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Transmission-Constrained Consensus of
Multiagent Networks

Xiaotian Wang, Housheng Su

Abstract— This paper studies the consensus problem
for multiagent systems with transmission constraints. A
novel model of multiagent systems is proposed where the
information transmissions between agents are disturbed by
irregular distortions or interferences (named transmission
constraint functions), and this model is universal which
can be applied in many cases, such as interval consensus
and discarded consensus. In the transmission-constrained
consensus problem, we obtain the necessary and sufficient
condition that agents can converge to state consensus.
Furthermore, a more general case is studied in which the
system reaches an equilibrium. Based on some techniques
of algebraic topology and stability theory, the existence,
uniqueness and stability of the system equilibrium point
can be proven, which means the system can reach an
asymptotically stable equilibrium. Moreover, the state val-
ues of the equilibrium are only decided by the network
structure and transmission constraint functions, but not
the agents’ initial states. Finally, numerical simulations are
presented to illustrate the proposed theorems and corollar-
ies.

Index Terms— Multiagent system, Consensus, Transmis-
sion constraint, Directed graph, Asymptotically stable.

I. INTRODUCTION

IN the past few years, distributed coordination of multiagent
systems (MASs) has attracted much attention due to its

broad application prospects in civil, military and other fields.
One of its fundamental problems is consensus, which requires
that agents achieve agreement about certain quantities of
interest that depends on all agents’ states. Many scientific
problems of consensus have emerged, and lots of control
protocols are proposed in this area, such as consensus tracking
[1], average consensus [2] and robust consensus [3], [4].

In most of the above consensus problems, agents’ states
are not constrained. However, there are various state con-
straints on agents in many real-world scenarios, such as
restricted actuators and limited communication distance. Im-
posing state constraints on agents has notable significance
and great research value. The constrained consensus problems
have been studied from different perspectives. For example,
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the constrained consensus and optimization problems have
been studied, where agents’ states are constrained in closed
convex sets [5]. A novel state-constrained consensus (named
interval consensus) problem has been proposed and studied
in [6]. Moreover, alternative approaches for imposing state
constraints have been proposed in [7], [8].

Information sharing is a necessary condition for MASs to
admit a consensus solution. In the process of information
transmitting, there are various unfavorable factors such as
environmental interference, noise, and attenuation. Therefore,
it is impractical and ideal to assume that agents can re-
ceive neighbors’ information without distortions and noise
disturbances. Previous researches on the imperfect information
transmission often focused on switching topology, communi-
cation delay, communication link fault, packet loss, etc. For
example, average consensus problem is studied in [9], where
time-varying delay and packet loss are considered under the
undirected communication network.

In the above constrained consensus problems, the con-
straints are imposed on agents’ states or inputs, directly. In this
work, we impose constraints on the information transmitting
to make the agent’s received information different from the
original information of its neighbour, and research the effect
of this difference on system stability. To distinguish our
problem from other constrained consensus problems, we call
it transmission-constrained consensus. In this problem, the
deformed transmitted information is depicted by heteroge-
neous functions (named transmission constraint function). And
a variety of functions can be chosen as transmission constraint
function, hence this study is so universal that it can be applied
in many cases. Some applications and motivating examples are
given in subsection II-C.

The first part of this work can be regarded as a study on the
consensus conditions for the MAS with distorted transmitted
state information (attenuation or saturation). The necessary and
sufficient conditions for the ranges of transmission constraint
functions are obtained. A non-empty intersection of constraints
is an important condition for MASs to achieve consensus. In
many state-constrained consensus problems, it is assumed that
the constraints have a non-empty intersection. However, in
this paper, we also consider the non-empty intersection case,
where the multiagent systems may not achieve consensus, but
an equilibrium. In the second part of this study, it is proved
that when the transmission constraint functions are distributed
in a specific range (i.e., satisfy the conditions of Theorem 4 or
5), the system will reach an asymptotically stable equilibrium

ar
X

iv
:2

20
1.

01
50

5v
2 

 [
ee

ss
.S

Y
] 

 2
9 

Ju
n 

20
23



2

even though that intersection of constraints is empty.
Compared with the existing works about the consensus of

networked systems with constraints, the contributions of this
work can be obtained as follows.

1) This work first studies the transmission-constrained
consensus of multiagent networks. The transmission-
constrained consensus model studied in this paper does
not have a definite form, so that it can be regarded as a
paradigm. The multiagent systems that can be translated
to this model are able to make the system achieve con-
sensus under the necessary conditions, such as interval
consensus [6]. Unlike traditional constrained consensus
problems, transmission-constrained consensus problem
has the following features:

a) each link in the interaction network is limited by
an individual constraint function, which is more
general in reality;

b) constraint functions do not have a uniform type,
and they can be various functions, such as trigono-
metric function, saturation function and Sigmoid
function, etc.

Those features make the transmission-constrained model
have a wide range of application, but also bring hetero-
geneity into the dynamics, which increases the difficulty
of analysis.

2) For the transmission-constrained consensus problem, we
obtain some consensus conditions, in which a neces-
sary and sufficient condition limits the distribution of
constraint functions. As a more general case than the
consensus case, equilibrium of MAS is seldom studied.
We investigate this phenomenon and obtain conditions
of equilibrium’s existence, uniqueness and stability. Due
to the novel model, where the unknown transmission
constraints make the dynamics nonlinear, the analysis
of MAS’s stability is quite a challenge. We design some
linear boundaries and propose the corresponding lemmas
to analyze the boundedness of dynamics. Then, we
analyze the limit points of multiple solutions to prove the
convergence of MASs. By coordinate transformations,
another Lyapunov function is constructed to study the
stability and uniqueness of equilibrium.

The paper is organized as follows. Preliminaries and prob-
lem statement are given in Section II. Main results are
provided in Section III. Supports of numerical examples are
provided in Section IV, and Section V concludes this work.
Finally, we put all proofs in appendixes.

II. PRELIMINARIES
A. Graph Theory

This paper studies the problem of transmission-constrained
consensus of multiagent networks. Consider a MAS with n
agents, and denote N = {1, 2, . . . , n}. The finite vertex set is
denoted by V = {v1, . . . , vn}, and E ⊆ V×V denotes edge set
where (vj , vi) ∈ E means that there exists a communication
link from agent j to agent i. The adjacency weight matrix
A ∈ Rn×n is defined as aij > 0 if and only if (vj , vi) ∈ E , and
aij = 0, otherwise. Then, the underlying interaction network

of MAS is described by a (weighted) graph G = {V, E ,A}
which is a triple. (vj , vi) is defined as the directed edge from
agent j to agent i, and Ni = {vj ∈ V : (vj , vi) ∈ E} denotes
the neighbor set of agent i. Denote αi =

∑n
j=1 aij as the row

sum of A, and ā = maxαi.

B. Problem Statement

For any i ∈ N, denote the state of vi by xi(t) ∈ R. Then
consider the continuous-time dynamics of single-integrator
MAS with n agents: ẋi(t) = ui(t), i ∈ N, where ui(t) ∈ R
is the control input.

The problem studied in this work is different from the
general MAS dynamics. In this problem, the information
transmissions between agents are disturbed by interference
functions (or attenuation functions), i.e., the transmission of
state xi(t) is replaced by a transmission constrain function
fij

(
xi(t)

)
. fij represents the transmission constraint imposed

on the link from i to j. Then, the transmission-constrained
consensus algorithm of xi(t) is

ẋi(t) = ui(t) =
∑
j∈Ni

aij

[
fji

(
xj(t)

)
− xi(t)

]
. (1)

Assumption 1: ∀ i, j ∈ N, the transmission constrain func-
tions fij(x) are piecewise continuous.

Remark 1: Since ∀ i, j ∈ N, fij(x) are piecewise continu-
ous, the autonomous system (1) may have multiple solutions.
However, the following theorems and corollaries apply to both
unique and multiple solutions.

Assumption 2: The directed graph G is strongly connected.
Assumption 3: There exists an interval [∂m, ∂M ], a value

∂ ∈ [∂m, ∂M ] and two rays

L1(x) = k1(x− ∂) + ∂, x ∈ (−∞, ∂];

L2(x) = k2(x− ∂) + ∂, x ∈ [∂,+∞),

where k1, k2 < 0, such that ∀ j ∈ N, i ∈ Nj ,

x ≤ fij(x) < L1(x), x ∈ (−∞, ∂m);

L2(x) < fij(x) ≤ x, x ∈ (∂M ,+∞).
Assumption 4: For any x′ ∈ (−∞, ∂m)∪ (∂M ,+∞), there

eixst j ∈ N and i ∈ Nj , such that fij(x) is continuous on x′

and fij(x
′) ̸= x′.

This paper aims to find which transmission constraints could
make MAS stable and obtain the consensus conditions for
MAS (1).

C. Applications and Motivating Examples

The distortion (attenuation or saturation) in information
transmission or detection is an actual embodiment of trans-
mission constraints. Those transmission constraints may be
caused by objective physical constraints, or those constraints
are added on purpose.
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1) Objective Constraints: There are three kinds of objective
constraints to show those transmission constraints are common
in real world scenarios.

• Information distortion caused by transmission.
Energy loss exists during the signal transmission, which
may cause information distortion. The voltage drop on
wires is an inevitable phenomenon during signal trans-
mission. If state of agent (or device) are represented by
voltage of a signal, and this signal is transmitted on wires,
then we can get an information distortion

fij(xi) =
Rr

RL +Rr
xi,

where RL is the resistance of wires, and Rr is the
equivalent resistance of the port.

• Information distortion caused by detection.
In real world scenarios, agents use sensors to get them-
selves or neighbors’ states. However, except for noise
interference, state information cannot be obtained pre-
cisely due to the inherent characteristics of sensors. For
example, temperature offset leads to signal fluctuation
in ultrasonic distance measurements [10]. Likewise, the
saturation characteristic of hall sensor may cause infor-
mation distortion, i.e., fij(xi) = sat(xi) [11].

• Information distortion caused by privacy protection.
In social networks, individuals may express an opinion
that is different from his/her private opinion, due to the
pressure of conforming to a group standard or norm [12],
[13]. Hence, xi could represent the private opinion, and
fij(xi) is the expressed opinion.

2) Subjective Constraints: As a class of constraints, trans-
mission constraints could make agent’s states converge into the
expected set (see Theorem 2 and Remark 3). Especially, Since
we do not specify the formula of transmission constraints,
different transmission constraints can be designed to suit dif-
ferent scenarios, such as interval consensus [6] and discarded
consensus [14]. Related discussions are in remarks 5 and 6.

Those above examples show that information distortion
during transmission is a common phenomenon in the real
world. Hence, study consensus under transmission constraints
is necessary.

D. Notations and Some Definitions
Notations: The set of positive integers is denoted by N+.

Consider a matrix B = [bij ] ∈ Mm,n and denote |B| =
[|bij |] (i.e., element-wise absolute value of matrix B). d+Z(t)
denotes the upper right Dini derivative of Z(t). The arrow
‘ =⇒ ’ means ‘implies’, and the arrow ‘ ⇐⇒ ’ means ‘if and
only if’. Denote sign function

sign(x) =


1, if x > 0,

0, if x = 0,

−1, if x < 0.

The distance between interval [∂m, ∂M ]n and vector x(t) is
denoted by

distance
(
[∂m, ∂M ]n,x(t)

)
= min

c∈[∂m,∂M ]n
∥x(t)− c∥.

Denote e = {e1, . . . , en}T to be an equilibrium of MAS
(1), then it can be concluded that for all i ∈ N,

ẋi(t)
∣∣
ei

=
∑
j∈Ni

aij
(
fji(ej)− ei

)
= 0.

Denote the error between the state x(t) and equilibrium e by
εi(t) = xi(t)− ei, ∀ i ∈ N.

Introduce the definition of consensus zone, and this work
can be divided into two parts: the part of non-empty consensus
zone and the part of empty consensus zone.

Definition 1: For MAS (1), denote Θij = {x : fij(x) = x},
and consensus zone Φ =

⋂
(vj ,vi)∈E

Θij . Consensus zone means

the transmission constraints vanish when all the states of MAS
are in this consensus zone.

Theorem 2 shows that under the given conditions, MAS (1)
reaches consensus and its states fall into consensus zone.

Remark 2: For any time, if an agent’s state is in consensus
zone, then the information it transmits to its neighbors is
without transmission constraints. If all agents’ initial states
are in consensus zone, then the MAS becomes a standard
consensus dynamics. In that case, under a strongly connected
digraph (or the digraph has a spanning tree), the MAS will
reach consensus and the consensus value is in the consensus
zone. That is why we name it consensus zone.

III. MAIN RESULTS

In this section, we first analyze the convergence of MAS in
subsection III-A. Secondly, for the non-empty consensus zone,
we get the consensus conditions in subsection III-B. Thirdly,
for the empty consensus zone, the system’s states may achieve
an equilibrium, and the existence, stability and uniqueness of
equilibrium are studied in subsection III-C.

A. Convergence analysis
The following theorem states the conditions where the states

of the multiagent system are bounded, and gives the boundary.
Furthermore, the conclusion of Theorem 1 plays an important
role in the proofs of Theorems 2 and 3.

Theorem 1: Along the system (1), suppose Assumptions 1,
2, 3 and 4 hold, and k1k2 = 1. Then for any MAS (1) and
initial state x(t0) ∈ Rn,

lim
t→∞

distance
(
[∂m, ∂M ]n,x(t)

)
= 0,

if and only if for any MAS (1), initial state x(t0) ∈ Rn, and
j ∈ N, i ∈ Nj , ∂m ≤ fij(x) ≤ ∂M , x ∈ [∂m, ∂M ].

B. Nonempty Consensus Zone: Consensus
Then, we introduce conditions of transmission-constrained

consensus. The following theorem states the consensus con-
ditions for MAS, and the condition about range of constraint
functions is necessary and sufficient.

Theorem 2: Along the system (1), suppose Assumptions 1,
2, 3 and 4 hold, and fij(x) = x, x ∈ [∂m, ∂M ]. Then, for any
MAS (1), i ∈ N, lim

t→∞
xi(t) = v∗, v∗ ∈ [∂m, ∂M ] if and only

if for any MAS (1), k1k2 ≤ 1.



4

Remark 3: Theorem 2 shows that although the initial state
is not in the consensus zone, the transmission constraints
will limit the final state of the system. Hence, it shows that
imposing constraints on links of the interaction networks can
indirectly limit agents’ states.

Remark 4: Under the conditions in Theorem 2, the con-
straint functions can be various functions. For example, con-
straint functions can be Sigmoid function or tanh function,
which have many applications such as activation function in
artificial neural networks, logistic function in biology, etc.
More candidate constraint functions are given in the numeral
example section.

Remark 5: In [6], the interval consensus problem is studied.
We propose a smooth interval consensus model:

ẋi(t) =
∑
j∈Ni

aij
[
Tj

(
xj(t)

)
− xi(t)

]
, i ∈ N,

T (x) =


ρx+ (1− ρ)q, if x > q,

x, if p ≤ x ≤ q,

ρx+ (1− ρ)p, if x < p,

where ρ ∈ (0, 1) is a constant. By Theorem 2, it can be
concluded that the system will reach interval consensus.

Remark 6: The discarded consensus problem is studied in
[14], but the initial states of system must be in the constraint
set. Another discarded consensus model can be proposed:

ẋi(t) =
∑

j∈Ni,xj(t)∈Ωci

aijxj(t)−
∑
j∈Ni

aijxi(t), (2)

where Ωci = [−ci, ci] is the constraint interval of agent i
[14]. By Theorem 2, we can get that the MAS (2) will reach
discarded consensus with arbitrarily initial states.

Remark 7: Consider the following multiagent system:

ẋi(t) =
∑
j∈Ni

aij
[
sin

(
xj(t) + π

)
− xi(t)

]
, i ∈ N. (3)

Due to the consensus zone of MAS (3) being Φ = {0},
Theorem 2 shows that the agents’ states will converge to 0,
when the underlying directed graph G is strongly connected.

Corollary 1: Along the system (1), suppose following con-
ditions hold:

1) Assumption 2 holds;
2) the consensus zone Φ ̸= ∅;
3) for any j ∈ N, i ∈ Nj and ω ̸= 0,

−1 <
fij(x+ ω)− fij(x)

ω
≤ 1, x ∈ R.

Then, ∀ i ∈ N, lim
t→∞

xi(t) = v∗, v∗ ∈ Φ.

C. Empty Consensus Zone: Existence, Stability and
Uniqueness of Equilibria

In this part, the existence, stability and uniqueness of
equilibria are discussed and proved.

Theorem 3 gives the existence conditions of equilibrium,
which is a prerequisite for the Theorem 5.

Theorem 3: Suppose ∀ j ∈ N, i ∈ Nj , fij(x) is a con-
tinuous function. If there exists an interval [∂m, ∂M ] and
∀ j ∈ N, i ∈ Nj ,

∂m ≤ fij(x) ≤ ∂M , x ∈ [∂m, ∂M ],

then the system (1) exists at least one equilibrium. In fact, all
equilibria of the system lie within [∂m, ∂M ]n, if the following
conditions hold:

1) Assumptions 2, 3 and 4 hold;
2) k1k2 = 1, and ∂m ≤ fij(x) ≤ ∂M , x ∈ [∂m, ∂M ];
3) fij(x) is a continuous function, ∀ j ∈ N, i ∈ Nj .
Theorem 3 establishes the existence of equilibrium and

gives the region where all equilibria exist. But it does not
illustrate whether the MAS will reach equilibria, not to men-
tion the stability of equilibria. Theorem 4 indicates that the
system will converge to an asymptotically stable equilibrium,
if some conditions hold.

Theorem 4: Along the system (1), suppose following con-
ditions hold:

1) Assumption 2 holds;
2) there exists a equilibrium e = {e1, . . . , en}T , i.e.,

ẋi(t)
∣∣
ei

=
∑
j∈Ni

aij
(
fji(ej)− ei

)
= 0, ∀ i ∈ N.

3) there exist two rays

Le1(ε) = ke1ε, ε ∈ (−∞, 0];

Le2(ε) = ke2ε, ε ∈ [0,+∞),

where ke1, ke2 < 0 and ke1ke2 = 1, such that ∀ j ∈
N, i ∈ Nj ,

ε ≤ fij(ei + ε)− fij(ei) < Le1(ε), ε ∈ (−∞, 0);

Le2(ε) < fij(ei + ε)− fij(ei) ≤ ε, ε ∈ (0,+∞).

4) for any ε′ ̸= 0, there exist j ∈ N, i ∈ Nj , such that
fij(ei + ε′) is continuous on ε′ and fij(ei + ε′) −
fij(ei) ̸= ε′.

Then, the equilibrium e is unique and asymptotically stable,
i.e., lim

t→∞
xi(t) = ei, ∀ i ∈ N.

Remark 8: Unlike Theorem 2, the boundary rays in Theo-
rem 4 are two clusters of parallel lines with the same slopes,
but the endpoints may be different. The auxiliary lines in Fig.
5 are the illustrations of two clusters of parallel lines.

Remark 9: The unique equilibrium’s values are only de-
cided by the network structure and transmission constraint
functions, but not related to the initial states of MAS (1).

The following theorem can be regarded as a combination of
theorems 3 and 4, which gives the conditions for the system
to converge to an asymptotically stable equilibrium.

Theorem 5: Along the system (1), suppose following con-
ditions hold:

1) Assumption 2 holds;
2) the consensus zone Φ = ∅;
3) for any j ∈ N, i ∈ Nj and ω ̸= 0,

−1 <
fij(x+ ω)− fij(x)

ω
< 1, x /∈ Θij .
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Fig. 1. The constraint functions in Example 1.
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Fig. 2. The trajectories of x(t) in Example 1.

Then there exists a unique, asymptotically stable equilibrium
of the MAS (1).

Remark 10: Theorem 4 requires a known equilibrium of
MAS. In contrast, Theorem 5 relaxes the condition that the
equilibrium is known, i.e., we just need to know the constraints
functions and the connectivity of interaction networks, then we
can predict the trajectory of MAS. In conclusion, Theorem 5
states the existence, stability and uniqueness of Equilibria.

Corollary 2: Suppose the directed graph G is strongly con-
nected and the consensus zone Φ = ∅. If for all j ∈ N, i ∈ Nj ,
fij(xi) = kij(xi)xi +mij(xi) is a continuous and piecewise
linear function with its slopes kij ∈ (−1, 1] and mij = 0
when kij = 1, then the MAS (1) has a unique, asymptotically
stable equilibrium point.

IV. NUMERAL EXAMPLE

In this section, four numeral examples are presented to
illustrate the theorems and corollaries proposed in this paper.
Examples 1 and 2 illustrate the consensus theorem. Addition-
ally, example 3 illustrates the theorem for stability, uniqueness
of equilibrium, i.e., Theorem 5.

In all following examples, the number of agents n = 5
with underlying strongly connected graphs. For simplicity, in
examples 2 and 3, let fij(x) = fi(x), ∀ j ∈ N.

TABLE I
CONFIGURATION OF TRANSMISSION CONSTRAINTS IN EXAMPLE 1

Transmission Constraints fij

i

fij j
1 2 3 4 5

1 — — (fb + fd)/2 — —

2 — — fa fb (fe + fa)/2

3 fd — — — fc

4 fa fb (fc + fd)/2 — —

5 fc fe — — —

-6 -4 -2 0 2 4 6

-4

-2

0

2

4

6

Fig. 3. The constraint functions in Example 2.

Example 1: The adjacency matrix in this example is

A1 =


0 0 3.6 0 0
0 0 4.6 1.3 6.5
3.6 0 0 0 7.6
0.5 1.4 2.1 0 0
2.9 6.5 0 0 0

 ,

Fig. 1 shows candidates for the constraint function imposed
on the information transmissions, and the configuration of
constraint functions is shown in Table I. It shows that the
consensus zone Φ = {0}. Fig. 2 shows that MAS achieves
transmission-constrained consensus with lim

t→∞
x(t) = 0. In

this example, the constraint function fe(x) is a piecewise
continuous function similar to a sawtooth wave. And the
constraint function fc(x) can be chosen approximately as the
boundary rays since it satisfies the Condition (ii) of Theorem
2 and k1k2 = 0.8 < 1.

Example 2: The adjacency matrix in this example is

A2 =


0 2.5 0.6 0 0
0 0 0 0 4.5
0 5.6 0 3.3 0
0.5 0 0 0 0
1.9 0 0 0 0

 .

In Fig. 3, we can get that the consensus zone Φ = [−1, 1]5.
The auxiliary line in Fig. 3 represents the boundary rays with
k1k2 = 0.64 < 1. Fig. 4 shows that x(t) → Φ as t → ∞.

Example 3: The adjacency matrix in this continuous-time
example is A2. Fig. 6 shows that no matter which initial
states of agents are, MAS will reach the same equilibrium,
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Fig. 4. The trajectories of x(t) in Example 2.
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Fig. 5. The constraint functions in Example 3.

i.e., unique equilibrium (see the points
(
ei, fi(ei)

)
shown by

circles in Fig. 5). It is easy to know that for any equilibrium
e, there exist two clusters of rays (see auxiliary lines in Fig.
5) satisfying the Condition (iii) of Theorem 4 or the Condition
(iii) of Theorem 5, which means that the system will converge
to a unique, asymptotically stable equilibrium, even though we
do not know the value of equilibrium.

V. CONCLUSION

This paper focuses on the transmission-constrained consen-
sus problem of multiagent networks, where information trans-
missions between agents are affected by irregular constraint
functions. We obtain the necessary and sufficient conditions
about the range of transmission constraint functions where
agents’ states can converge to consensus. Due to the piece-
wise continuous constraint functions, the LaSalle invariance
principle is not applicable in those proofs. We construct a
sophisticated Lyapunov function and discuss the boundaries
of multiple limit points of MAS states to facilitate the conver-
gence analysis. Meanwhile, in some cases where the system
cannot achieve consensus, there is an asymptotically stable
and unique equilibrium independent of the initial values of
agents’ states. Finally, the numerical simulations are presented
to verify the effectiveness of theoretical results.

Fig. 6. The trajectories of x(t) in Example 3.

APPENDIX I
PROOF OF THEOREM 1

A. Technical lemmas
First of all, we introduce some technical lemmas.
Lemma 1: (Lemma 2.2 in [15]) If for all i ∈ N, Zi(x) :

Rd → R is of class C1, and denote Z(y) = max
i∈N

Zi(y).

Denote Nm(t) = {i ∈ N : Z(y) = Zi(y)} the indices set in
which the maximum is reached at time t. Then it turns out
that d+Z

(
y(t)

)
= max

i∈Nm(t)
Żi

(
y(t)

)
.

Lemma 2: If ∂ ∈ [∂m, ∂M ] and k1k2 = 1, then

∂M − ∂m ≥ min{(1− k2)(∂M − ∂), (1− k1)(∂ − ∂m)}.
Proof: When ∂M − ∂m = 0 or (∂M − ∂)(∂ − ∂m) = 0,

the conclusion is obvious.
When ∂M − ∂m > 0 and (∂M − ∂)(∂ − ∂m) > 0, we

use a contradiction argument to prove it. Let ∂M − ∂m <
min{(1− k2)(∂M − ∂), (1− k1)(∂ − ∂m)}, i.e.,{

∂M − ∂m < (1− k2)(∂M − ∂);

∂M − ∂m < (1− k1)(∂ − ∂m).
(4)

Since ∂ ∈ (∂m, ∂M ), we let ∂ = ρ∂M + (1 − ρ)∂m with
ρ ∈ (0, 1). Then, (4) can be rewritten as{

∂M − ∂m < (1− k2)(1− ρ)(∂M − ∂m);

∂M − ∂m < (1− k1)ρ(∂M − ∂m).

Then, we can get that −k2 > ρ
1−ρ > 0 and −k1 > 1−ρ

ρ > 0,
which implies that k1k2 > 1. We get a contradiction, and
prove the Lemma 2.

The following lemma shows the implicit inequality from
the given condition, and it helps us discuss the boundedness
of transmission-constrained consensus dynamics.

Lemma 3: Denote xm(t) = min
i∈N

xi(t), xM (t) = max
i∈N

xi(t),

L1

(
xi(t)

)
= k1xi(t)+(1−k1)∂, L2

(
xi(t)

)
= k2xi(t)+(1−

k2)∂ and

Y (t) = max
{
L1

(
xm(t)

)
− xm(t), xM (t)− L2

(
xM (t)

)}
,

where ∂ is a constant value. If k1, k2 < 0 and k1k2 = 1, then
∀ i ∈ N,

1) Y (t) = xM (t)− L2

(
xM (t)

)
=⇒ xM (t) ≥ L1

(
xi(t)

)
;
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2) Y (t) = L1

(
xm(t)

)
− xm(t) =⇒ xm(t) ≤ L2

(
xi(t)

)
.

Proof: We first discuss Item 1, i.e., the case where
Y (t) = xM (t)− L2

(
xM (t)

)
, which means that xM (t) ≥ ∂.

Note that for any i ∈ N, if xi(t) ≥ ∂, it is easy to know
that,

xM (t) ≥ ∂ ≥ ∂ + (1− k1)
(
∂ − xi(t)

)
= L1(xi(t)).

For any i ∈ N, if xi(t) < ∂,

Y (t) = xM (t)− L2

(
xM (t)

)
⇐⇒ (1− k2)

(
xM (t)− ∂

)
≥ (1− k1)

(
∂ − xi(t)

)
⇐⇒ xM (t)− ∂ ≥ 1− k1

1− k2

(
∂ − xi(t)

)
⇐⇒ xM (t)− ∂ ≥ k1(xi − ∂).

Then we can get that xM (t) − k1xi(t) − (1 − k1)∂ ≥ 0,
which implies

xM (t) ≥ L1

(
xi(t)

)
= k1xi(t) + (1− k1)∂, ∀ i ∈ N.

Therefore, the proof of Item 1 is completed. The proof
method of Item 2 is similar to that of Item 1, and hence is
omitted here. Hence, Lemma 3 is proved.

Lemma 4: For the MAS (1), if there exists an interval
[∂m, ∂M ]n such that for all j ∈ N, i ∈ Nj ,

∂m ≤ fij(x) ≤ ∂M , x ∈ [∂m, ∂M ],

then [∂m, ∂M ]n is a positively invariant set.
Proof: The dynamics of MAS (1) can be rewritten as

ẋ(t) = h
(
x(t)

)
=

(
h1

(
x(t)

)
, . . . , hn

(
x(t)

))T

, (5)

where hi

(
x(t)

)
=

∑
j∈Ni

aij

[
fji

(
xj(t)

)
− xi(t)

]
.

The initial states of (5) is x0 = x(t0). Assume that
x(t0) ∈ [∂m, ∂M ]n. Since the vector field h is pointing inwards
[∂m, ∂M ]n that is an n-dimensional cube, it concludes that

x(t) ∈ [∂m, ∂M ]n, ∀ t ≥ t0.

It shows that [∂m, ∂M ]n is a positively invariant set and the
proof is completed.

Lemma 5: Along the system (1), suppose there exist an
interval [∂m, ∂M ], a value ∂ ∈ [∂m, ∂M ] and two rays

L1(x) = k1(x− ∂) + ∂, x ∈ (−∞, ∂];

L2(x) = k2(x− ∂) + ∂, x ∈ [∂,+∞),

where k1k2 = 1, such that ∀ j ∈ N, i ∈ Nj ,

x ≤ fij(x) ≤ L1(x), x ∈ (−∞, ∂m);

∂m ≤ fij(x) ≤ ∂M , x ∈ [∂m, ∂M ];

L2(x) ≤ fij(x) ≤ x, x ∈ (∂M ,+∞).

Denote xm(t) = min
i∈N

xi(t), xM (t) = max
i∈N

xi(t) and

Y (t) =max
{
∂M − ∂m, xM (t)− ∂m, ∂M − xm(t),

xM (t)− L2

(
xM (t)

)
, L1

(
xm(t)

)
− xm(t)

}
.

If ∂M−∂m ≥ max{(1−k2)(∂M−∂), (1−k1)(∂−∂m)}, then
Y (t) is a non-increasing function for any initial state x∗ ∈ Rn.

Proof: By the structure of Y (t), there exists five cases:

1) Y (t) = Y1(t) = xM (t)− L2

(
xM (t)

)
;

2) Y (t) = Y2(t) = xM (t)− ∂m;
3) Y (t) = Y3(t) = L1

(
xm(t)

)
− xm(t);

4) Y (t) = Y4(t) = ∂M − xm(t);
5) Y (t) = Y5(t) = ∂M − ∂m.
The Case 1 is analyzed firstly. Since

xM (t)− L2

(
xM (t)

)
≥ ∂M − ∂m ≥ (1− k2)(∂M − ∂),

it implies that xM (t) ≥ ∂M .
Denote IM (t) =

{
k : xk(t) = max

l∈N
xl(t)

}
. By Lemma 1,

we have

d+Y1(t) = d+ max
i∈N

{
(1− k2)

(
xi(t)− ∂

)}
= max

i∈IM (t)

{
(1− k2)

∑
j∈Ni(t)

aij

(
fji

(
xj(t)

)
− xi(t)

)}
.

For all i ∈ IM (t), which means that xi(t) = xM (t), and
we conduct the following analysis:

xM ≥ L1(xj) > fji(xj) if xj ≤ ∂m;

xM ≥ ∂M ≥ fji(xj) if xj ∈ [∂m, ∂M ];

xM ≥ xj ≥ fji(xj) if xj > ∂M ,

where the first inequality follows from Lemma 3 and the fact
that xM (t)− L2

(
xM (t)

)
≥ L1

(
xm(t)

)
− xm(t).

Then, it can be concluded that d+Y1(t) ≤ 0 when Y (t) =
Y1(t) = xM (t)− L2

(
xM (t)

)
.

Secondly, the Case 2 is discussed. Since xM (t) − ∂m ≥
∂M − ∂m, it implies that xM (t) ≥ ∂M .

Since xM (t)− ∂m ≥ L1

(
xm(t)

)
− xm(t), we can get that

xM (t) ≥k1xm(t) + (1− k1)∂ + ∂m − xm(t)

=L1

(
xm(t)

)
+ ∂m − xm(t)

≥L1

(
xi(t)

)
+ ∂m − xm(t), ∀ i ∈ N.

It turns out that
xM ≥ L1(xj) ≥ fji(xj) if xj ≤ ∂m;

xM ≥ ∂M ≥ fji(xj) if xj ∈ [∂m, ∂M ];

xM ≥ xj ≥ fji(xj) if xj > ∂M ,

where the first inequality follows from xM ≥ L1(xi) + ∂m −
xm ≥ L1(xi) when xm ≤ ∂m.

Then, it shows that

d+Y2(t) = max
i∈IM (t)

{ ∑
j∈Ni(t)

aij

(
fji

(
xj(t)

)
− xi(t)

)}
≤ 0.

The analyses of cases 3 and 4 are symmetric to those of
cases 1 and 2, hence they are omitted. As for Case 5, the
conclusion is obvious.

Therefore, by the above five cases, it can be concluded that
Y (t) is a non-increasing function.

Lemma 6: Suppose the MAS (1) satisfies the conditions in
Lemma 5. Denote the initial time t0. Then for any t ≥ t0, we
have

1) Y (t0) = ∂M − ∂m =⇒ ∂m ≤ xi(t) ≤ ∂M , ∀ i ∈ N;
2) Y (t0) = xM (t0) − L2

(
xM (t0)

)
=⇒ xm(t) ≥

L2

(
xM (t0)

)
;
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3) Y (t0) = L1

(
xm(t0)

)
− xm(t0) =⇒ xM (t) ≤

L1

(
xm(t0)

)
;

4) Y (t0) = xM (t0)− ∂m =⇒ xm(t) ≥ min{xm(t0), ∂m};
5) Y (t0) = ∂M − xm(t0) =⇒ xM (t) ≤

max{xM (t0), ∂M}.
Proof: Y (t0) = ∂M−∂m means that x(t0) ∈ [∂m, ∂M ]n.

By Lemma 4, we can get that [∂m, ∂M ]n is a positively
invariant set, and this case is proven trivially.

When Y (t0) = xM (t0) − L2

(
xM (t0)

)
, if xm(t) <

L2

(
xM (t0)

)
, we have

Y (t) ≥ L1

(
xm(t)

)
− xm(t) > (1− k1)

(
∂ − L2(xM (t0))

)
=− k2(1− k1)

(
xM (t0)− ∂

)
= (1− k2)

(
xM (t0)− ∂

)
=Y (t0),

which contradicts the Lemma 5. By symmetry, the case where
Y (t0) = L1

(
xm(t0)

)
− xm(t0) is also proven.

When Y (t0) = xM (t0)− ∂m, it means that L2

(
xM (t0)

)
≥

∂m. Since xM (t) ≤ xM (t0), ∀ t ≥ t0, we have L2

(
xi(t)

)
≥

L2

(
xM (t0)

)
, ∀ i ∈ N, t ≥ t0. Hence, it can be concluded that

fji
(
xj(t)

)
≥ min{xj(t), ∂m, L2

(
xj(t)

)
} ≥ min{xm(t), ∂m},

∀ i, j ∈ N. Therefore, we can get xm(t) ≥ min{xm(t0), ∂m}.
By symmetry, the case where Y (t0) = ∂M − xm(t0) is also
proven. This proof is completed.

When Y (t0) = ∂M − xm(t0), it shows that L1

(
xm(t0)

)
≤

∂M . Since xm(t) ≥ xm(t0), ∀ t ≥ t0. Hence, it can be
concluded that fji

(
xj(t)

)
≤ max{xj(t), ∂M , L1

(
xm(t)

)
} ≤

max{xM (t), ∂M}, ∀ i, j ∈ N. Then, a contradiction argument
is used to prove that xM (t) ≤ max{xM (t0), ∂M}, ∀ t ≥ t0.
Assume that ∃ t∗ ≥ t0, xM (t∗) > max{xM (t0), ∂M}. Hence,
there exists a T ≥ t0, such that for any t ∈ [t0, T ],

xM (t) ≤ max{xM (t0), ∂M},
xM (T ) = max{xM (t0), ∂M},
d+xM (T ) > 0.

Since

d+xM (T ) = max
i∈IM (T )

ẋi(T )

= max
i∈IM (T )

∑
j∈Ni(T )

aij

(
fji

(
xj(T )

)
− xi(T )

)
≤ max

i∈IM (T )

∑
j∈Ni(T )

aij
(
max{xi(T ), ∂M} − xi(T )

)
= max

i∈IM (T )

∑
j∈Ni(T )

aij
(
max{xM (t0), ∂M}

−max{xM (t0), ∂M}
)
= 0,

which leads to a contradiction and it shows that xM (t) ≤
max{xM (t0), ∂M}, ∀ t ≥ t0. By symmetry, the case where
Y (t0) = ∂M − xm(t0) is also proven.

B. Proof of Theorem 1

Proof:

1) Necessity: A contradiction argument is applied to prove
the necessity.

For simplicity, we assume that there are only two agents in
MAS (1), i.e., N = {1, 2}. Since G is strongly connected, it
turns out that N1 = {2} and N2 = {1}.

Denote the initial time t0 ≥ 0. Suppose there exist j ∈
N, i ∈ Nj and xj(t0) ∈ [∂m, ∂M ] such that

fji
(
xj(t0)

)
= ∂M + ω, ω > 0.

Without loss of generality, assume that j = 1 and i = 2,
i.e., f12

(
x1(t0)

)
= ∂M + ω in which x1(t0) ∈ [∂m, ∂M ]. Let

x2(t0) = f12
(
x1(t0)

)
and f21

(
x2(t0)

)
= x1(t0), then it can

be concluded that for all t ≥ t0,

ẋ1(t) = a12

(
f21

(
x2(t)

)
− x1(t)

)
= 0,

ẋ2(t) = a21

(
f12

(
x1(t)

)
− x2(t)

)
= 0.

which implies that x1(t) = x1(t0), x2(t) = x2(t0), ∀ t ≥ t0.
Moreover, because

x1(t0) ∈ [∂m, ∂M ],

f12
(
x1(t0)

)
= ∂M + ω > ∂M ,

x2(t0) = f12
(
x1(t0)

)
= ∂M + ω > ∂M ,

f21
(
x2(t0)

)
= x1(t0) ≤ ∂M ,

it is easy to find two rays L1 and L2 satisfying the Assump-
tions 3, 4, and the condition k1k2 = 1 is also satisfied.

Since ∀ t ≥ t0, x2(t) = ∂M + ω > ∂M , it shows that

lim
t→∞

distance
(
[∂m, ∂M ]n,x(t)

)
̸= 0.

Hence, we get a contradiction and the proof for the necessity
statement of Theorem 1 is proved.

2) Sufficiency: We prove it in three steps.
Step 1: Since ∂ ∈ [∂m, ∂M ] and k1k2 < 1, by Lemma 2,

there exist two possibilities:
1) ∂M −∂m ≥ max{(1−k2)(∂M −∂), (1−k1)(∂−∂m)};
2) ∂M − ∂m < (1 − k2)(∂M − ∂) or ∂M − ∂m < (1 −

k1)(∂ − ∂m).
We discuss the Possibility 1) in the rest of Step 1, and the

Possibility 2) is analyzed in Step 2.
Assume that ∂M−∂m ≥ max{(1−k2)(∂M−∂), (1−k1)(∂−

∂m)}. Form Lemma 5, we have that Y (t) is a non-increasing
function.

Let n be the number of agents. Since

Y (t) =max
{
∂M − ∂m, xM (t)− ∂m, ∂M − xm(t),

xM (t)− L2

(
xM (t)

)
, L1

(
xm(t)

)
− xm(t)

}
,

we continue this proof case by case.
Case 1: Y (t0) = Y1(t0) = xM (t0)− L2

(
xM (t0)

)
.

By Lemma 6, we have for any t ≥ t0,

L1

(
xm(t)

)
= k1

(
xm(t)− ∂

)
+ ∂

≤k1k2xM (t0) + k1(1− k2)∂ + (1− k1)∂ = xM (t0).

Choose i0 ∈ I0 := {i : xi(t0) = xm(t0)}. For any j ∈ Ni0 ,
we can get that

fji0
(
x(t)

)
≤ max

{
xM (t), L1

(
xm(t)

)
, ∂M

}
≤ xM (t0).
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It implies that

ẋi0(t) =
∑

j∈Ni0

ai0j
[
fji0

(
xj(t)

)
− xi0(t)

]
≤ αi0 [xM (t0)− xi0(t)],

which implies that

xi0(t) ≤ e−αi0
(t−t0)xm(t0) + [1− e−αi0

(t−t0)]xM (t0).

If t ∈ [t0, t0 + τ ], then we have for any i0 ∈ I0,

xi0(t) ≤ γ0xm(t0) + (1− γ0)xM (t0), (6)

where γ0 = e−τā.
Choose i1 ∈ I1 := {i : ∃ j ∈ I0, j ∈ Ni}. By the

conditions of Theorem 1 and the equation (6), it is trivial to get
that fi0i1

(
xi0(t)

)
< xM (t0). Hence, for any t ∈ [t0, t0+τ/n],

there exists a constant γ′
0 ∈ (0, 1) such that

fi0i1
(
xi0(t)

)
≤ γ′

0xm(t0) + (1− γ′
0)xM (t0).

Then, we can get that

xi1(t0 +
τ

n
)

≤e−αi1
τ
nxi1(t0) +

[
ai1i0γ

′
0

(
xm(t0)− xM (t0)

)
+ αi1xM (t0)

] ∫ t0+
τ
n

t0

e−αi1
(t0+

τ
n−s)ds

≤e−αi1
τ
nxM (t0) + (1− e−αi1

τ
n )xM (t0)

+ ai1i0γ
′
0

(
xm(t0)− xM (t0)

) ∫ t0+
τ
n

t0

e−αi1 (t0+
τ
n−s)ds

=xM (t0) +
ai1i0
αi1

(1− e−αi1
τ
n )γ′

0

(
xm(t0)− xM (t0)

)
.

Since there exists a constant ρ1 > 0 such that for any i1 ∈
I1, i0 ∈ Ni1 , ρ1 ≤ ai1i0

αi1
(1 − e−αi1

τ
n ). Therefore, it means

xi1(t0 + τ
n ) ≤ ρ1γ

′
0xm(t0) + (1 − ρ1γ

′
0)xM (t0). Similar to

(6), we can get that for any i1 ∈ I1, t ∈ [t0 +
τ
n , t0 + τ ],

xi1(t) ≤ γ1xm(t0) + (1− γ1)xM (t0), (7)

where γ1 = ρ1γ
′
0γ0. Continuing the above analysis over [t0 +

τ
nm, t0 + τ ], ∀m = 1, 2, . . . , n − 1, it can be concluded that
for all i ∈ N,

xi(t0 + τ) ≤ γn−1xm(t0) + (1− γn−1)xM (t0),

where γn−1 = ρn−1γ
′
n−2γ0.

If xm(t0) < xM (t0), then there exists a constant ω ∈ (0, 1]
such that xm(t0) ≤ ω∂ + (1− ω)xM (t0). Here, we have

Y1(t0+τ) = (1−k2)
(
xM (t0+τ)−∂

)
≤ (1−ωγn−1)Y1(t0).

If xm(t0) = xM (t0) > ∂M , we use the Assumption
4 to get the convergence. Since there exists i0, i1 such
that fi0i1

(
xi0(t0)

)
is continuous on xi0(t0) = xM (t0) and

fi0i1
(
xi0(t0)

)
< xM (t0). Hence, there exists T (ω′) such that

∀ t ∈ [t0, t0 + T (ω′)], fi0i1
(
xi0(t)

)
≤ ω′∂ + (1− ω′)xM (t0),

where the constant ω′ ∈ (0, 1]. Similar to (7), we have
∀ t ∈ [t0 + T (ω′), t0 + nT (ω′)],

xi1(t) ≤ ω1∂ + (1− ω1)xM (t0),

where ω1 = ρ1ω
′γ0. Furthermore, it shows that

Y1

(
t0 + nT (ω′)

)
≤ (1− ωn−1)Y1(t0),

where ωn−1 = ρn−1ω
′
n−2γ0.

The analysis of Case 1 is completed. The case Y (t0) =
Y3(t0) = L1

(
xm(t0)

)
− xm(t0) is symmetric to Case 1, so

we omit its analysis.
Case 2: Y (t0) = Y2(t0) = xM (t0)− ∂m.
By Lemma 6, we can get that ∀ i ∈ N, t ≥ t0, xM (t0) ≥

L1

(
xi(t)

)
. Hence, it is trivial to get that

xi(t0 + τ) ≤ γn−1xm(t0) + (1− γn−1)xM (t0), ∀ i ∈ N.

Furthermore, we can get that Y2(t0+τ) ≤ (1−ωγn−1)Y2(t0)
or Y2

(
t0 + nT (ω′)

)
≤ (1 − ωn−1)Y2(t0). The case Y (t0) =

Y4(t0) = ∂M − xm(t0) is symmetric to this case, so we omit
its analysis.

Finally, we get x(t) → [∂m, ∂M ]n as t → ∞, and the proof
of the Possibility 1 is completed.

Step 2: In this step, we will complete the proof of Pos-
sibility 2, i.e., ∂M − ∂m < (1 − k2)(∂M − ∂) or ∂M −
∂m < (1 − k1)(∂ − ∂m). By symmetry, let ∂M − ∂m <
(1− k1)(∂ − ∂m), which implies that ∃ ∂′

M > ∂M , such that
∂′
M − ∂m = (1− k1)(∂ − ∂m). Denote

Y ′(t) =max
{
∂′
M − ∂m, xM (t)− ∂m, ∂′

M − xm(t),

(1− k2)
(
xM (t)− ∂

)
, (1− k1)

(
∂ − xm(t)

)}
.

Similar to the proof in Step 1, it concludes that x(t) →
[∂m, ∂′

M ]n as t → ∞. Then, we use a contradiction argument
to prove that for any solution x(t) → [∂m, ∂M ]n as t → ∞.

Assume that there exist a solution x̂(t) and i∗ ∈ N, such
that x̂i∗(t) → (∂M , ∂′

M ] as t → ∞. Then, there is a T ∗ such
that for any t > T ∗ and j ∈ N, fi∗j

(
x̂i∗(t)

)
> ∂m.

Since the directed graph G is strongly connected, we can
get that there exists a T ′ > T ∗ such that ∀ t > T ′, i ∈ N,
x̂i(t) > ∂m.

Denote Z(t) = max{x̂M (t), ∂M}. Repeat the analysis of
Step 1, it shows that lim

t→∞
Z(t) = ∂M , which implies that

lim sup
t→∞

x̂i∗(t) ≤ ∂M .

Therefore, the trajectory of x̂i∗(t) cannot converge to
(∂M , ∂′

M ] as t → ∞. Here we prove that for any solution
x(t) → [∂m, ∂M ]n as t → ∞.

The proof is completed.
Remark 11: In the sufficiency proof, the idea of construct-

ing auxiliary variables to analyze the boundedness of MAS is
inspired by [6]. However, since our dynamics is not Lipschitz
continuous, the LaSalle invariance principle is not applicable.
We design some linear boundaries and propose the correspond-
ing lemmas to eliminate nonlinearity, and analyze the states’
trending to obtain the boundedness of agents’ states.

APPENDIX II
PROOF OF THEOREM 2
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A. Technical lemma
Lemma 7: (Proposition 4.10 in [3]) Let graph G has a

directed spanning tree, and consider the dynamics of MAS
defined over G:

ẋi(t) =

N∑
j=1

aij
(
xj(t)− xi(t)

)
+ θi(t), i = N,

in which θi(t) is piecewise continuous on [t0,∞) and is finite.
If lim

t→∞
θi(t) = 0, ∀ i ∈ N, then lim

t→∞
xi(t) − xj(t) = 0,

∀ i, j ∈ N.

B. Proof of Theorem 2
Proof:

1) Necessity: Antagonistic interaction means that the under-
lying edges between agents have negative weights. A signed
graph GA is structurally balanced if there exists a bipartition
{V1,V2} of the nodes, where V1 ∪ V2 = V , V1 ∩ V2 = ∅,
such that aij ≥ 0 ∀ vi, vj ∈ Vm (m ∈ {1, 2}) and aij ≤
0 ∀ vi ∈ Vm, vj ∈ Vl, m ̸= l (m, l ∈ {1, 2}) [16]. We use a
contradiction argument. Consider the MAS with antagonistic
interactions

ẋi(t) =

N∑
j=1

|asij |
(
sign(asij) · xj(t)− xi(t)

)
, (8)

in which the signed graph Gs = {Vs, Es,As = [asij ]}, and sup-
pose the signed graph Gs is strongly connected and structurally
balanced. By the bipartite consensus theorem (Theorem 2 in
[16]), it shows that the system (8) reaches bipartite consensus
but not consensus, in which agents’ state values are the same
except for the sign.

Let A′ = |As| = [|asij |] and G′ = {Vs, Es,A′}, i.e., G′ is a
strongly connected graph with only cooperative interactions.
Assume the MAS (1) is under the graph G′, and for all i ∈
N, j ∈ Ni, fji

(
xj(t)

)
= sgn(asij) · xj(t), which implies that

k1k2 > 1. With the above assumption, the dynamics of MAS
(1) is equivalent to the dynamics of MAS (8). Therefore, it is
turns out that MAS (1) cannot achieves consensus.

On the other hand, it is obvious that under the above
assumption, the system (1) satisfies all conditions in Theorem
2. By Theorem 2, the states of agents will converge to a
consensus value. Hence, we get a contradiction and the proof
for the necessity statement of Theorem 2 is proved.

2) Sufficiency: Applying Theorem 1, we have:

x(t) → [∂m, ∂M ]n, as t → ∞. (9)

Notice that if ∂m = ∂M , then it turns out that lim
t→+∞

xi(t) =

∂m = ∂M = v∗, ∀ i ∈ N, and therefore the sufficiency
statement of Theorem 2 is proved.

Hence, we continue our proof in the condition that ∂m <
∂M . Assume ∂m < ∂M in the following.

Step 1: In this step, it shows that the states of agents tend
to achieve consensus.

Denote θi(t) =
∑

j∈Ni

aij

(
fji

(
xj(t)

)
− xj(t)

)
, and the

dynamics of MAS (1) can be rewritten as
d

dt
xi(t) =

∑
j∈Ni

aij
(
xj(t)− xi(t)

)
+ θi(t). (10)

Then, we use a contradiction argument to prove that
lim
t→∞

θi(t) = 0, ∀ i ∈ N. Without loss of generality, as-
sume that there exists a solution x(t), such that ∀ i ∈ N,
lim inf
t→∞

θi(t) ≥ 0 and ∃ i∗ ∈ N, lim inf
t→∞

θi∗(t) > 0.

P = {χ1, χ2, . . . } denotes the set of all limit points
of xi∗(t) as t → ∞, i.e., there are time sequences {t′n}
with lim

n→∞
t′n = ∞ and lim

n→∞
xi∗(t

′
n) = χ1, and {t′′n}

with lim
n→∞

t′′n = ∞ and lim
n→∞

xi∗(t
′′
n) = χ2, etc. Since

lim inf
t→∞

θi∗(t) > 0, it turns out that ∃ i′ : i∗ ∈ Ni′ , such that

sup
χi∈P

{
lim sup
x→χi

(
fi∗i′(x)− x

)}
> 0.

Furthermore, since xi∗(t) → [∂m, ∂M ] as t → ∞, it can be
concluded that lim sup

x→∂m

fi∗i′(x) > ∂m.

Therefore, there is a time sequence {t∗n} → ∞ with
{xi∗(t

∗
n)} → ∂m and lim

n→∞
fi∗i′

(
xi∗(t

∗
n)
)
> ∂m. It is clear

that ∂m ∈ P .
Since fi∗i′(x) is continuous in [∂m, ∂M ] and has finite

breaks in (−∞, ∂m), there exists a time sequence {t∼n } ⊆ {t∗n}
and fi∗i′(x) is continuous on xi∗(t), ∀ t ∈ {t∼n }, which implies
that fi∗i′

(
xi∗(t)

)
is continuous on {t∼n }.

Further, there exist ϵ > 0 and T (ϵ), such that
fi∗i′

(
xi∗(t)

)
> ∂m and fi∗i′

(
xi∗(t)

)
is continuous in (t −

ϵ, t + ϵ), for all t > T (ϵ) and t ∈ {t∼n }. Denote closed and
connected interval Ik = [tk− ϵ

2 , tk+
ϵ
2 ], where tk > T (ϵ) and

tk ∈ {t∼n }, k ∈ N+.
Since lim inf

t→∞
θi(t) ≥ 0, ∀ i ∈ N, it can be concluded that

lim inf
t→∞

fij
(
xi(t)

)
≥ ∂m, ∀ i, j ∈ N.

Notice that
∫
Ik
fi∗i′

(
xi∗(t)

)
> ∂m and repeat the analysis

of Theorem 1, we can get that lim inf
t→∞

xi∗(t) > ∂m. Then, it
turns out that ∂m /∈ P . Here, we find a contradiction.

Hence, we have proven that lim
t→∞

θi(t) = 0, ∀ i ∈ N.
Applying Lemma 7, we can get that

lim
t→+∞

xi(t)− xj(t) = 0, ∀ i, j ∈ N. (11)

Step 2: In Step 1, it shows that the states of agents will
converge to consensus. In this step, by the fact that x(t) →
[∂m, ∂M ]n, we prove that for any i ∈ N, lim

t→∞
xi(t) = v∗ and

v∗ ∈ [∂m, ∂M ].
By (9), it turns out that for any ω1 > 0, there exists a finite

T1 > 0, which holds the following inequation:

∂m − ω1 ≤ xi(t) ≤ ∂M + ω1, ∀ t ≥ T1, i ∈ N. (12)

Without loss of generality, assume that ∂m+∂M

2 ≤ xk(T1) ≤
∂M + ω1, where k is a fixed node.

Similarly, by (11), ∃T2 > 0 which is finite, there holds

|xi(t)− xk(t)| ≤ ω2, ∀ t ≥ T2, i ∈ N. (13)

According to (12) and (13), let ω1 and ω2 be sufficiently
small, and we get that ∂m < xi(T∗) < ∂M+ω1+ω2, ∀ i ∈ N,
where T∗ > max{T1, T2}.

Depending on whether ∃ l ∈ N, xl(T∗) ≥ ∂M or not, there
are two cases in the following proof.
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1) ∃ l ∈ N, xl(T∗) ≥ ∂M . Repeating the analysis in Step
1 in the proof of Theorem 1, we can get that

Ȳ (t) = max
i∈N

{
(1− k2)

(
xi(t)− ∂

)}
is non-increasing for t ≥ T∗. Since 1− k2 > 0, it turns
out that max

i∈N
xi(t) is non-increasing for t ≥ T∗.

2) ∀ i ∈ N, ∂m < xi(T∗) < ∂M . It is easy to get
fij

(
xi(T∗)

)
= xi(T∗), ∀ i, j ∈ N, and the system

degenerates into a standard multiagent system at time
T∗. Therefore, it is easy to know that max

i∈N
xi(t) is non-

increasing for t ≥ T∗.

Combining the above analyses, we can conclude that
max
i∈N

xi(t) is non-increasing for t ≥ T∗. Furthermore,

max
i∈N

xi(t) converges to a finite limit value (denote the value

by v). According to (11), min
i∈N

xi(t) must converge to the same

limit value v. Since min
i∈N

xi(t) ≤ xj(t) ≤ max
i∈N

xi(t), ∀ j ∈ N,

it is trivial to get that lim
t→∞

xi(t) = v̄ = v∗, ∀ i ∈ N.
Using (9), we can conclude that v∗ ∈ [∂m, ∂M ]. Based on

the above analysis, it is shown that all xi(t) will converge to
a finite limit v∗ and v∗ ∈ [∂m, ∂M ].

Remark 12: The robust consensus idea is inspired by [6].
However, since our dynamics is not Lipschitz continuous, the
system may have multiple solutions. We analyze the limit
points of multiple solutions and integrate the relevant variables
over a short period to analyze the system’s convergence.

APPENDIX III
PROOF OF THEOREM 3

Proof: By Lemma 4, it shows [∂m, ∂M ]n is a positively
invariant set. By the Brouwer fixed point Theorem extended
to dynamical systems [17], we can conclude that there exists
an equilibrium in [∂m, ∂M ]n. Hence, along the system (1), the
existence of equilibria is proven. By Theorem 1, it shows that

lim
t→∞

distance
(
[∂m, ∂M ]n,x(t)

)
= 0,

which implies that every equilibrium e ∈ [∂m, ∂M ]n.

APPENDIX IV
PROOF OF THEOREM 4

Proof: Denote

V (t) =max
i∈N

{
(1− ke1)

(
ei − xi(t)

)
, (1− ke2)

(
xi(t)− ei

)}
=max

i∈N

{
(1− ke1)

(
− εi(t)

)
, (1− ke2)εi(t)

}
,

and clearly V is Lipschitz continuous. At first, we will prove
that V (t) is a non-increasing function.

Denote εm(t) = min
i∈N

εi(t), εM (t) = max
i∈N

εi(t).

By the structure of V (t), there exists two cases:

1) V (t) = (1− ke2)εM (t);
2) V (t) = (1− ke1)

(
− εm(t)

)
.

We first consider the Case 1, which implies that ∃ t∗,
V (t∗) = max

i∈N

{
(1 − ke2)εi(t

∗)
}

and εM (t∗) > 0. Denote

Ie(t) =
{
k : εk(t) = max

i∈N
εi(t)

}
. By Lemma 1, we have

d+V (t∗) = d+ max
i∈N

{(
1− ke2

)
εi(t

∗)
}

= max
i∈Ie(t∗)

{
(1− ke2)

∑
j∈Ni

aij

(
fji

(
xj(t

∗)
)
− xi(t

∗)
)}

= max
i∈Ie(t∗)

{
(1− ke2)

∑
j∈Ni

aij

(
fji

(
ej + εj(t

∗)
)
− ei − εi(t

∗)
)}

.

Furthermore, noticing that
∑

j∈Ni

aij
(
fji(ej)−ei

)
= 0, we can

conclude that

ε̇i(t
∗) =

∑
j∈Ni

aij
(
fji

(
ej + εj(t

∗)
)
− fji(ej)− εi(t

∗)
)
.

(14)

Let εi′ = εM , which implies i′ ∈ Ie(t∗). Applying Lemma
3 on (14) and under condition 2, we can get that{

εi′ ≥ εj ≥ fji′
(
ej + εj

)
− fji′(ej) if εj ≥ 0;

εi′ ≥ Le1(εj) > fji′
(
ej + εj

)
− fji′(ej) if εj < 0.

By the above two analysis, it concludes that d+V (t∗) ≤ 0
when (1− ke2)εM (t∗) > (1− ke1)

(
− εm(t∗)

)
.

The proof of Case 2 is similar to the above proof, and hence
are omitted here. Combining the two cases, we have proved
that d+V (t) ≤ 0 for all t ≥ t0.

Repeating the analysis of Theorem 1, we have x(t) → e,
as t → ∞. Since the equilibrium e is asymptotically stable
and the initial states x(t0) can be arbitrary, e is a unique
equilibrium. The proof is completed.

APPENDIX V
PROOFS OF THEOREM 5 AND COROLLARY 2

A. Proof of Theorem 5

Proof: We first prove the existence of equilibria.
By conditions 2 and 3, we can get that for any j ∈ N, i ∈

Nj and ω ̸= 0,

−1 < k∗ ≤ fij(x+ ω)− fij(x)

ω
≤ 1, x ∈ R, (15)

which implies that fij is a continuous function. For simplicity,
let k∗ ∈ (−1, 0).

By (15), it can be concluded that there exists at least one
intersection between functions fij and f(x) = x, i.e., Θij ̸= ∅.
Denote XM = max

{
x : x ∈

⋃
Θij

}
and Xm = min

{
x :

x ∈
⋃
Θij

}
. Since Θij ̸= ∅, let x∗

ij ∈ Θij , i.e., fij(x∗
ij) = x∗

ij .
By (15), it shows that{

fij(x
∗
ij + ω) ≤ fij(x

∗
ij) + ω = x∗

ij + ω, ω > 0;

fij(x
∗
ij + ω) ≥ fij(x

∗
ij) + ω = x∗

ij + ω, ω < 0,

which implies that{
fij(x) ≤ x, x ≥ XM ;

fij(x) ≥ x, x ≤ Xm.
(16)
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There are two parallel lines with slope k∗ ∈ (−1, 0):{
Lm(x) = k∗x+ (1− k∗)Xm,

LM (x) = k∗x+ (1− k∗)XM ,

and it can be concluded that{
fij(x) ≤ LM (x), x ≤ XM ;

fij(x) ≥ Lm(x), x ≥ Xm.

Let L∗(x) = −x+XM +Xm with slope k = −1.
Since −1 < k∗ < 0, it is easy to know that between L∗ and

the parallel lines LM , Lm exist two intersections (ym, yM ) and
(yM , ym) where yM ≥ ym, which implies that LM (ym) = yM
and Lm(yM ) = ym. And it is easy to know that ym < Xm ≤
XM < yM . Then, it can be concluded that{

fij(x) ≤ LM (x) ≤ yM , ym ≤ x ≤ XM ;

fij(x) ≥ Lm(x) ≥ ym, Xm ≤ x ≤ yM .
(17)

Combine (16) and (17), we can get that ym ≤ fij(x) ≤ yM ,
ym ≤ x ≤ yM . By Theorem 3, it shows that the system (1)
has at least one equilibrium. Then, we will show that the MAS
(1) has only one asymptotically stable equilibrium.

Assume one of equilibria is e∗ = {e∗1, . . . , e∗n}T , and denote
the error between x(t) and e∗ by εi(t)

∗ = xi(t)−e∗i . By (15),
we have for all j ∈ N, i ∈ Nj ,

ε∗i ≤ fij(ei + ε∗i )− fij(ei) ≤ k∗ε∗i , ε∗i < 0;

k∗ε∗i ≤ fij(ei + ε∗i )− fij(ei) ≤ ε∗i , ε∗i > 0.

Since k∗ ∈ (−1, 0), it shows that k∗k∗ < 1. Hence, the
Condition 3 of Theorem 4 holds. Because

⋂
(vj ,vi)∈E

Θij = ∅

and for any j ∈ N, i ∈ Nj and ω ̸= 0,

−1 <
fij(x+ ω)− fij(x)

ω
< 1, x /∈ Θij ,

we can conclude that for any ε∗ ̸= 0, there exist j ∈ N, i ∈ Nj

and δ > 0, such that fij(ei + ε′) − fij(ei) ̸= ε′, ∀ ε′ ∈
(ε∗ − δ, ε∗ + δ). Hence, the Condition 4 of Theorem 4 holds.

Apply Theorem 4, it shows that the equilibrium e is a
unique, asymptotically stable equilibrium.

B. Proof of Corollary 2
Proof: Because fij(xi) is a continuous and piecewise

linear function with its slopes kij ∈ (−1, 1] and mij = 0
when kij = 1, it turns out that for any ω ̸= 0, −1 <
fij(x+ω)−fij(x)

ω < 1, x /∈ Θij . Apply Theorem 5, this corollary
is proved.
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