfr,q‖

)
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( )fl, 1 sl,q q−p p

( )fl, 1 sl,q q−p p

Fig. 10. The difference between the direct switching logic and the modified
switching logic.

and i = 1, · · · ,M , q = 1, · · · , N . This switching logic implies
that if pi is in the qth quadrangle, the ith agent will adopt the
distributed controller (23) to pass through its corresponding
circumscribed trapezoid virtual tube TQqc. As there exists
Qq ⊆ TQqc, the controller (23) can be reused in Qq . However,
there are two problems appearing at the connection between
two quadrangles to be solved.

The first problem is the deadlock. For the sake of sim-
plicity, here the velocity commands are described as forces.
As shown in Fig. 10, for the ith agent in the q + 1th
quadrangle, f1,i is the attractive force from the finishing
line [pfr,q+1,pfl,q+1], f2,i is the repulsive force from other
agents, and f3,i is the repulsive force from the tube boundary,
namely f1,i = −k1κvm,i

Ptp̃
′
l,i, f2,i =

∑M
j=1,j 6=i bijp̃m,ij ,

f3,i = − (I2 −Pt) ci, where i, j = 1, · · · ,M, i 6= j. It should
be noted that f1,i is always perpendicular to f3,i. As shown in
Fig. 10(a), if the 1st agent is the first to arrive at [pfr,q,pfl,q]
and the 2nd agent is the second, then the 1st agent will switch
its controller according to (25). The resultant forces on both
agents may be f1,1 + f2,1 + f3,1 = 0, f1,2 + f2,2 + f3,2 = 0.
The reason for this phenomenon is that the 2nd agent is
closer to [pfr,q+1,pfl,q+1] than the 1st agent at the moment,
although the 1st agent is closer to [pfr,q,pfl,q] than the 2nd
agent. Under this circumstance, the deadlock will happen.
The second problem is that the agent may move outside the
q+ 1th quadrangle virtual tube once the agent just enters this
quadrangle virtual tube because [pfr,q−1,pfr,q], [pfr,q,pfr,q+1]
or [pfl,q−1,pfl,q], [pfl,q,pfl,q+1] have different slopes.

C. A Modified Switching Logic for Moving across Two Quad-
rangles

To solve the two problems proposed in the last subsection,
a modified switching logic is designed as

vc,i =

{
v
(
TQqb,pi,p,max

(
r′s,q−1, r

′
s,q

))
pi∈Qq−TQq i

v
(
TQq i,pi,p,max

(
r′s,q, r

′
s,q+1

))
pi∈TQq i

(26)

where i = 1, · · · ,M , q = 1, · · · , N and r′s,0 = r′s,N+1 = 0.
As shown in Fig. 10(b), when the 1st agent locates in Qq −
TQq i, there is no possibility of deadlock as the attractive force
and repulsive force from the tube boundary of the 1st and 2nd
agents have the same directions. Then the following theorem
is proposed.

Theorem 2. Under Assumptions 1, 2, suppose that (i) the
velocity command is designed as (26); (ii) given ε0 > 0, if
(4) is satisfied, bij ≡ 0 and ci ≡ 0, which implies that the
ith agent is removed from the virtual tube mathematically;
(iii) there exists rt

(
TQqc

)
> max

(
r′s,q−1, r

′
s,q, r

′
s,q+1

)
, q =

1, · · · , N . Then, given ε0 > 0, there exist sufficiently small
εm, εs > 0 in bij , εt > 0 in ci and t1 > 0 such that all agents
satisfy (4) at t ≥ t1, meanwhile ensuring Si (t) ∩ Sj (t) = ∅,
Si (t)∩∂Q = ∅, t ∈ [0,∞) for all pi(0), i, j = 1,· · ·,M, i 6=j.

Proof. Similarly to the proof of Theorem 1, any agent, which
arrives at [pfl,q,pfr,q], can pass through TQq+1b by vc,i =
v
(
TQq+1b,pi,p,max

(
r′s,q, r

′
s,q+1

))
. Since max

(
r′s,q, r

′
s,q+1

)
is adopted, this agent will keep within TQq+1b. As[
p′sl,q+1,p

′
sr,q+1

]
⊂ TQq+1b, there exists a time that one of the

agents, saying the 1st agent, will arrive at
[
p′sl,q+1,p

′
sr,q+1

]
.

According to (26), its controller will switch to vc,1 =
v
(
TQq+1i,p1,p,max

(
r′s,q+1, r

′
s,q+2

))
. As the agent model

(1) is a single-integrator, there is no transition process, namely
the switching logic (26) has no influence on the Lyapunov
analysis. Since max

(
r′s,q+1, r

′
s,q+2

)
is adopted, the 1st agent

will keep within TQq+1i. Condition (iii) is a necessary condi-
tion to show that the circumscribed trapezoid of a quadrangle
is wide enough for at least one agent to pass. Hence, the
1st agent can arrive at [pfl,q+1,pfr,q+1] by Theorem 1 and
all agents can pass throughTQq+1

. If the agent arriving at
[pfl,q+1,pfr,q+1] has no effect on the agents behind, we can
repeat the analysis to conclude this proof, where condition (ii)
is used to analyze QN as there is no next quadrangle virtual
tube anymore. �

V. SIMULATIONS AND EXPERIMENTS

Simulations and experiments are given to show the effective-
ness of the proposed method. A video about simulations and
experiments is available on https://youtu.be/S04n-BMikfM.

A. Numerical Simulation with Different Maximum Velocities

The validity and feasibility of the proposed method is
numerically verified in a simulation. The simulation is imple-
mented on Matlab 2021a, Windows 10, Intel(R) Core(TM) i7-
8700, 32GB DDR4 2666MHz. The simulation step is 0.001s.
Consider a scenario that one multi-agent system composed
of M = 20 agents passes through a predefined connected
quadrangle virtual tube. All the agents satisfy the control
model in (1). The swarm controller in (26) is applied to guide
this multi-agent system. The connected quadrangle virtual
tube is set as shown in Fig. 11, where the first quadrangle
Q1 is a trapezoid. The parameters and initial conditions of
the simulation are set as follows. The control parameters are
k2 = k3 = 1, εm = εt = εs = 10−6. All agents with the safety
radius rs = 0.5m, the avoidance radius ra = 0.8m and initial
speeds being zero are arranged symmetrically in a rectangular

https://youtu.be/S04n-BMikfM
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Fig. 11. Simulation snapshot.

(a) Minimum Distance among Agents (m) (b) Minimum Distance from Tube Boundary (m)
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Fig. 12. Minimum distance among agents and minimum distance from the
tube boundary in the simulation.

space in the beginning. As shown in Fig. 11, the boundaries
of the safety area are represented by red circles. To show the
ability to control different types of agents at the same time with
our proposed method, we set the agents’ maximum speed to
four different constants. The corresponding maximum speed
for each agent is shown with different colors in the center of
the safety area.

The simulation lasts 15 seconds and three snapshots are
shown in Fig. 11. It can be seen that the agents with the largest
speed vm,i = 3.0m/s are in the last column in the beginning.
Then they have the trend to overtake other agents ahead. In
the whole process, agents can change their relative positions
freely instead of maintaining a fixed geometry structure. It is
clear from Fig. 12(a) that the minimum distance between any
two agents is always larger than 2rs = 1m, which implies

t=0s

t=10s

t=25s

t=40s

1

2
3

4

1
3

4 2

1
3

4

2

1
3 2 4

Fig. 13. Experiment snapshot.

that there is no collision in the swarm. In Fig. 12(b), the
minimum distance from the tube boundary among all agents
keeps larger than rs = 0.5m all the time. Therefore, the agents
can avoid colliding with each other and keep moving in the
connected quadrangle virtual tube under the swarm controller
(26). Besides, the average calculation time of our controller
(26) is 0.001737s. The same simulation is implemented with
the CBF method [13] for comparison. The average calculation
time of the CBF method is 0.05725s. It can be observed that
our method has a high computational efficiency.

B. Experiment

A real experiment is carried out in a laboratory room
with M = 4 Tello quadcopters and an OptiTrack motion
capture system, which provides the positions and orientations
of all quadcopters. A laptop computer is connected to Tello
quadcopters and OptiTrack with a local wireless network, run-
ning the proposed distributed controller (26). The connected
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(a) Minimum Distance among Quadcopters (m) (b) Distance from Tube Boundary (m)
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Fig. 14. Minimum distance among quadcopters and distances from the tube
boundary in the experiment. Two curves in plot (b) approaching zero means
that their corresponding quadcopters, namely the 1st and the 3rd quadcopters,
have passed the finishing line of the last quadrangle virtual tube, which can
be confirmed in the snapshot of t = 40s in Fig. 13.

quadrangle virtual tube consists of four parts, in which the
first one is a trapezoid virtual tube. The control parameters are
k2 = k3 = 1, εm = εt = εs = 10−6. All quadcopters have the
safety radius rs = 0.2m, the avoidance radius ra = 0.4m and
the maximum speed vm,i = 0.4m/s, i = 1, · · · , 4. As shown
in Fig. 13, the boundaries of the safety and avoidance area
are represented by red and blue circles respectively. It can be
observed that the initial positions of all quadcopters are at the
first trapezoid virtual tube with initial speeds being zero.

The experiment lasts 40 seconds and four snapshots are
shown in Fig. 13. As same as the numerical simulation, these
quadcopters can change their relative positions freely instead
of maintaining a fixed geometry structure. It is clear from Fig.
14(a) that the minimum distance between any two quadcopters
is always larger than 2rs = 0.4m, which implies that there is
no collision among quadcopters. In Fig. 14(b), the distances
from the tube boundary of all quadcopters keep larger than
rs = 0.2m when the quadcopters are inside the virtual tube.

VI. CONCLUSION

The single trapezoid virtual tube passing problem and
the connected quadrangle virtual tube passing problem are
proposed and then solved in this paper. Based on the artificial
potential field method with a control saturation, the distributed
swarm controller is finally proposed for multiple agents to pass
through a connected quadrangle virtual tube. Lyapunov-like
functions are designed elaborately, and formal analysis and
proofs are made to show that the virtual tube passing problem
can be solved, namely all agents avoid collision with each
other and keep within the virtual tube in Lemma 1, and all
agents pass through the virtual tube without getting trapped in
Theorems 1, 2. Simulations and experiments are given to show
the effectiveness and performance of the proposed method
in different kinds of conditions. The focus of future work
will be on the connected quadrangle virtual tube planning
problem. The controller proposed in this paper has solved
the passing problem under any circumstance. However, the
passing efficiency is not mentioned, which is closely related to
the virtual tube planning. Obviously, an appropriate planning
can bring great improvement in passing efficiency. Besides,
the condition that there exist obstacles inside the virtual tube
should also be considered.

APPENDIX A
PROOF OF THEOREM 1

According to Lemma 2, the agents are able to avoid con-
flict with each other and keep within the trapezoid virtual
tube, namely ‖p̃m,ij (t)‖ > 2rs, dist (pi (t) , [pfl,psl]) > rs,
dist (pi (t) , [pfr,psr]) > rs, t ∈ [0,∞) for all pi(0), i, j =
1, · · · ,M, i 6= j. In the following, the reason why the ith
agent is able to approach the finishing line C (pf) is given. As
the function V is not a Lyapunov function, here we use the
invariant set theorem [29, p. 69] to do the analysis.
• Firstly, we will study the property of the function V .

Let Ω = {p1, · · · ,pM : V ≤ l} , l > 0. As there exists
Vm,ij , Vtl,i, Vtr,i > 0, V ≤ l implies

∑M
i=1 Vl,i ≤ l. Fur-

thermore, according to Lemma 1(iii), Ω is bounded. When
‖[p1, · · · ,pM ]‖ → ∞, then

∑M
i=1 Vl,i → ∞ according to

Lemma 1(ii), namely V → ∞. Therefore the function V
satisfies the condition that the invariant set theorem requires.
Secondly, we will find the largest invariant set and show
that all agents can pass C (pf). It is obtained that V̇ = 0 if
and only if

Ptsat (k1p̃l,i, vm,i)−
M∑

j=1,i6=j

bijp̃m,ij +

(
∂Vtl,i

∂pi

)T

+

(
∂Vtr,i

∂pi

)T

= 0,

where i = 1, · · · ,M . Then in this case, we have vc,i =
0 according to (20). Consequently, the system cannot get
“stuck” at an equilibrium point other than vc,i = 0.

• Finally, we will prove that no agent will get “stuck”. Let the
1st agent be ahead of the swarm, namely it is the closest
to C (pf). When there exists vc,1 = 0, we examine the
following equation related to the 1st agent that

k1κvm,1
Ptp̃l,1−

M∑
j=2

b1jp̃m,1j+

(
∂Vtl,1

∂p1

)T

+

(
∂Vtr,1

∂p1

)T

= 0.

(27)
Since the 1st agent is ahead, we have

− tT
c p̃m,1j ≤ 0, (28)

where “=” holds if and only if the jth agent is as ahead as
the 1st agent. Then, multiplying the term −tT

c on the left
side of (27) results in

−k1κvm,1
tT

cPtp̃
′
l,1 =− tT

c

M∑
j=2

b1jp̃m, 1j + tT
c

(
∂Vtl,i

∂pi

)T

+ tT
c

(
∂Vtl,i

∂pi

)T

.

Since (18), (19), (28) hold for the 1st agent, we have
−tT

cPtp̃l,1 = −tT
c p̃l,1 ≤ 0. As we have −tT

c p̃l,1 (0) > 0
in the beginning according to Assumption 1, owing to the
continuity, given ε0 > 0, there must exist a time t11 > 0
such that −tT

c p̃l,1 (t) ≤ ε0 at t ≥ t11. At the time t11, the 1st
agent is removed from the trapezoid virtual tube according
to Assumption 2. The problem left is to consider the M − 1
agents, namely 2nd, 3rd, ..., M th agents. We can repeat the
analysis above to conclude this proof. �
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