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Distributed Estimation over Directed Graphs
Resilient to Sensor Spoofing

Shamik Bhattacharyya, Kiran Rokade, and Rachel Kalpana Kalaimani

Abstract—This paper addresses the problem of dis-
tributed estimation of an unknown dynamic parameter by a
multi-agent system over a directed communication network
in the presence of an adversarial attack on the agents’
sensors. The mode of attack of the adversaries is to corrupt
the sensor measurements of some of the agents, while
the communication and information processing capabilities
of those agents remain unaffected. To ensure that all the
agents, both normal as well as those under attack, are
able to correctly estimate the parameter value, the Resilient
Estimation through Weight Balancing (REWB) algorithm is
introduced. The only condition required for the REWB algo-
rithm to guarantee resilient estimation is that at any given
point in time, less than half of the total number of agents are
under attack. The paper discusses the development of the
REWB algorithm using the concepts of weight balancing of
directed graphs, and the consensus+innovations approach
for linear estimation. Numerical simulations are presented
to illustrate the performance of our algorithm over directed
graphs under different conditions of adversarial attacks.

Index Terms— Directed Graphs, Distributed Estimation,
Resilient Consensus, Weight-balancing

I. INTRODUCTION

THE advancement in wireless sensor networks (WSNs)

has diversified their areas of application to agriculture

[1], healthcare [2], and renewable energy [3] to name a few.

As a result the scale and complexity of the networks is also on

the rise [4], [5]. This necessitates the use of more distributed

approaches to signal processing over WSNs, and distributed

estimation is a key aspect of it. Distributed estimation is about

determining a parameter of interest locally at each sensor node

with cooperation between neighboring nodes [6]. The increase

in areas of application of WSNs has in turn made them more

vulnerable to adversarial attacks [7]. A major mode of such

attacks are aimed to manipulate the normal functioning of the

sensor nodes and thus disrupt the overall signal processing

capability of the WSNs. Some commonly used threat models
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are Byzantine [8], malicious [9], sensor spoofing [10], etc.

Hence the distributed estimation algorithms need to be resilient

to adversarial attacks in order to be more effective.

Different consensus algorithms resilient to adversarial at-

tacks appear in the literature such as Mean-Subsequence-

Reduced algorithm [11] and Median Consensus Algorithm

[12]. These algorithms ensure consensus only for the normal

agents, while the agents under attack may have arbitrary

values. We are interested in a resilient distributed estimation

algorithm, that will ensure that both the normal agents and the

agents under attack can reach consensus over the true value

of the parameter to be estimated. The consensus+innovations

approach illustrated in [13] uses the consensus framework to

design resilient algorithms for linear estimation. The Constant

weight Saturated Innovation Update (CSIU) algorithm [14]

is one such resilient estimation algorithm which ensures that

all the agents are able to estimate the parameter of interest,

provided less than three-tenth of the total agents are under

attack. This was further improved in [15], where the Saturated

Innovation Update (SIU) algorithm ensures all the agents’

estimate converge to the desired parameter value provided the

adversaries attack less than half of the total agents. Also in

[14], a new term resilience index was used to provide a bound

for the fraction of sensor nodes under attack.

Both the CSIU and SIU algorithms are designed on undi-

rected graphs representing bidirectional communication links

between the agents. In many practical scenarios, the power

levels at which sensor nodes broadcast information or, their

interference and noise patterns, differ from node to node [16],

[17]. The communication between nodes in such cases is

unidirectional which is aptly represented by a directed graph.

Here we consider a time-invariant network topology with uni-

directional communication links between agents. To the best

of our knowledge, an extension of the consensus+innovations

approach to directed graphs is non-existent in the literature,

except for the recent work [18]. However, we observed that

for the algorithm presented in [18], choosing appropriate

parameters is not an easy task. In contrast, we propose an

algorithm which guarantees convergence over a given range

of parameter values. Also, unlike [18], where the set of

adversarial agents and the unknown parameter are fixed, our

proposed algorithm works even when the set of agents under

attack and the unknown parameter changes with time.

The model of attack by the adversaries is designed on the

idea of sensor spoofing [10] where the sensor readings of the

agents under attack are corrupted through data falsification or

http://arxiv.org/abs/2104.04680v2


2 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. XX, NO. XX, XXXX 2022

false data injection. Note that such an attack on the agents

is restricted to their sensors. In particular, the agents under

attack can perform computations and communicate with their

neighbours. Also the agents under attack by the adversaries are

not known a-priori by the normal agents. Moreover we allow

for a more general scenario where the adversaries may attack

different agents over time. We present an algorithm, Resilient

Estimation through Weight Balancing (REWB), which ensures

that all agents asymptotically converge to the value to be

estimated provided less than half of the total number of agents

are affected by adversaries. The agents operate in a distributed

manner using only the local information available to them.

The main contribution of this paper is the proposed REWB

algorithm which ensures that over a directed communication

network, both the normal agents as well as the agents under

attack asymptotically estimate the actual value of the unknown

parameter in the presence of a sensor spoofing attack by the

adversaries.

Technically, the contributions we make in this paper can be

summarized as follows:

• We propose a novel REWB algorithm that estimates an

unknown time-varying parameter with a decaying bound

on its variations in the presence of sensor spoofing attacks

by simultaneously balancing the unbalanced directed

communication network (Algorithm 1). The REWB al-

gorithm brings together the weight-balancing and con-

sensus+innovation approaches over relative time-scales to

achieve this.

• We show that the proposed REWB algorithm ensures

convergence of each agent, both normal as well as

those under attack, to the actual value of the unknown

parameter provided less than half of the total agents are

under attack at any given time (Theorem 1).

• As an intermediate result, we provide an explicit rate of

convergence of the Laplacian of an unbalanced weighted

digraph to the Laplacian of the associated balanced

digraph (Lemma 1).

Notations. R denotes the set of real numbers, and R
N

represents the N -dimensional Euclidean space. For any set S,

the cardinality of the set is denoted by |S|. 1 := (1, 1, . . . , 1)
and 0 := (0, 0, . . . , 0), of appropriate dimensions. For a real-

valued vector v, vT denotes the transpose of the vector, ||v||
denotes its l2-norm and ||v||∞ denotes its ∞-norm. Similarly

for a real-valued matrix M , MT denotes the transpose of

the matrix, and ||M || denotes its spectral norm. Among

the eigenvalues of M , λ2(M) represents the second lowest

eigenvalue of M in magnitude, while λmax(M) denotes its

largest eigenvalue in magnitude. For a real-valued vector v,

diag(v) represents a diagonal matrix with v as the main

diagonal.

The rest of the paper is organised as follows. Section-II

discusses the details of the problem such as the inter-agent

communication network, the threat model of the adversaries

and the concept of resilience index. Section-III starts with

the development of the REWB algorithm using the weight-

balancing approach, followed by the details of the algorithm,

finally leading to our main result. Some numerical simulations

are presented in Section-IV to validate the performance of

the REWB algorithm. Finally the conclusions are presented in

Section-V.

II. PROBLEM FORMULATION

A. System Model

Consider a system of N agents where each agent is

equipped with sensing, computing and communication capa-

bilities - it can record measurements using its sensor, can

perform computations using its own data and the information

received from its neighbouring agents, and can also share its

data with the neighbours. The aim of each agent is to estimate

an unknown parameter θ∗(t) ∈ R
M in a distributed manner

even while some agents’ sensor measurements are corrupted

by adversaries. The precise model of sensor measurement

corruption will be described shortly.

The communication among the agents is modelled as a

directed graph Γ = (V , E), where the vertex set V =
{1, 2, . . . , N} represents the set of N agents. The set of

directed edges E ⊂ V×V represents the information exchange

links between the agents, where (i, j) ∈ E if agent j can send

information to agent i. A directed path from i to j is the

sequence of directed edges (i, i1), (i1, i2), . . . , (ip, j). The set

of in-neighbours of agent j is defined as Nj = {i ∈ V :
(j, i) ∈ E}, and the corresponding in-degree is denoted as

din
j = |Nj |. The set of out-neighbours of agent-j is defined as

Oj = {i ∈ V : (i, j) ∈ E}, and the corresponding out-degree

is denoted as dout
j = |Oj |. A corresponding diagonal matrix is

defined as Dout = diag
(
dout
1 , . . . , dout

N

)
. The adjacency matrix,

A is a square matrix of size N×N defined as A = [aij ] where

aij = 1 if (i, j) ∈ E , and aij = 0 otherwise. The Laplacian,

L is defined as L := Dout −A.

Definition 1 (Strongly Connected Graph ): A directed

graph is said to be strongly connected if there exists a directed

path between every pair of vertices in the graph.

The flow of information is such that each agent i is able to

receive information from its in-neighbours (Ni), and send its

own data to its out-neighbours (Oi). So the information about

any agent i can be received by another agent j either directly

if a directed communication link exists between them, or

indirectly via intermediate agent(s) provided the corresponding

directed path exists. In order to ensure that the information

about every agent i reaches every other agent j, (i 6= j; i, j ∈
V), we introduce the following assumption.

Assumption 1: The directed graph Γ is Strongly Connected.

Now we proceed to model the effect of the adversaries,

which attack the agents with a motive to disrupt the estimation

process thus trying to prevent them from correctly estimating

the value θ∗(t). At every time-step t ≥ 0, the agents which

are under attack by the adversaries are termed as the the set

of Bad (or affected) agents, denoted as Bt. The remaining

agents form the set of Good (or normal) agents, denoted as

Gt. The set of bad agents can vary with time, and are also not

known a-priori to the set of good agents. So for each t ≥ 0,

the set V is partitioned into Gt and Bt. Thus Gt ∪ Bt = V , ∀
t ≥ 0. The attack model of the adversary is sensor spoofing

attacks. Here the adversary introduces spurious signals into
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the sensor readings non-invasively [10]. The corruption of

sensor readings remains undetected by commonly used filters

[19]. So even after nullifying the noise in sensor readings,

the effect of the spoofing attack would still percolate into

the measurements available to the agent. The agents use these

sensor measurements to estimate the unknown parameter. In

order to specifically highlight the effect of the adversary, we

consider the sensor measurements available to the agents to

be free of the effect of any measurement noise. The sensor

measurements available to the agents under attack are arbitrary

values manipulated by the adversary. Accordingly, we model

the sensor measurements recorded by the agents as

for all i ∈ Gt , yi(t) = θ∗(t)

for all i ∈ Bt , yi(t) = θ∗(t) + ζi(t)
(1)

where ζi(t) ∈ R
M is a vector of arbitrary values reflecting the

effect of the adversaries. In the above model there is no bound-

edness assumption or stochastic approximation considered for

ζi(t). This preserves the arbitrary nature of the data being

manipulated by the adversary. So, if |Bt| = 0 ∀t ≥ 0, then

yi(t) = θ∗(t) ∀i ∈ V , and the estimation problem would be

trivial as the sensor measurements directly provide the correct

value of the parameter. Here we are interested in the non-trivial

case where there exists some t ≥ 0 such that |Bt| 6= 0. This

means some of the sensor measurements would be corrupted

as yi(t) = θ∗(t) + ζi(t) ∀i ∈ Bt. So each agent needs to

perform some additional computations in order to estimate

the true value of θ∗(t) in a distributed manner. It should be

noted that under this threat model, the bad agents are still

able to perform their computations as per design as well as

communicate with their neighbours.

The unknown time-varying parameter that is to be estimated

is some physical quantity which can be measured by a sensor.

So we can safely assume its Euclidean norm to be bounded.

Moreover, we also assume that the variations in the unknown

parameter asymptotically decay with time.

Assumption 2: The Euclidean norm of the unknown vector

quantity that is to be estimated lies within an upper bound

known to each agent :

‖θ∗(t)‖ ≤ Θ (2)

Also, the Euclidean norm of the variation in the unknown

vector quantity has a decaying bound :

‖θ∗(t+ 1)− θ∗(t)‖ ≤ 1/(1 + t)θ1 (3)

As a consequence of (3), we have the time varying parameter

θ∗(t) eventually converging to some constant value θ̂. Specif-

ically, θ∗(t) → θ̂ as t→ ∞.

Remark : The above assumption focuses on a particular

subset of dynamic parameter estimation. Note that this is a

modest extension from the static parameter estimation case.

Now to estimate θ∗(t) in a distributed manner, for all t ≥ 0
each agent i maintains its own estimate of θ∗(t) denoted by

xi(t) ∈ R
M , also referred to as the state of agent i. In order to

update the state, each agent i follows the discrete-time single

integrator dynamics :

xi(t+ 1) = xi(t) + ui(t), t ≥ 0 (4)

So at every time step, each agent i performs the following

steps in the given sequence :

S1 - broadcasts its own estimate xi(t) to its out-neighbours

Oi

S2 - receives the estimates from its corresponding in-

neighbours : xj(t), j ∈ Ni

S3 - collects sensor measurement of θ∗(t) : yi(t)
S4 - updates its own estimate following (4), where ui(t) =

f(yi(t), {xj(t), j ∈ Ni}), and f is defined later in

Section III-B.

In a distributed estimation problem with xi(t) as the state

of agent i and θ∗(t) as the parameter of interest, the aim is to

achieve

xi(t) −→ θ∗(t) as t→ ∞ , for all i ∈ V (5)

For the resilient estimation problem considered here, the

additional challenge is to achieve (5) even in the presence of

adversaries attacking some of the agents. In order to quantify

how resilient an algorithm is to the adversarial attacks, we

use a measure called the Resilience Index [15]. The resilience

index (s) is an upper bound on the fraction of agents which

are under attack by the adversaries at any time-step t. So,

s ≥ |Bt|
N for all t ≥ 0, s ∈ R. Thus s = 0 would indicate the

trivial case where bad agents are totally absent. Having s = 1
allows for the possibility of all the agents being under attack

at any time-step t.
In the sequel, we initially proceed to design an algorithm

which provides us with a suitable value of ui(t) ∀t ≥ 0, for

all i ∈ V introduced in (4). Then we present our main result

on how the newly designed algorithm, under the assumptions

made so far, achieves (5).

III. RESULTS

The aim of each agent in the multi-agent system under

consideration, is to estimate an unknown static parameter in

a distributed manner, as given in (5). The technique used for

the distributed estimation of θ∗(t) is based on the consen-

sus+innovations approach [13]. Based on this approach we

proceed to design an algorithm such that the desired objective,

xi(t) −→ θ∗(t) as t→ ∞ , for all i ∈ V , is achieved through

fulfilling the following two smaller goals simultaneously as

t→ ∞:

G1 : the state of each agent, xi(t), approaches the average of

the states of all agents, x̄(t) := (1/N)
∑N

i=1 xi(t)
G2 : x̄(t) approaches the unknown value to be estimated,

θ∗(t).

A. Weight Balancing

In a Multi-Agent System (MAS), the communication net-

work is usually modelled as a graph, with the nodes of the

graph representing the agents and the edges between the nodes

representing the corresponding communication links between

the agents. When the flow of information between agents is

bi-directional, the model used is an undirected graph. On the

other hand, when the flow of information between agents

is unidirectional, a directed graph (or digraph) is required



4 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. XX, NO. XX, XXXX 2022

1 2

3

Fig. 1: A directed graph of 3 nodes

to model it. The directed edges of the digraph represent

the unidirectional communication links while preserving their

direction of information flow. A weighted graph has each of

its edges assigned a real or integer value, referred to as edge

weights. Unless specifically mentioned, the edge weights are

taken as unity.

In case of an undirected graph, the sum of edge weights of

the incoming edges is equal to the sum of the edge weights of

the outgoing ones. But this balance in edge weights does not

necessarily hold true in the case of a digraph. To overcome this

imbalance, we need to find a suitable weight vector w ∈ R
N ,

where each outgoing edge of agent i is assigned the weight

wi. These weights are said to balance the graph if wid
out
i =

∑

j∈Ni
wj . The notion of a balanced graph is formally defined

below.

Definition 2 (Balanced Graph): A graph Γ of N nodes is

said to be balanced if there exists w ∈ R
N such that

L1 = 0 , 1TL = 0
T (6)

where L := (Dout −A)diag(w)
The weights

(
w1, w2, . . . , wN

)
which balance a given di-

graph are called the balancing weights of the corresponding

digraph [17]. Note that an undirected graph is inherently

balanced with w = 1 as the vector of balancing weights. On

the other hand, for a strongly connected digraph the vector

of balancing weights is non-trivial. Note that this vector of

balancing weights is also unique to the given digraph, up to

scaling [17]. For example, consider the strongly connected di-

graph shown in Fig.1. For this digraph the vector of balancing

weights is w = [0.5, 1.5, 1]T , which is non-trivial and unique

up to scaling.

The SIU algorithm proposed in [15] for resilient estimation

does not work in general for directed graphs. This is later

illustrated through a numerical example in Fig.4 in Section

IV. We propose to use the idea of balancing weights described

above to achieve resilient estimation over digraphs. For the

directed graph Γ, we use the following update rule, proposed

in [17], to iteratively compute a set of balancing weights. Let

wi(t) ∈ R denote the weight at node i at time-step t. The

initial set of weights assigned to the agents satisfy : wi(0) ≤
(1/dout

max)
2Φ+1, where dout

max represents the maximum out-degree

and Φ represents the diameter of the concerned digraph [17].

Then for all t ≥ 0,

wi(t+ 1) =
1

2
wi(t) +

1

dout
i

( ∑

j∈Ni

1

2
wj(t)

)

. (7)

Let w(t) =
(
w1(t), w2(t), . . . , wN (t)

)
represent the vector of

node-weights at time-step t. Then the corresponding vector

representation of (7) is given by :

w(t+ 1) = Pw(t) (8)

where P := 0.5
(
I + (Dout)−1A

)
. So for the limiting case,

limt→∞ w(t) = limt→∞ P tw(0). Now from Lemma 1 of

[17], we know that limt→∞ P t exists, and that the sequence

{w(t)}t≥0 converges to the vector of balancing weights. So we

define here the vector of weights which balances the digraph

Γ as

w∞ := lim
t→∞

w(t) = lim
t→∞

P tw(0) (9)

The time-varying weighted Laplacian matrix is represented as

L(t) =
(
Dout − A

)
W (t), where W (t) = diag

(
w(t)

)
(10)

Then the Laplacian matrix for the limiting case can be defined

using the result from (9) in (10) as

L∞ := (Dout −A)W∞, where W∞ = diag{w∞} (11)

Now as w∞ balances the digraph, L∞ satisfies the desired

balancing condition expressed in (6). By definition of L(t)
we have 1

TL(t) = 0
T for all t ≥ 0. So to arrive at the

desired balanced graph condition, we need L(t)1 = 0 which

is eventually achieved with L(t) converging to L∞ as t→ ∞.

Next we state a lemma which provides an explicit rate for this

convergence and additionally provides the rate of decay of

L(t)1 to 0.

Lemma 1: Given L(t) =
(
Dout − A

)
W (t) and L∞ =

(Dout − A)W∞, there exists constants C > 0 and η ∈ (0, 1),
such that ‖L(t)−Dout‖ ≤ Cηt , ‖L(t)1‖ ≤ Cηt for all t ≥ 0.

The proof of Lemma 1 is given in Appendix A.

B. Algorithm

Now we introduce our algorithm, Resilient Estimation

through Weight Balancing (REWB). It consists of two main

update steps : one for the state of the agents, and the other for

the node weights.

The updates performed by agent i at time-step t are :

i) Updating the estimate

xi(t+ 1) =
(
1− β(t)wi(t)d

out
i

)
xi(t)

+ β(t)
( ∑

j∈Ni

wj(t)xj(t)
)

+ α(t)ki(t)
(
yi(t)− xi(t)

)

(12)

ii) Updating the weight

wi(t+ 1) =
1

2
wi(t) +

1

dout
i

( ∑

j∈Ni

1

2
wj(t)

)

(13)

The update law (12), used by agents to update their estimate

of θ∗(t), is based upon the consensus+innovation approach.

The first two terms, dealing with the agent’s own and neigh-

bours’ estimates and the corresponding node-weights, consti-

tute the consensus part of the update law. The third term,

involving the measurements yi(t) and a scaling factor ki(t),
constitute the innovation part. These two parts working simul-

taneously through the same update law help in achieving the

smaller goals G1 and G2 mentioned before. The above update

law uses step-size parameters β(t) and α(t) to assign proper
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weightage to its consensus and innovation parts respectively.

The parameters are defined as :

α(t) =
α0

(1 + t)α1

, β(t) =
β0

(1 + t)β1

(14)

where 0 < α0 ≤ 1/(1−2s) , 0 < β0 < ψ , 0 < β1 < α1 < θ1.

The constant ψ is defined as ψ := 2/
(
Ndin

max(d
in
max + dout

max)
)
.

Note that β1 < α1 implies that, in the state update law (12),

the weight of the innovation term decays faster than the weight

of the consensus term.

The scaling factor, ki(t), is used in the innovation part in

order to ensure that the effect of the adversaries on the state

of an agent always remains bounded.

ki(t) :=

{

1 , if ‖yi(t)− xi(t)‖ ≤ γ(t)
γ(t)

‖yi(t)−xi(t)‖
, otherwise

(15)

where γ(t) is the output of a dynamical system defined as

γ(t) := γ1(t) + γ2(t) (16)

The dynamics of γ1(t) and γ2(t) are defined as

γ1(t+ 1) :=
(
1− c1µ(t) + (1 +

√
N)α(t)

)
γ1(t)

+ (1 +
√
N)α(t)γ2(t) + c2η

t (17)

γ2(t+ 1) := α(t)γ1(t) +
(
1− α(t)(1 − 2s)

)
γ2(t)

+ 1/(1 + t)θ1 (18)

where, µ(t) = µ0

(t+1)µ1
, µ0 > 0, β1 < µ1 < α1, c1 > 0,

c2 > 0, 0 < η < 1. The above time-varying system in two

variables plays a crucial role in proving our main result. From

the definition of ki(t) in (15), a corresponding diagonal matrix

is defined as

K(t) := diag
(
k1(t), k2(t), . . . , kN (t)

)
(19)

Let x(t) =
(
xT1 (t), x

T
2 (t), . . . , x

T
N (t)

)
∈ R

N×M represent the

matrix whose rows are the state vectors of the agents at time-

step t. Also let y(t) =
(
yT1 (t), y

T
2 (t), . . . , y

T
N (t)

)
∈ R

N×M

represent the matrix whose rows are the sensor measurements

of the agents at time-step t. Now we summarise our REWB

algorithm as follows :

Algorithm 1 REWB

Given : Graph Γ, Θ ≥ ‖θ∗(t)‖, Resilience index s, and θ1
Initialize : 0 < α0 ≤ 1/(1 − 2s), 0 < β0 < ψ, x(0) = 0,

µ0 < (λm−β0λM )β0/(2c1), γ1(0) = 0, γ2(0) = Θ , wi(0) ≤
(

1
dout

max

)2Φ+1

Choose : 0 < β1 < µ1 < α1 < θ1
for t = 0, 1, . . . do

• record y(t)
• exchange x(t) among neighbouring agents

• update x(t) :

x(t+ 1) =
(
I − β(t)L(t)

)
x(t) + α(t)K(t)

(
y(t)− x(t)

)

• update w(t) :

w(t+ 1) = Pw(t)
• update γ(t) : using equations (16), (17) & (18)

end for

C. Main Result

The following theorem states our main result on resilient

distributed estimation using the REWB algorithm.

Theorem 1: Suppose Assumptions 1 and 2 hold, and the

effect of the adversaries is modelled as in (1). Then the REWB

algorithm ensures that the state of every agent, xi(t) converges

to θ∗(t), provided s ∈ [0, 12 ). In particular,

lim
t→∞

(t+ 1)δ1‖xi(t)− θ∗(t)‖ = 0 , for all i ∈ V (20)

where 0 ≤ δ1 ≤ α1 − β1
The proof of Theorem-1 is given in Appendix-C. Here we

provide a remark on the above theorem.

Remark 1: From Theorem-1 it can be inferred that as long

as less than half the total number of agents are under attack

by the adversaries, the REWB algorithm ensures that each

agent correctly estimates θ∗(t). Also note that all the agents,

even the bad agents, achieve consensus and estimate θ∗(t) in

a distributed manner.

Remark 2: As noted in Lemma 1, the dynamic weights

w(t) converge to the balancing weights at an exponential

rate (ηt), whereas all time-varying signals in the dynamics

of the state update rule converge at a polynomial rate (α(t) =
α0/(1 + t)α1 etc.). Thus, the weights converge faster, which

are in turn used in the state update rule. This two time-scales

approach facilitates convergence of the algorithm.

IV. SIMULATION RESULTS

We evaluate the performance of our proposed REWB al-

gorithm through numerical simulations. A random network,

consisting of 100 agents with directed edges, is generated

where each possible edge has a probability of 0.5. It models

the communication network among the agents. Each agent es-

timates a scalar time-varying parameter θ∗(t) = 25+1/(t+1)
with Θ = 50 and θ1 = 1. The required algorithm parameters

are chosen as : α0 = 0.01, α1 = 0.075, β0 = 0.01, β1 =
0.01, µ0 = 0.025, µ1 = 0.025, c1 = 75, c2 = 75 , and η = 0.5.

The initial weights are chosen as wi(0) = 0.1 ∀i ∈ V .

The noise term ζi(t) models the effect of the adversaries

on the sensor measurements of agent i. For each bad agent

i ∈ Bt, at every time step, ζi(t) takes on a random value

uniformly distributed between 0 and −Θ. Note that the REWB

algorithm works for any other range also. We select the base

resilience index to be s = 0.405, and correspondingly choose

|Bt| = 40. At first we consider two cases with respect to the

set of agents under attack and observe the performance of the

REWB algorithm. In Fig. 2a, Bt has a fixed set of agents,

while in Fig. 2b, Bt is allowed to vary with time. Both the

plots in Fig. 2 show the error in estimation of θ∗(t) by the

agents, given by ||x(t)−θ∗(t)1||. From the proof of Theorem

1 we have |xi(t) − θ∗(t)| ≤ γ(t), ∀i ∈ V , ∀t ≥ 0. Then

for a set of N agents, we have ||x(t) − θ∗(t)1|| ≤
√
Nγ(t).

Fig. 2 shows that, regardless of adversaries attacking a fixed

or varying set of agents, the REWB algorithm ensures that

the estimation error always remains bounded by
√
Nγ(t), and

consequently dies down asymptotically.

Next we use two different variations in operating conditions

compared to the one used in Fig. 2a and observe their effect in
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Fig. 2: Performance of REWB with adversarial attacks on 40

agents where the set of bad agents is (a) fixed, and (b) variable.
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Fig. 3: Performance of REWB with (a) decrease in resilience

index, and (b) increased manipulation in sensor measurements

by adversaries.

the performance of the REWB algorithm in Fig. 3. For the plot

in Fig. 3a, the resilience index is decreased to s = 0.255 and

correspondingly we choose |Bt| = 25. As can be observed

the estimation error dies down much faster with a decrease

in s. Next for the plot Fig. 3b, we simulate an increase in

the degree of manipulation done by the adversaries on the

sensor measurements by increasing the noise level. We assign

ζi(t) = 5Θ ∀i ∈ Bt, ∀t ≥ 0. As is evident from Fig. 3b, a high

value of ζi(t) is also quite efficiently handled by the REWB

algorithm, with the estimation error remaining bounded by√
Nγ(t) at all times and eventually converging to 0. From Fig.

2 and Fig. 3 it is evident that the REWB algorithm ensures that

even the bad agents are able to eventually correctly estimate

the true value of θ∗(t), along with the good agents. This is in

accordance with the Remark stated in Section III-C.

In Section III-A, we mentioned that the SIU algorithm

in [15] does not give convergence in general when applied

over a directed network of agents. In Fig. 4, we compare the

performance of our REWB algorithm with the SIU algorithm

in estimating the value of a scalar constant parameter θ∗ ∈ R

over a directed network of 100 agents with s = 0.405. The two

plots on the left show how the states of the agents behave with

time, while the two plots on the right show the net estimation

error. Fig. 4a shows how on applying the SIU algorithm, the

states of the agents diverge away from each other and never

achieve consensus, leading to a constant estimation error. On

the other hand, Fig. 4b shows how our REWB algorithm

not only ensures the agents reach consensus but they also

correctly estimate the value of θ∗. This is made possible by

the introduction of the weight balancing idea while designing

the REWB algorithm. The dynamics of the time-varying
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600
SIU algorithm (s=0.405)

(a)

0 1 2 3
iterations [t] 104
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200

400

600

REWB algorithm (s=0.405)
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Fig. 4: Performance of (a) the SIU [15] algorithm and (b) the

proposed REWB algorithm over directed graphs

weights ensure that the weighted graph eventually approaches

a balanced condition, and thus consensus is achieved.

V. CONCLUSION

In this paper we propose the Resilient Estimation through

Weight Balancing (REWB) algorithm. It is a distributed es-

timation algorithm designed to work for a network of sensor

nodes with directed communication links. The REWB algo-

rithm is resilient to sensor spoofing type adversarial attacks

while estimating an unknown time-varying parameter with

a decaying bound on its variations. It ensures that along

with the unaffected agents, even the agents under attack

estimate the true value of the parameter in a distributed

manner. The proposed algorithm is developed based on the

consensus+innovation approach and uses the weight-balancing

idea to ensure consensus over directed graph. Through nu-

merical simulations it is shown that the proposed algorithm

accurately estimates an unknown parameter under different

attack conditions, provided less than half of the agents are

under adversarial attack at any given point of time. Future

direction of work is to consider other models of adversarial

attacks.

APPENDIX A

Proof: [Proof of Lemma 1] By definition, P is a primitive

matrix with spectral radius 1 [17]. Then by properties of

primitive matrices : limt→∞ P t exists, and limt→∞ P t =
P∞ = uvT , where u, v are the right and left eigen-vectors

of P corresponding to eigen-value 1, and vTu = 1. Then

from (7) and (9) we have :

w(t) − w∞ = (P t − P∞)w(0) (21)

Using the properties of P discussed above we get (P−P∞)t =
P t − P∞, for all t ≥ 1. Then from (21) we have

w(t)− w∞ = (P t − P∞)w(0) = (P − P∞)tw(0)
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So by Theorem 8.3 in [20], there exists c > 0, η < 1 such that

for all t ≥ 0

‖w(t)− w∞‖ ≤ cηt‖w(0)‖ (22)

Using (10) and (11), and applying the properties of sub-

multiplicativity of spectral norm we have

‖L(t)− L∞‖ ≤ ‖Dout −A‖‖W (t)−W∞‖ (23)

Now W (t),W∞ are diagonal matrices and for any diagonal

matrix M = diag(m1, . . . ,mN ) we have ||M || ≤ ||m||∞ ≤
||m||. Applying this to (23) and using the result from (22) we

get

‖L(t)− L∞‖ ≤ CLη
t (24)

where CL = c‖Dout −A‖‖w(0)‖ > 0.

From (10) using the sub-multiplicativity property of the norm

and the result from (24) we get

‖L(t)1‖ = ‖(L(t)− L∞)1‖ ≤
√
NCLη

t (25)

By choosing C ≥
√
NCL and applying to (24) and (25) we

get :

‖L(t)− L∞‖ ≤ Cηt , ‖L(t)1‖ ≤ Cηt

APPENDIX B

Here we introduce some intermediate lemmas which will be

useful in the proof of Theorem-1. At first, before proceeding

to a time-varying system in two variables, we first analyse the

dynamics of a scalar time-varying system. Consider a linear

scalar time-varying system -

vt+1 =
(
1− r1(t)

)
vt + r2(t) (26)

where

r1(t) =
c1

(1 + t)δ1
, r2(t) =

c2
(1 + t)δ2

(27)

where c1, c2, δ2 are positive constants, and 0 ≤ δ1 ≤ 1.

The following result is based upon the results introduced

in Lemma 25 in [21] and Lemma 3 in [15]. It provides a

relation between δ1 and δ2 under which the dynamics of the

scalar time-varying system in (26) is bounded. It also gives

the condition under which the system dynamics converges to

zero, and the corresponding rate of convergence.

Proposition 1: Consider the system given in (26) where

r1(t), r2(t) is given by (27). Then if δ1 = δ2, there exists

B > 0, such that for sufficiently large non-negative integers

j < t ,

0 ≤
t−1∑

k=j

(
t−1∏

l=k+1

(
1− r1(l)

)

)

r2(k) ≤ B

Moreover the constant B can be chosen independently of t, j.
Also, if δ2 > δ1, then for arbitrary fixed j,

lim
t→∞

t−1∑

k=j

(
t−1∏

l=k+1

(
1− r1(l)

)

)

r2(k) = 0

and correspondingly limt→∞(t+ 1)δ0vt = 0 for all 0 ≤ δ0 <
δ2 − δ1, and for all initial conditions v0.

The following result provides the rate of convergence of a

scalar system modified from (26).

Proposition 2 (Lemma 4 in [15]): Consider the scalar

time-varying linear system :

vt+1 =
(
1− c3r2(t) + c4r1(t)

)
vt + c5r1(t) (28)

where r1(t), r2(t) are given by :

r1(t) =
c1

(1 + t)δ1
, r2(t) =

c2
(1 + t)δ2

where c1, c2, . . . , c5 > 0, and 0 < δ2 < δ1 < 1.

The system in (28) satisfies limt→∞(t + 1)δ0vt = 0 for all

0 ≤ δ0 < δ1 − δ2, and for all initial conditions v0.

Now by using the results above we introduce the following

lemma which proves the convergence of γ1(t) and γ2(t)
introduced in (17) and (18).

Lemma 2: The system in (17) and (18) satisfies

lim
t→∞

(t+ 1)δ0γ1(t) = 0 (29)

lim
t→∞

(t+ 1)δ0γ2(t) = 0 (30)

where 0 ≤ δ0 < α1 − µ1

Proof: Step 1 : As α(t), µ(t) are decreasing in t, and

α1 > µ1 , there exists a finite T > 0 such that for all t > T

0 ≤ 1− (1− 2s)α(t) ≤ 1

0 ≤ 1− c1µ(t) + (1 +
√
N)α(t) ≤ 1

(31)

From (18) we can express γ2(t) as

γ2(t) =

t−1∏

τ=T

(1− (1− 2s)α(τ))γ2(T )+

t−1∑

τ=T





t−1∏

j=τ+1

(1− (1− 2s)α(j))




(
α(τ)γ1(τ)+

1

(1 + τ)θ1

)
.

(32)

Let s(t) :=
∑t−1

τ=T

(
∏t−1

j=τ+1(1 − (1− 2s)α(j))
)

1
(1+τ)θ1

.

Using the second part of Proposition 1, we obtain : s(t) → 0
as t → ∞. Hence, ∃T > 0 such that |s(t)| ≤ γ1(T ) ∀t ≥ T .

Using this, along with (31), in (32) provides

|γ2(t)| ≤ |γ2(T )|+ σ1 sup
l∈[T,t]

|γ1(l)| (33)

for some constant σ1 > 0.

Step 2 : From (17) and (31) we have

|γ1(t+ 1)| ≤
(
1− c1µ(t) + (1 +

√
N)α(t)

)
sup

l∈[T,t]

|γ1(l)|

+ (1 +
√
N)α(t)|γ2(t)|+ c2η

t.
(34)

Applying (33) we get

∴ |γ1(t+ 1)| ≤
(
1− c1µ(t) + σ2α(t)

)
sup

l∈[T,t]

|γ1(l)|

+ σ3α(t) + c2η
t

where σ2 = (1 +
√
N)(1 + σ1) and σ3 = (1 +

√
N)|γ2(T )|.

Now as 0 < η < 1, there exists σ4 > 0 such that for all t > 0

σ3α(t) + c2η
t < σ4α(t) (35)
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∴ |γ1(t+ 1)| ≤
(
1− c1µ(t) + σ2α(t)

)
sup

l∈[T,t]

|γ1(l)|+ σ4α(t)

We define a new system -

m(t+ 1) = max(m(t),
(
1− c1µ(t) + σ2α(t)

)
m(t) + σ4α(t))

(36)

for all t > T and initial condition m(T ) = γ1(T ). So by

definition of m(t) we have :

m(t) ≥ sup
l∈[T,t]

|γ1(l)| (37)

We define another new system :

m̃(t+ 1) =
(
1− c1µ(t) + σ2α(t)

)
m̃(t) + σ4α(t)) (38)

for all t > T and initial condition m̃(T ) = m(T ) = γ1(T ).
By definition m̃(T ) ≥ 0. Also for t > T , from (31) we have

1− c1µ(t) + σ2α(t) ≥ 0. Then m̃(t) ≥ 0 for all t ≥ T . Now

using Proposition 1 and (38) we have

lim
t→∞

m̃(t) = 0

Step 3 : By virtue of m̃(t) being a non-negative sequence

which converges to 0, there exists a time T1 ≥ T such that

m̃(T1 + 1) ≤ m̃(T1). We choose the smallest value among

all such possible T1 ≥ T . Then from the definition of T1
we have m̃(T ) < m̃(T + 1) < . . . < m̃(T1). So from (36),

m(t) = m̃(t) for all t ∈ [T, T1].

∴ m(t) ≤ m(T1) , for all t ∈ [T, T1] (39)

Also by definition of T1,m(t) we have m(T1 + 1) = m(T1).
Let for all t ≥ T1

π(t) := m(T1)−
(
1− c1µ(t) + σ2α(t)

)
m(T1)− σ4α(t)

By algebraic manipulation

π(t) =

(
σ5

(t+ 1)µ1

− σ6
(t+ 1)α1

)

m(T1)

where σ5 = c1µ0 > 0 , σ6 =
(

σ2 +
σ4

m(T1)

)

α0 > 0.

Now m(T1) = 0, and since m(T1 + 1) = m(T1) we have

π(T1) ≥ 0 ⇐⇒ T1 ≥
(
σ6
σ5

)1/(α1−µ1)

− 1

So we have π(t) ≥ 0 for all t ≥ T1. Then using (36) we have

m(t) = m(T1) , for all t ≥ T1 (40)

Now combining the results from (37), (39) and (40) we get

sup
t≥0

|γ1(t)| <∞ (41)

Step 4 : Let supt∈[T,t] |γ1(t)| = B1 <∞. Then from (33) we

have

sup
t≥T

|γ2(t)| ≤ |γ2(T )|+ σ1B1 <∞ (42)

As T <∞, we have

sup
t∈[0,T ]

|γ2(t)| <∞ (43)

So combining (42) and (43) we have

sup
t≥0

|γ2(t)| <∞ (44)

Step 5 : Let supt≥0 |γ2(t)| = B2 <∞. Then for sufficiently

large t, from (34) we have

|γ1(t+ 1)| ≤ |1− c1µ(t) + (1 +
√
N)α(t)||γ1(t)|

+ (1 +
√
N)α(t)B2 + c2η

t

Now as 0 < η < 1, there exists Cη > 0 and Tη > 0 such that

for all t > Tη

(1 +
√
N)B2α(t) + c2η

t < Cηα(t) (45)

For a suitable choice of Cη = σ7, (45) holds for all t > 0.

∴ |γ1(t+1)| ≤ |1− c1µ(t)+ (1+
√
N)α(t)||γ1(t)|+ σ7α(t)

(46)

As (46) falls under the purview of Proposition 2, we can infer

(29).

Step 6 : As a consequence of Proposition 2, there exists

R1 > 0 such that |γ1(t)| < R1/(t + 1)δ0 for all 0 ≤ δ0 <
α1 − µ1. We choose δ0 ≤ min{α1 − µ1, θ1 − α1}, which

ensures (1 + t)−θ1 ≤ (1 + t)−(α1+δ0). Thus for sufficiently

large t we have -

|γ2(t+1)| ≤
(
1− (1− 2s)α(t)

)
|γ2(t)|+

α0R1

(t+ 1)α1+δ0
(47)

As (47) falls under the purview of Proposition 1, we have

lim
t→∞

(t+ 1)δ
′

0γ2(t) = 0

for all 0 ≤ δ′0 < δ0.

By making δ0 arbitrarily close to α1 − µ1 we get (30).

Let us define a new matrix J as J := I − 1
N 11

T .

The following lemma provides a bound for ‖J − β(t)L∞‖.

Lemma 3: Given c1 > 0, L∞ =
(
Dout − A

)
W∞ where

W∞ = diag
(
w∞

)
, β(t) = β0

(1+t)β1
, µ(t) = µ0

(1+t)µ1
where

0 < β0 < ψ, µ0 > 0 and 0 < β1 < µ1 < 1, there exists

T > 0 such that ‖J − β(t)L∞‖ ≤ 1 − c1µ(t) < 1 for all

t ≥ T .

Proof: Using the property 1
TL∞ = 0 we can write

‖J − β(t)L∞‖2 = λmax

(
J − β(t)M2 + β2(t)M3

)

= sup
x∈RN ,||x||=1

xT
(
J − β(t)M2 + β2(t)M3

)
x (48)

where M2 =
(
LT
∞ + L∞

)
and M3 = LT

∞L∞. Now by

definition L∞1 = 0. So we have

M21 = 0 ; M31 = 0 (49)

Also, M2 and M3 are the Laplacians of the corresponding

graph. As the graphs are strongly connected, we can infer :

λ2
(
M2

)
> 0 ; λ2

(
M3

)
> 0

i.e the 2nd lowest eigen-value of each of the Laplacians is

strictly positive.

Let x ∈ span{1} ≡ x = α1, α ∈ R. Then using (49) we have

xT
(

I − 1

N
11

T − β(t)M2 + β2(t)M3

)

x = 0 (50)
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Now suppose x ∈ span{1⊥} ≡ xT1 = 0. Then we have

xT
(

I − 1

N
11

T − β(t)M2 + β2(t)M3

)

x

≤
(
1−

(
β(t)λm − β2(t)λM

))
xTx

(51)

where λm = λ2(M2) and λM = λmax(M3).
Having β0 < ψ and β1 < 1 ensures that β(t) < λm/λM , and

in turn ‖I − 1
N 11

T − β(t)L∞‖2 < 1 ∀t ≥ 0. We choose an ǫ
such that 0 < ǫ ≤ λm − β(t)λM . Then for all t ≥ 0

β(t)λm − β2(t)λM ≥ β(t)ǫ > 0 (52)

Then from (48), (50), (51) and (52) we have

‖J − β(t)L∞‖ ≤
√

1− β(t)ǫ < 1 (53)

Now, as µ1 > β1, there exists time T > 0 such that for all

t > T

1

(1 + t)µ1−β1

≤ ǫβ0
2c1µ0

=⇒ 2c1µ(t) ≤ ǫβ(t)

=⇒ 1− ǫβ(t) ≤ 1− 2c1µ(t) + c21µ
2(t)

∴

√

1− ǫβ(t) ≤ 1− c1µ(t) (54)

Also as c1 > 0, we have 1− c1µ(t) < 1. Then from (53) and

(54) we have

‖J − β(t)L∞‖ ≤ 1− c1µ(t) < 1 , t ≥ T

APPENDIX C

Proof: [Proof of Theorem 1] Let x̄(t) ∈ R
1×M denote

the average of the states of the agents : x̄(t) = (1/N)1Tx(t).
We define p(t) as the difference between the state of the

agents and their average, and q(t) as the difference between

the average value and the unknown parameter θ∗(t).

p(t) := x(t) − 1x̄(t), p(t) ∈ R
N×M (55)

q(t) := x̄T (t)− θ∗(t), q(t) ∈ R
M . (56)

Now the norm of the difference between the state of each

agent and θ∗(t) can be upper bounded as

‖xi(t)− θ∗(t)‖ ≤ ‖xi(t)− x̄T (t)‖+ ‖x̄T (t)− θ∗(t)‖
=⇒ ‖xi(t)− θ∗(t)‖ ≤ ‖p(t)‖+ ‖q(t)‖ for all i ∈ V .

(57)

To show that the states converge to θ∗(t), we express ‖xi(t)−
θ∗(t)‖ ≤ γ(t) and show that γ(t) has a dynamics that

converges to 0. In what follows, we firstly we use the method

of induction to show that

‖p(t)‖ ≤ γ1(t) and ‖q(t)‖ ≤ γ2(t) for all t ≥ 0 (58)

and in the process also define the dynamics of γ1(t) and γ2(t).
After that we express these dynamics as a linear time-varying

system which is asymptotically stable. From there, using (57),

(16) and (58) we arrive at our desired result.

Dynamics of x(t)− 1x̄(t) :

p(t+ 1) = x(t+ 1)− 1x̄(t+ 1) = Jx(t+ 1)

=⇒ p(t+ 1) =M1 + α(t)JK(t)(y(t) − x(t)) (59)

where J := I − 1
N 11

T , and M1 := J(I − β(t)L(t))x(t).
Expanding M1 and using 1

TL(t) = 0 and J1 = 0, followed

by applying norm and its properties of triangle-inequality and

sub-multiplicativity we get

‖M1‖ ≤ ‖(J − β(t)L∞)‖‖p(t)‖+ β(t)
(
‖L(t)1‖‖q(t)‖

+ ‖(L(t)− L∞)‖‖p(t)‖+ ‖L(t)1‖‖θ∗(t)‖
)

(60)

Now applying Lemmas 1 and 3, and Assumption-2 in (60) :

‖M1‖ ≤ (1−c1µ(t))‖p(t)‖+Cβ(t)ηt
(
‖p(t)‖+‖q(t)‖+1+Θ

)
.

(61)

Applying norm to (59) and using (19), ‖J‖ = 1 we get

‖p(t+ 1)‖ ≤ (1− c1µ(t) + Cβ(t)ηt)‖p(t)‖ (62)

+ Cβ(t)ηt
(
1 + Θ + ‖q(t)‖

)
+
√
Nα(t)γ(t).

Dynamics of x̄T (t)− θ∗(t) :

q(t+ 1) = x̄T (t+ 1)− θ∗(t+ 1) = x̄T (t)− θ∗(t)

+
α(t)

N
1
TK(t)(y(t)− x(t)) + θ∗(t+ 1)− θ∗(t)

︸ ︷︷ ︸

∆θ∗(t+1)

(63)

We define two diagonal matrices KG(t),KB(t) where

[KG(t)]ii := ki(t) if i ∈ Gt and [KB(t)]ii := ki(t) if i ∈ Bt,

and rest of the entries are equal to 0.

∴ KB(t) +KG(t) = K(t) for all t ≥ 0 (64)

Using (1) and (55) in (63), followed by applying the

l2-norm and its properties of triangle-inequality and sub-

multiplicativity we get

‖q(t+ 1)‖ ≤ ‖1− α(t)

N

∑

i∈Gt

ki(t)‖‖q(t)‖+ ‖∆θ∗(t+ 1)‖

+
α(t)

N
‖
∑

i∈Gt

ki(t)(xi(t)− x̄T (t))‖

+
α(t)

N
‖
∑

i∈Bt

ki(t)(yi(t)− xi(t))‖ (65)

Dynamics of γ1(t) and γ2(t) via method of Induction :

By the method of induction we wish to show (58), and in the

process arrive at the dynamics of γ1(t) and γ2(t).
Step 1 : at t = 0, ‖p(0)‖ = 0 as x(0) = 0, and ‖q(0)‖ = Θ
as ‖θ∗(t)‖ < Θ. Choosing γ1(0) = 0, γ2(0) = Θ we have

‖p(0)‖ ≤ γ1(0) , ‖q(0)‖ ≤ γ2(0) (66)

Step 2 : for some t > 0 we assume that

‖p(t)‖ ≤ γ1(t) , ‖q(t)‖ ≤ γ2(t) (67)

Step 3 : based on the assumption (67) from Step-2, we need

to show that

‖p(t+ 1)‖ ≤ γ1(t+ 1) , ‖q(t+ 1)‖ ≤ γ2(t+ 1) (68)

Applying (67) to (62) and using (16) we have

‖p(t+ 1)‖ ≤ (1− c1µ(t) + Cβ(t)ηt +
√
Nα(t))γ1(t)

+ (Cβ(t)ηt +
√
Nα(t))γ2(t) + C(1 + Θ)β(t)ηt

Now as η < 1 , there exists c2 > 0 and T > 0 such that for

all t > T

C(1 + Θ)β(t)ηt ≤ c2η
t , and Cβ(t)ηt ≤ α(t) (69)
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By appropriate choice of β0 < α0

C , c2 > C(1 + Θ)β0 and

µ0 < (λm−β0λM )β0/(2c1), (69) and (54) holds for all t > 0

∴ ‖p(t+ 1)‖ ≤ (1− c1µ(t) + (1 +
√
N)α(t))γ1(t)

+(1 +
√
N)α(t)γ2(t) + c2η

t
(70)

We define the dynamics of γ1(t) as -

γ1(t+ 1) := (1− c1µ(t) + (1 +
√
N)α(t))γ1(t)

+(1 +
√
N)α(t)γ2(t) + c2η

t
(71)

Using (16), (57), and (67)

ki(t) = 1 for all i ∈ Gt [ ∵ yi(t) = θ∗(t)∀i ∈ Gt] (72)

Now from (64), (65), (72) and further using (16), (3) and

α0 < 1/(1− 2s), s < 1/2 we get

‖q(t+1)‖ ≤ (1−α(t)(1−2s))γ2(t)+α(t)γ1(t)+1/(1+ t)θ1

(73)

We define the dynamics of γ2(t) as

γ2(t+1) := α(t)γ1(t)+(1−α(t)(1−2s))γ2(t)+1/(1+ t)θ1

(74)

Then from (70), (71) and (73), (74) we can infer (68). Thus

from steps 1,2 and 3 we have (58).

Asymptotic stability of γ1(t) and γ2(t) :

Using Lemma 2 we can say that a linear time-varying system

with state-variables γ1(t) and γ2(t), and state dynamics given

by (71) and (74) respectively, is asymptotically stable, i.e

limt→∞(t+ 1)δ0γ1(t) = 0, limt→∞(t+ 1)δ0γ2(t) = 0.

APPENDIX D

For our REWB algorithm, the value of a constant ψ, which

is an upper bound to the parameter β0, is defined as ψ :=
2/(Ndin

max(d
in
max + dout

max)). Here we provide a detailed proof of

how we arrived at this value of ψ.

We have 0 < β0 < λ2(L
T
∞ + L∞)/λmax(L

T
∞L∞). Now

using Gershgorin’s Disk Theorem we can write :

λmax(L
T
∞L∞) ≤ 2max

i
[LT

∞L∞]ii

= 2max
i

(
[L∞]2ii +

∑

j∈Ni,j 6=i

[L∞]2ij
)

= 2max
i

(
(dout

i w∞
i )2 +

∑

j∈Ni,j 6=i

(w∞
j )2

)

Now using dout
i w∞

i ≤ 1 from [17], and 1
dout
i

≤ 1, we have :

λmax(L
T
∞L∞) ≤ 2max

i

(
1 +

∑

j∈Ni,j 6=i

(
1

dout
i

)2
)
≤ 2din

max

From the results in [22], we can say : λ2(L
T
∞ + L∞) >

4
N(din

max+dout
max)

.

∴

2

Ndin
max(d

in
max + dout

max)
<
λ2(L

T
∞ + L∞)

λmax(LT
∞L∞)

So defining ψ := 2/(Ndin
max(d

in
max + dout

max)) and choosing any

non-zero positive value of β0 < ψ satisfies the requirement of

our REWB algorithm.

APPENDIX E

In the proof for Lemma 3 in Appendix B, we use the fact

that the second eigenvalues of the matrices M2 and M3 are

non-zero, where M2 =
(
LT
∞ +L∞

)
and M3 = LT

∞L∞. Here

we provide a reasoning for the same.

• zero column sum : from (11) and (6) we have 1
TL∞ =

0, L∞1 = 0. Using these, we get

1
TM2 = 1

TLT
∞ + 1

TL∞ = 0;1TM3 = 1
TLT

∞L∞ = 0

• positive diagonal elements :

[M2]ii = [LT
∞]ii + [L∞]ii = 2[L∞]ii > 0

[M3]ii = [LT
∞]i:[L∞]:i =

N∑

j=1

[L∞]2ji > 0

where [M ]ii, [M ]i:, [M ]:i represent the (i, i)-th element,

i-th row, and i-th column of matrix M respectively.

• non-diagonal elements in M2 : [M2]ij = [L∞]ji+[L∞]ij .

• non-diagonal elements in M3 :

[M3]ij = [LT
∞]i:[L∞]:j =

N∑

k=1

[L∞]ki[L∞]kj

From the expression of the entries of M2 and M3, one can

deduce that these matrices will have a nonzero entry in the

ijth position if the digraph has an edge between i and j.
This shows that the connectivity of the graph corresponding

to L∞ would be preserved in the new graph corresponding to

M2 and M3. Now, as M2 and M3 are valid Laplacians, and

their corresponding graphs are connected, we can infer that

the second eigenvalues of M2 and M3 are non-zero.
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