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Abstract— Urban air mobility is a concept that promotes
aerial modes of transport in urban areas. In these areas, the
location and capacity of the vertiports–where the travelers
embark and disembark the aircraft–not only affect the flight
delays of the aircraft, but can also aggravate the congestion of
ground vehicles by creating extra ground travel demands. We
introduce a mathematical model for selecting the location and
capacity of the vertiports that minimizes the traffic congestion
in hybrid air-ground transportation networks. Our model is
based on a mathematical program with bilinear equilibrium
constraints. Furthermore, we show how to compute a global
optimal solution of this mathematical program by solving a
mixed integer linear program. We demonstrate our results via
the Anaheim transportation network model, which contains
more than 400 nodes and 900 links.

NOMENCLATURE

Parameters
nτ Number of different equilibria
nn Number of nodes
nv Number of candidate vertiports
nl Number of ground and air links
nd Number of destination nodes
ng Number of ground links
na Number of air links
nc Number of options for vertiport capacity
nb Number of logical constraints
γ Budget for selecting vertiport capacity
µ A large positive scalar
ω Weighting parameter for selection cost
1b The nb-dimensional vector of all 1’s
1d The nd-dimensional vector of all 1’s
1c The nc-dimensional vector of all 1’s
1v The nv-dimensional vector of all 1’s
c Free travel time vector
f Link capacity vector
w Value vector for unit vertiport capacity
E Node-edge incidence matrix
D vertiport incidence matrix
S Source-sink matrix
G Candidate capacity matrix
K Cost matrix
Variables
g Vertiport capacity vector variable
p Dual variable for link capacity constraint
q Dual variable for vertiport capacity constraint
B Binary selection matrix
U Dual variable for nonnegative flow constraint
V Dual variable for flow conservation constraint
X Flow matrix variable

Y Auxiliary variable for linearizing constraints
Subscripts
[a]j The j-th element of vector a
[A]ij The ij-th element of matrix A
Sets
Rn The set of n-dimensional real vectors
Rm×n The set of m× n real matrices
{0, 1}n The set of n-dimensional binary vectors
{0, 1}m×n The set of m× n binary matrices
Operations
� The Hadamard product
vec The vectorization function

I. INTRODUCTION

Urban Air Mobility (UAM) is a concept that promotes
short-range aerial travel in urban areas [1], [2]. By adding
alternative air modes of transportation–mainly supported by
electric vertical-take-off-and-landing (eVTOL) aircraft –to
the existing ground transportation networks, UAM has the
potential to alleviate ground traffic congestion. The latter has
become a growing concern among travelers and transporta-
tion authorities alike [3].

An integral part of the operation of eVTOL aircraft is
to build vertiports where passengers or cargo embark and
disembark the aircraft. Many UAM industries, including
Ferrovial, Urban-Air Port Ltd., and Skyports, are actively
investigating the possibility of ultra-compact, rapidly de-
ployable, multi-functional vertiports for both manned and
unmanned aircraft around the world [4].

One challenge in UAM is to select the locations of the
vertiports optimally among candidate options. The input of
the selection includes a set of candidate vertiports (usually
generated by clustering algorithms [5], [6], [7]) and the
budget of the total number of vertiports. The output of
the selection is a set of selected vertiports that optimizes
certain performance metric of the air transportation network
supported by the selected vertiports, such as the savings in
total travel time [8] and the package demand served by the
aircraft [9].

Since the candidate locations for vertiports are often
limited by safety, accessibility, and noise emission factors,
most door-to-door travel in UAM will require transportation
via both aircraft and ground vehicles [5], [6], [7], [10].
Consequently, the vertiport locations can also affect the
traffic in the existing ground transportation network by
creating additional travel demands on the way to and from
the vertiports. Recent studies investigate the potential of
UAM as a complement to the ground transportation systems
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[11]. However, how to select the vertiport locations by
optimizing its impacts on the congestion in a network that
allows both aerial and ground modes of transport is, to our
best knowledge, still an open question.

There have been various studies on transportation network
design based on mathematical programs with equilibrium
constraints (MPEC), a nonconvex optimization problem with
bilinear complementarity constraints; see [12], [13], [14]
and references therein. However, the existing results have
the following limitations when applied to veriport selection.
First, to our best knowledge, these results are all based on
traffic equilibrium model that only include link parameters,
such as the number of lanes and speed limit in a ground
transportation networks [15], [16], [17], [18], [19], but not
node parameters, such as the number of touchdown-and-
lift-off pads and the total number of scheduled flights at
a vertiport in an air transportation network. Consequently,
despite the success of link parameter design, such as the
addition or expansion of candidate road segments, the design
of node parameters, such as the location and capacity of the
vertiports, has not been investigated in depth. Second, the
number of bilinear complementarity constraints in the MPEC
for transportation network design depends on the number of
nodes and links in the network, which grows rapidly as the
network size increases [13].

We introduce a mathematical model for selecting the
location and capacity of the vertiports in a hybrid air-
ground transportation network. Our objective is to reduce the
congestion in the network. Our contributions are threefold.

1) First, we developed a linear-program-based model for
the static traffic equilibria in a hybrid air-ground trans-
portation network. This model extends the Nesterov &
de Palma model by adding node capacity constraints.

2) Second, we proposed a mathematical program with bi-
linear equilibrium constraints that optimizes the location
and capacity of the vertiports subject to budget and log-
ical constraints. In addition, we showed how to compute
a global optimal solution of this mathematical program
by solving a mixed-integer linear program (MILP). This
MILP does not contain any bilinear complementarity
constraints, and the number of integer variables only
depends on the number of candidate vertiports, which
is typically much smaller than the total number of nodes
or links of the network.

3) Finally, we demonstrated our results using the Anaheim
transportation network, which contains more than 400
nodes, 900 links, and 9 candidate vertiports where each
vertiport has two candidate capacity values. Our MILP
contains only 18 binary integer variables.

Our work is the first step to adapt the mathematical tools
for ground transportation network analysis and design in the
age of UAM. In particular, we showed how to extend the
ground traffic equilibria model to predict traffic equilibria in
hybrid air-ground transportation networks. We also provide
a numerical tool to design the vertiports as an extension of
an existing ground transportation network.

The rest of the paper is organized as follows. Section II

briefly reviews some existing results in static traffic equilibria
and transportation network design. Section III introduces
an extended Nesterov & de Palma model for static traf-
fic equilbria in hybrid air-ground transportation networks.
Section IV introduces the mathematical program with equi-
librium constraints for vertiports selection. We demonstrate
this mathematical program using the Anaheim transportation
network in Section V before concluding in Section VI.

II. RELATED WORK

Transportation network design is the problem of de-
termining the optimal modification of an existing ground
transportation network [12], [13]. These modifications can be
expanding the capacity of existing links, or adding new links
to the network. The quality of the modifications is evaluated
via the congestion of the travelers in the modified network
and the cost of the modifications. The input of the problem
includes 1) the existing transportation network topology, 2)
the travel demand between each origin-destination pair for a
specific time interval, 3) the characteristics of roads, such as
flow capacity and free travel time, 4) the set of candidate
options for modifications and their cost, and 5) the total
budget for modifications. The outcome of the problem is
a set of modifications that satisfies the budget constraint and
minimizes the congestion of the travelers. See [14] for a
recent survey on transportation network design.

A key step in transportation network design is to predict
the collective behavior of selfish travelers in congested
transportation networks [15]. There are two different pre-
diction model used in the literature: a nonlinear-convex-
optimization-based model, known as the Beckmann model
[20], and a linear-program-based model, known as the Nes-
terov & de Palma model [17], [18]. When combined with
the Bureau of Public Roads function for link delays, the
Beckmann model provides prediction results similar to the
Nesterov & de Palma model, in terms of the user distribution,
the price of anarchy, and the Braess paradox phenomenon.
We refer interested readers to [19] for a detailed numerical
comparison of the two models.

In transportation network design problems, the Nesterov
& de Palma model is computationally more efficient than
the Beckmann model. The reason is that a network design
problem requires not only the prediction of traffic patterns,
but also optimizing the predicted traffic patterns by designing
the network parameters. The former only requires solving
a convex optimization problem; the latter, however, is a
nonconvex optimization problem whose constraints include
the Karush–Kuhn–Tucker (KKT) conditions of a convex
optimization problem [13]. The KKT conditions of the con-
vex optimization in the Beckmann model contain nonlinear
equality constraints [13], whereas KKT conditions of the
optimization in the Nesterov & de Palma model contain
linear constraints only [21]. As a result, using the Nesterov
& de Palma model, the network design optimization is
equivalent to a mixed integer linear program [21], [22],
[23]. In contrast, using the Beckmann’s model, solving a
mixed integer linear program–or equivalently, a linear-linear



bilevel optimization problem–only provides a local descent
direction, not a global optimal solution, for the network
design optimization [24].

III. STATIC TRAFFIC EQUILIBRIA IN HYBRID
AIR-GROUND TRANSPORTATION NETWORKS

We first introduce the static traffic equilibria model of a
hybrid air-ground transportation network. This model pre-
dicts the static regime of the traffic patterns, where the
number of travelers entering and exiting a road segment
(or a flight leg) per unit time are the same. We will later
use this model to evaluate the performance of a given
transportation network. Our model is based on the following
three assumptions.

1) For each origin-destination pair, only the routes with
the minimum accumulated travel time are used.

2) The traffic flow on each road segment or flight leg never
exceeds its capacity; the total incoming and outgoing air
traffic flow at each vertiport never exceeds its capacity.

3) If the ground traffic flow on a road segment is below its
capacity, its travel time equals to a nominal value; if the
capacity is reached, the travel time is higher than the
nominal value. If the total incoming and outgoing air
traffic flow at a vertiport is below its capacity, the delay
(for embarkation and disembarkation) at this vertiport is
zero; if the capacity is reached, the delay is nonnegative.

The above three assumptions have the following impli-
cations. The first assumption characterize the selfish and
competitive nature of the travelers’ behavior; it is also known
as the Wardrop equilibrium principle [25] and has been the
basis of static traffic equilibria models [15]. The second
assumption states that the traffic flow on a road segment is
upper bounded–typically due to the number of lanes and the
green light time–and the total air traffic flow at a vertiport is
upper bounded–typically due to the number of touchdown
and lift-off pads. The third assumption is based on the
empirical observation that the travel time on a road segment
(or the delay at a vertiport) is at its minimum when there
is no congestion, and increase with the congestion level.
Similar assumptions were first introduced in the Nesterov
& de Palma model for ground traffic equilibria [18]. Here
we add two additional assumptions on the capacity and delay
at vertiports.

Remark 1. Notice that the first assumption above is not
reasonable at all when understood literally: other than the
time consumed during travel, operating cost, such as the fare
of a trip, is also an important factor that affects the travelers’
decision. However, one can convert such an operating cost
to an additional effective time using the travelers’ average
value of time based on their annual income; a similar
conversion was used in [26]. Therefore, without loss of
generality, we refer to the term “travel time” as an effective
travel time that accounts for both the operating costs and
the actual time of travel.

In the following, we will introduce a mathematical model
for static traffic equilibria that satisfy all the aforementioned

assumptions. Our model is based on the Nesterov & de Palma
model for ground traffic equilibria.

A. Hybrid air-ground transportation networks

We first introduce some basic network concepts: nodes,
links, incidence matrices, link and node capacity, and travel
time.

1) Nodes and links: We let N = {1, 2, . . . , nn} denote
the set of nodes. We let V = {v(1), v(2), . . . , v(nv)} denote
the set of nodes that contain a candidate vertiport location,
where v(i) ∈ N for all i = 1, 2, . . . , nv .

We let L = {1, 2, . . . , nl} denote the set of links. Each link
is an ordered pair of distinct nodes, where the first and second
nodes are the “tail” and “head” of the link, respectively. In
addition, we let ng ≤ nl denotes the number of ground links,
and na := nl − ng denote the number of air links. The
presence of link k = (i, j) with 1 ≤ k ≤ ng means that any
ground travelers can travel from node i to node j, and the
presence of link k = (i, j) with ng +1 ≤ k ≤ nl means any
aircraft can fly from node i to node j.

2) Incidence matrices: We represent the topology of the
hybrid air-ground network using the node-edge incidence
matrix E ∈ Rnn×nl . The entry [E]ik in matrix E is
associated with node i and link k as follows:

[E]ik =


1, if node i is the tail of link k,
−1, if node i is the head of link k,
0, otherwise.

(1)

Note that [E]ik 6= 0 for some ng+1 ≤ k ≤ nl only if i ∈ V .
We represent the topology of the air links and vertiports

using the following unsigned incidence matrix D ∈ Rnv×nl

for air links. The entry [D]ik is associated with node i and
link k as follows

[D]ik =

{
1, if k ≥ ng + 1 and [E]v(i),k 6= 0,
0, otherwise.

(2)

3) Demand matrix: We distinguish different travelers in
the network using their destinations, denoted by a subset of
nodes {s(1), s(2), . . . , s(nd)} ⊂ N . We denote the amount
of trips per unit time, also known as the traffic demand, be-
tween different origin and destination nodes using a demand
matrix S ∈ Rnn×nd defined as follows. For any i ∈ N
with i 6= s(j), we let the entry [S]ij in matrix S denote the
traffic demand from node i to node s(j), i.e., the amount of
travelers leaving node i heading towards node s(j) per unit
time. If [S]ij > 0, then (i, s(j)) is also known as an origin-
destination pair. Finally, we let [S]s(j),j = −

∑
i,i 6=s(j)[S]ij

for all j = 1, 2, . . . , nd such that the sum of each column in
matrix S equals zero. Such an assignment is convenient for
defining the flow conservation constraints in matrix form, as
we will show.

4) Flow matrix: At a static traffic equilibrium, the amount
of travelers entering and exiting the same link are the same.
We represent the amount of travelers on different links per
unit time using the flow matrix X ∈ Rnl×nd . In particular,
the entry [X]kj in matrix X denotes the amount of travelers
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Fig. 1. An example of a hybrid air-ground transportation network, where
black and blue arcs denote ground and air links, respectively. The blue nodes
contain candidate locations for vertiports.

exiting link k while heading towards destination node s(j)
per unit time.

By construction, the demand matrix S, flow matrix X ,
and incidence matrices E together satisfy the following flow
conservation constraint:

EX = S, X ≥ 0. (3)

Notice that the above constraints implicitly imply that the
sum of each column in matrix S equals zero. This observa-
tion justifies our definition of the negative entries in matrix
S.

Example 1. To illustrate the aforementioned network con-
cepts, we consider the example network in Fig. 1. In this case,
we have N = {1, 2, 3, 4}, V = {2, 3}, L = {1, 2, 3, 4, 5, 6},
and matrices E and D are as follows

E =

[
1 1 0 0 0 0
−1 0 1 0 1 −1
0 −1 0 1 −1 1
0 0 −1 −1 0 0

]
, D = [ 0 0 0 0 1 1

0 0 0 0 1 1 ].

Furthermore, a possible choice of demand matrix S and flow
matrix X that satisfy the constraints in (3), are as follows:

S =
[

5 −5 0 0
10 0 0 −10

]>
, X = [ 5 0 0 0 0 0

3 7 7 3 0 4 ]
>
.

5) Capacity and free travel time: The link capacity of a
(ground or air) link is the maximum amount of travelers
existing this link per unit time. For a ground link, this
capacity depends on the number of lanes and cycle time of
traffic signals; for an air link, this capacity depends on the
available airspace and the maximum allowed aircraft density
of each flight leg. We denote the link capacity of all the air
and ground links using the link capacity vector f ∈ Rnl

+ ,
where its entry [f ]k denotes the capacity on link k.

The free travel time of a (ground or air) link is the time
consumed by each traveler on this link when there is no
traffic congestion. We denote the free travel time of all links
using a vector c ∈ Rnl , whose k-th entry denotes the free
travel time on link k.

The Nesterov & de Palma model [17], [18] assumes that
the link capacity, the free travel time, and the flow matrix
are coupled as follows. First, the traffic flow on each link
never exceeds its capacity, i.e.,

nd∑
j=1

[X]kj ≤ [f ]k, (4)

for all k ∈ L. Second, if the traffic flow on a link is
below its capacity, then the travel time of this link equals
the corresponding free travel time; if the traffic flow on a
link equals its capacity, then the average travel time of this
link is lower bounded by the corresponding free travel time.
In other words, if vector c̃ ∈ Rnl is such that [c̃]k denotes
the travel time on link k, then the following conditions hold
for all k ∈ L:

nd∑
j=1

[X]kj < [f ]k ⇒ [c̃]k = [c]k, (5a)

nd∑
j=1

[X]kj = [f ]k ⇒ [c̃]k ≥ [c]k. (5b)

In addition to the above link capacity, here we also
consider additional capacity of vertiports in the hybrid air-
ground transportation network. Each vertiport can accom-
modate a maximum amount of take-off and landing per unit
time, due to the limited number of touch-down and lift-off
pads. Similar to those in Nesterov & de palma model, we
make the following assumptions. First, the total amount of
air traffic entering and exiting a vertiport never exceeds its
capacity, i.e.,

nl∑
k=1

nd∑
j=1

[D]ik[X]kj ≤ [g]i. (6)

for all i = 1, 2, . . . , nv . Second, if the traffic flow on a
vertiport is below its capacity, then the delay at this vertiport
equals zero; if the traffic flow on a vertiport reaches its
capacity, then the average flight delay at this vertiport is
nonnegative. In other words, if vector ẽ ∈ Rnv is such that
[ẽ]i denote the average flight delay at vertiport i, then the
following condition holds for all i = 1, 2, . . . , nv:

nl∑
k=1

nd∑
j=1

[D]ik[X]kj < [g]i ⇒ [ẽ]i = 0, (7a)

nl∑
k=1

nd∑
j=1

[D]ik[X]kj = [g]i ⇒ [ẽ]i ≥ 0. (7b)

In practice, the link and node capacity are typically defined
by the number of (ground or air) vehicles, rather than the
number of travelers or passengers of the vehicles. Hence, the
value of the link and node capacity above often depends on
the average number of passengers per ground vehicle and air
vehicle. The latter increases, for example, with the capacity
of the vehicle and the average level of ridesharing.

Remark 2. Several studies in the literature have considered
the link capacity constraints (4) in ground transportation
network models [27], including the Beckmann model [16]
and the Nesterov & de Palma model [17], [18]. We refer in-
terested readers to [19] for a detailed numerical comparison
of the effects of these constraints in different transportation
models.



B. Traffic equilibria with node and link capacities

We are now ready to introduce the concept of static
equilibrium matrix.

Definition 1. Matrix X ∈ Rnl×nv is a static equilibrium
matrix defined by the tuple {S,E,D, c, f, g} if it is the
optimizer of the linear program in (8).

Linear program for static traffic equilibria

minimize
X

c>X1d

subject to EX = S, X ≥ 0,

X1d ≤ f, DX1d ≤ g.

(8)

Remark 3. Optimization (8) augments the multicommodity
min-cost flow problem [28, Chp. 4] with additional node
capacity constraints. The main difference between optimiza-
tion (8) and previous work on the Nesterov & de Palma model
for ground traffic [17], [18] is that optimization (8) contains
the vertiport capacity constraints in (6), which, unlike the
link capacity well-studied in the literature, are defined on
the nodes of the network rather than the links.

The linear program in Definition 1 is our prediction model
for the traffic patterns–including flow and travel cost–of
a hybrid air-ground transportation network. The following
proposition provides two equivalent characterization of static
equilibrium matrix based on the optimality condition of
linear programs.

Proposition 1. Matrix X ∈ Rnl×nv is an static equilibrium
matrix associated with the tuple {S,E,D, c, f, g} if and
only if there exists V ∈ Rnn×nd , U ∈ Rnl×nd , p ∈ Rnl ,
and q ∈ Rnv such that the following two conditions hold
simultaneously.

1) The following constraints are satisfied:

EX = S, X1d ≤ f, DX1d ≤ g, (9a)

(c+ p+D>q)1>d = E>V + U, (9b)
X ≥ 0, U ≥ 0, p ≥ 0, q ≥ 0. (9c)

2) One of the following two set of constraints are satisfied:
either

tr(X>U) = 0, p>X1d = f>p,

q>DX1d = g>q,
(10)

or
c>X1d + f>p+ g>q = tr(V >S). (11)

Proof. See Appendix VII-A

The conditions in (10) and (11) are also known as the
complementary slackness condition and the zero-duality-
gap condition. For linear programs, these two conditions
are equivalent [29, Thm. 1.3.3]. Later we will use both
conditions to define and simplify the mathematical program
with equilibrium constraints for vertiport selection.

Let c̃ = c+p and ẽ = q. One can verify that the conditions
in (9a), (9c), and (10) together imply the constraints in

(3), (4), (6), (5), and (7). Hence the equilibria model in
Definition 1 satisfies the second and the third assumptions
we introduced at the beginning of this section.

Furthermore, the conditions in Proposition 1 also implies
that only routes with the minimum accumulated travel time
are used, a property known as the Wardrop equilibrium
principle [25]. To see this implication, we define the set of
route vectors from node i to destination node s(j) as follows:

P(i, s(j)) =

{
u ∈ {0, 1}nl

∣∣∣∣∣[Eu]i = 1, [Eu]s(j) = −1,
[Eu]k = 0,∀k 6= i, s(j).

}
.

(12)
Intuitively, each vector u in set P(i, s(j)) defines a sequence
of links connecting node i and node s(j) in a head-to-
tail fashion; link k is on the route defined by u if and
only if [u]k = 1. Note that the set P(i, s(j)) is not
necessarily a singleton, since there can be multiple routes–
routes composed of ground links, air links, or a combination
of both–between each origin-destination pairs.

Based on the above definition, the following corollary
shows that any tuple {X,U, V, p, q} satisfying the conditions
in Proposition 1 implies that any used routes has the lowest
accumulated travel time, where the travel time of link k is
given by [c+ p+Dq]k.

Corollary 1. Let {X,U, V, p, q} satisfy the conditions in (9)
and (10), and c := c + p +Dq. Let i ∈ {1, 2, . . . , nn} and
j ∈ {1, 2, . . . , nd} such that i 6= s(j) and [S]i,s(j) > 0. If
u? ∈ P(i, s(j)) and [X]kj > 0 for all k such that [u?]k = 1,
then the following condition holds for all u ∈ P(i, s(j)):

c>u? ≤ c>u. (13)

Corollary 1 shows that the equilibria model in Definition 1
also satisfies the first assumption we introduced at the
beginning of this section: any routes with positive traffic flow
has the lowest accumulated time of travel.

Alternatively, one can predict the traffic equilibria using an
extension of the Beckmann model, rather than an extension
of the Nesterov & de Palma model [16]. However, the
Beckmann model result in a set equilibrium conditions with
more nonlinear equality constraints than those in Nesterov
& de Palma model [12], [13]: the equilibrium conditions in
the Beckmann model are the KKT conditions of a nonlinear
convex optimization, which contain nonlinear constraints; in
contrast, the equilibrium conditions in the Nesterov & de
Palma model, as we showed in Proposition 1, only contain
linear constraints. On the other hand, studies have shown that
the Nesterov & de Palma model and the Beckmann model
give similar prediction results [19]. Therefore here we chose
the Nesterov & de Palma model as the basis of our equilibria
model.

IV. VERTIPORT SELECTION VIA MIXED-INTEGER
PROGRAMS

We now introduce a mathematical model that selects the
location and capacity of vertiports in a hybrid air-ground
transportation network as an effort to optimize the resulting



traffic equilibria. In particular, we aim to change the optimal
solution of linear program (8) by choosing the entries in the
vertiport-capacity vector g among discrete values–including
zero values, in which case the corresponding vertiport loca-
tion is discarded.

Throughout we make the following assumptions on linear
program (8).

Assumption 1. Linear program (8) is feasible and has a
bounded optimal value.

Assumption 1 implies that link capacity and vertiport
capacity in the hybrid air-ground transportation network are
large enough to accommodate the traffic demand, i.e., the
flow conservation constraints in (3) and capacity constraints
in (4) and (6) hold simultaneously. Such an assumption
trivially holds in practice, since the ground transportation
network alone can accommodate the traffic demand, even
without adding any vertiports and air transportation net-
works.

Based on the above assumption, we will first define
the objective function for vertiport selection problem in
Section IV-A, then define a mathematical program with
equilibrium constraints (MPEC) for vertiport selection. We
further prove that this MPEC is equivalent to a mixed integer
linear program (MILP) in Section IV-B.

A. Vertiport selection via MPEC

We now introduce the mathematical problem for vertiport
location and capacity selection. To this end, we first introduce
three components of the vertiport selection problem: the
design variables, the objective function, and the constraints.

1) The design variables: First, we introduce the design
variable of the vertiport selection problem. To this end, we
start with the following assumption on the vertiport capacity
vector g.

Assumption 2. There exists G ∈ Rnv×nc
+ such that the

vertiport capacity vector g in Definition 1 satisfies the
following constraints:

[g]i ∈ {0, [G]i1, [G]i2, . . . , [G]i,nc
},

where [G]i1 < [G]i2 < · · · < [G]i,nc for all i = 1, 2, . . . , nv .

Assumption 2 states that the capacity of the i-
th vertiport is selected from an increasing sequence
{0, [G]i1, [G]i2, . . . , [G]i,nc

}. For example, if nc = 3, then
the capacity of the i-th vertiport can be zero–in this case,
this vertiport is discarded–or a small, medium, or large value,
denoted by [G]i1, [G]i2, and [G]i3, respectively.

Here we assume the capacity of each vertiport can only be
discrete values rather than continuous ones, for the following
reasons. First, the capacity of a candidate vertiport–which is
the upper bound of the total incoming and outgoing air traffic
per unit time–is zero if this candidate is not selected, and
strictly positive otherwise. A discrete value of the capacity
can capture such as discrete change when a candidate ver-
tiport changes from being not selected to selected. Second,

the value of vertiport capacity often can only change discon-
tinuously in practice. For example, increasing the capacity
of a vertiport requires increasing the number of touch-down-
and-liftoff pads, which can only change discretely rather than
continuously.

Based on Assumption 2, we define the selection matrix
as follows. Let B ∈ Rnv×nc be a binary matrix such that
[g]i = [G]ij if and only if [B]ij = 1. Then Assumption 2
holds if and only if

g = (B �G)1c, B1c ≤ 1v, B ∈ {0, 1}nv×nc . (14)

In other words, each choice of B that satisfies the constraints
in (14) corresponds to a value of capacity vector g that
satisfies Assumption 2. In the following, we will use binary
matrix B as our design variable in the vertiport selection
problem.

2) The objective function: Given a set of vertiport with
corresponding capacity, we will introduce a quantitative
measure for the quality of the traffic equilibria. To this
end, given a selected capacity vector g, let {X,U, V, p, q}
be a tuple that satisfies the the equilibrium conditions in
Proposition 1. We evaluate the quality of this tuple using the
following network loading function:

`(X, p, q) := (c+ p+Dq)>X1d

=

nl∑
k=1

[c+ p+Dq]k︸ ︷︷ ︸
ck

[X1d]k︸ ︷︷ ︸
xk

. (15)

Here the value of ck is the travel time on link k at the
equilibrium: it is the sum of the free travel time [c]k and
the extra time delay caused by the congestion on the link
and nodes, given by [p+Dq]k. The value of xk is the total
amount of travelers entering or exiting link k per unit time1.

Assumption 2 states that the location and capacity of
the vertiports depend on a binary selection matrix B: if∑nc

j=1[B]ij = 0, then candidate vertiport i is not selected; if
[B]ij = 1, then vertiport i is selected with capacity [G]ij at
the cost of [K]ij . In addition, the capacity selection for all
the vertiports is subject to a budget constraints defined by
parameter γ.

3) The constraints: The first set of constraints in our
selection problem are given in (9), (10) (or (11)), and (14).
Together these constraints define the coupling relation among
the selection matrix B, the capacity vector g, and the static
traffic equilibria that correspond to the tuple {X,U, V, p, q}.

In addition, we also consider the following budget and log-
ical constraints on the selection matrix B. First, constructing
and maintaining a vertiport comes at a cost–which typically
increases with the vertiport capacity. To impose a budget
constraints in the vertiport selection problem, we introduce
a cost matrix K ∈ Rnv×nc , where its entry [K]ij is the
cost of selecting capacity [G]ij for the i-th vertiport. We let
γ ∈ R denote the upper bound on the total cost of vertiport
selection, then a budget constraint takes the following form:

1>v (K �B)1c ≤ γ. (16)

1At a static equilibrium, the amount of travelers entering and exiting the
same link are the same; see [18].



Second, the choice of vertiport location are often subject
to additional logical constraints: for example, two locations
close to each other cannot be selected simultaneously due
to noise management regulations, some locations must be
selected as an air traffic hub. To account for these logical
constraints, we consider the following linear constraints on
the selection matrix B

A vec(B) ≤ b, (17)

where vec : Rnv×nc → Rnvnc is a vectorization map such
that [vec(B)](i−1)nv+j = Bij for all i = 1, 2, . . . , nv and
j = 1, 2, . . . , nc, A ∈ Rnb×(nvnc) and h ∈ Rnb defines all
the logical constraints on matrix B.

Example 2. To illustrate the logical constraints on vertiport
location, we consider the case with two candidate vertiport
locations, and each vertiport has two candidate capacity
value, i.e., nv = nc = 2. In this case, If we let

A =
[

1 1 1 1
−1 −1 −1 −1

]
, b =

[
1
−1
]
, (18)

then the constraint in (17) implies that one and only one of
the two candidate vertiport location can be selected, i.e.,

[B]11 + [B]12 + [B]21 + [B]22 = 1. (19)

4) The MPEC for vertiport selection: We now introduce
a mathematical program that selects the value of capacity
vector g. The idea is to optimally choose the value of vector
g such that the resulting equilibrium minimizes a weighted
sum of the network loading function in (15) and the selection
cost defined in the left hand side of (16). To this end, we
consider the following optimization problem, where ω ∈ R+

is a weighting parameter.

Vertiport selection via MPEC

minimize
g,B,p,q,
X,U,V

(c+ p+Dq)>X1d + ω1>v (K �B)1c

subject to EX = S, X1d ≤ f, DX1d ≤ g,
(c+ p+Dq)1>d = E>V + U

X ≥ 0, U ≥ 0, p ≥ 0, q ≥ 0,

c>X1d + f>p+ g>q = tr(V >S),

g = (G�B)1c, B1c ≤ 1v,

1>v (K �B)1c ≤ γ, A vec(B) ≤ b,
B ∈ {0, 1}nv×nc .

(20)

Optimization (20) is a mathematical program with equi-
librium constraints (MPEC): it includes the equilibrium con-
ditions in (9) and (11) as part of its constraints. Proposition 1
shows that these constraints–which jointly depend on the
primal and dual variables for linear program (8)–together
ensure that matrix X is a static equilibrium matrix in the
sense of Definition 1; similar constraints are common in
MPEC, see [30, Sec. 7.1]. According to Proposition 2,
one can alternatively replace the duality gap constraint in
optimization (20)–which was first introduced in (11)–with

the complementarity constraints in (10). However, such re-
placement introduces even more bilinear functions of the
unknowns. Hence we choose to write optimization in its
current form; a similar MPEC was also used in electrified
ground network design [21].

A global optimal solution of optimization (20) is difficult
to compute, since its objective function and constraints of
optimization (20) contains bilinear function of unknowns,
such as p>X1d and g>q.

B. Reformulation of MPEC as an equivalent MILP

We now show that the MPEC in (20), a bilinear mixed
integer optimization problem, is equivalent to a mixed integer
linear program (MILP). As a result, one can compute a
global optimal solution of optimization (20) using off-the-
shelf optimization software, such as GUROBI [31].

As our first step, the following proposition shows that, how
to replace the bilinear constraints in optimzation 20 with a
linear one.

Proposition 2. Let G ∈ Rnv×nc
++ . There exists a large enough

µ ∈ R++ such that the following two set of conditions are
equivalent.

1) There exists δ ∈ R, q ∈ Rnv , B ∈ {0, 1}nv×nc and
g ∈ Rnv such that

δ = g>q, g = (G�B)1c, B1c ≤ 1v, q ≥ 0.
(21)

2) There exists δ ∈ R, q ∈ Rnv , B ∈ {0, 1}nv×nc and
Y ∈ Rnv×nc , such that

δ = 1>v Y 1c, 0 ≤ Y ≤ µB, B1c ≤ 1v,

0 ≤ G� (q1>c )− Y ≤ µ(1v1>c −B), q ≥ 0.
(22)

Proof. See Appendix VII-C.

Proposition 2 allows us to replace the bilinear function
g>q, appearing in the constraints of optimization (20), with
a linear function of an auxiliary matrix Y .

Our next step is to show the bilinear objective function of
optimization (20) is also equivalent to a linear one. To this
end, by using Proposition 1 again we can show the following:

p>X1d = f>p, q>DX1d = g>q.

Next, thanks to Proposition 2, we can further replace the
inner product q>g with a linear function of the auxiliary
matrix Y . By combining these results together, we can
replace the bilinear objective function in (20) with a linear
one.

Equipped with these results, we can reformulate optimiza-
tion (20) as the following equivalent mixed integer linear
program, where µ is a large enough positive scalar.



Vertiport selection via MILP

minimize
B,p,q,Y,
X,U,V

c>X1d + f>p+ 1>v Y 1c + ω1>v (K �B)1c

subject to EX = S, X1d ≤ f, DX1d ≤ (G�B)1c,

(c+ p+D>q)1>d = E>V + U

X ≥ 0, U ≥ 0, p ≥ 0, q ≥ 0,

c>X1d + f>p+ 1>v Y 1c = tr(V >S),

0 ≤ G� (q1>c )− Y ≤ µ(1v1>m −B),

B1c ≤ 1v, 1>v (K �B)1c ≤ γ,
0 ≤ Y ≤ µB, A vec(B) ≤ b,
B ∈ {0, 1}nv×nc .

(23)

Optimization (23) is a MILP: its objective function and
constraints only depend on linear function of the unknowns,
and it contains binary unknown matrix B. One can solve
such MILP and obtain a global optimal solution using off-
the-shelf optimization software.

For optimization (23) to be feasible, one needs to choose
the value of scalar µ to be large enough. In particular,
the constraints in Proposition 2 imply that µ needs to
be an elementwise upper bound for matrix G ⊗ (q1>c ).
Based on Assumption 2, one can empirically choose µ =
qmaxi[G]i,nc , where q ∈ R+ is an estimate of the maximum
delay among all vertiports at equilibrium.

V. NUMERICAL EXPERIMENTS

We demonstrate our vertiport selection approach using the
Anaheim ground transportation network model developed in
[32], which contains more than 400 nodes and 900 links. Our
goal is to numerically demonstrate the effects of adding dif-
ferent vertiports to an existing ground transportation network
in terms of traffic loading in the network.

A. The Anaheim transportation network with additional air
links

The Anaheim ground transportation network model con-
sists of a well-defined arterial grid system integrated with
an extensive freeway system. See Fig. 2 for an illustration 2.
The model includes the data for 1) the incidence matrix, 2)
the demand matrix, 3) the free travel time, and 4) the link
capacity. Based on these data, we construct the Nesterov &
de Palma model for the ground transportation network, which
is known to produce similar results as the Beckmann model
[19].

In addition to the Anaheim ground transportation network,
we construct an air transportation network as follows. Based
on their location and travel demands, we choose 9 different
destination nodes in the Anaheim network as candidate
location for vertiports; see Fig. 2 for an illustration. The
capacity of each vertiport can be either 600 or 1200 takeoffs
and landing per hour; choosing these capacity will take 1

2The map image we used are generated by Mapbox https://www.
mapbox.com.

Fig. 2. The Anaheim network where the candidate vertiport locations are
marked with colored circles.

or 2 units of cost. We add an air link to each pair of
vertiports if their physical distance is greater than the median
of the pairwise distance of all the nodes in the Anaheim
network. The free travel time of these air links are set to
be proportional to the corresponding distance, and the flow
capacity is fixed to be 80 flights per hour for all air links.

We also consider the following budget and logical con-
straints on the vertiport locations. First, the total selection
budget γ is chosen such that γ ∈ [5, 11]. Second, the loca-
tions marked in Fig. 2 are subject to the logical constraints
listed in Tab. I.

TABLE I
LOGICAL CONSTRAINTS FOR VERTIPORT LOCATIONS MARKED IN FIG. 2

Marker color Constraints on the corresponding locations
red both are selected

magenta at least one is selected
yellow one and only one is selected
green one and only one is selected

B. Selection based on the Knapsack problem

As a benchmark approach, we consider selecting vertiport
locations using the variation of the Knapsack problem, a
classical model in integer programs [33, Sec. 1.3]. To this
end, we define a value vector w ∈ Rnv

+ , where [w]k denotes
the value of the unit capacity at the k-th candidate vertiport.
Based on this vector, we compute the selection matrix B in
(14) by solving the following mixed integer linear program:

maximize
g,B

w>g

subject to g = (B �G)1m, B1m ≤ 1v,
1>v (K �B)1m ≤ γ, A vec(B) ≤ b,
B ∈ {0, 1}nv×nm .

(24)

Notice that optimization (24) contains the the discrete ca-
pacity constraints in (14), the budget constraints in (16), the
logical constraints in (17).

The difficulty in using optimization (24) for vertiport
selection is the estimation of the value vector. Here we

https://www.mapbox.com
https://www.mapbox.com


consider a heuristics estimate by choosing the elements in
vector w to be the total traffic demand at the candidate
vertiport; the idea behind this heuristics is that the value of
the unit capacity at a candidate vertiport should increase with
the travel demand: the higher the demand, the more beneficial
to provide air travel as an alternative. In particular, we choose
the candidate vertiport nodes V = {v(1), v(2), . . . , v(nv)}
from the set of destination nodes {s(1), s(2), . . . , s(nd)}
such that there exists 1 ≤ d ≤ nd with v(k) = s(d) for
all k = 1, 2, . . . , nv . Furthermore, we let [w]k = S(s(d), d).

C. Numerical comparison

With the above choices of parameters, we solve optimiza-
tion (23). To demonstrate our results, we define the following
notion of link loading for each link k = 1, 2, . . . , nl:

`k(X, p, q) = [c+ p+Dq]k[X1d]k. (25)

Intuitively, `k denotes the number of vehicles traveling on
link k at the equilibrium–which is also the summand in the
total link loading defined in (15).

Fig. 3 shows the link loading in the ground and air
networks when we let choose the budget to be γ = 8. In
this case, a total of six vertiports are selected, and only two
of them has the larger capacity value 1200: the one near
Westminster and the one near Villa Park; the latter fact is
consistent with the air link loading distribution in Fig. 3: the
vertiports near Westminster and Villa Park are connecting
some of the flight legs with the highest loading, hence they
necessarily need larger capacity.

We also show how does the budget value γ in vertiport
selection affect the link loading in the ground traffic network.
Intuitively, adding vertiports will reduce the ground link
loading by providing alternative means of transportation.
Furthermore, as the budget increases, the selected vertiports
can support an air transportation network with larger volume
of air traffic, and consequently, the ground link loading will
decrease more. These intuitions are confirmed by Fig. 4 and
Fig. 5, which shows the sum of the link loading reduction
in the ground network increases with the budget value, and
so does the number of ground links with decreased loading.

We also compare the performance of the results based on
the in (23) and the results based on the Knapsack problem in
(24); both of which contain 18 binary integer variables in this
problem. Fig. 4 and Fig. 5 show that the MPEC approach
is better than the Knapsack problem approach in terms of
the total link loading reduction in the ground network as
well as the number of ground links with decreased loading.
These results confirm the advantage of the MPEC approach.
We note that it may be possible for the Knapsack problem to
produce results similar to those of the MPEC approach, via a
better estimate of the value vector–rather than directly using
the total travel demand–in optimization (24). However, to our
best knowledge, there is no systematic method to compute
these estimates. Hence MPEC is more useful for vertiport
selection.

(a) Air traffic network loading.

(b) Ground traffic network loading.

Fig. 3. The optimal air and ground traffic network loading when vertiport
selection budget γ = 8. The shape of the marker indicates the capacity of
the corresponding vertiport: square marker means capacity value 600, costs
one unit in the budget; triangle markers means capacity value 1200, which
costs 2 units in the budget.

Fig. 4. The total link loading reduction in the ground network due to
vertiport addition for different budget value γ: a comparison between the
MPEC approach and the Knapsack problem approach.



Fig. 5. The number of ground links whose link loading decrease due to
vertiport addition with different budget value γ: a comparison between the
MPEC approach and the Knapsack problem approach.

VI. CONCLUSION

We introduce a mathematical model to select the optimal
vertiport location and capacity for minimizing the traffic con-
gestion in a hybrid air-ground transportation network. Our
model is equivalent to a mixed-integer linear program, and
we demonstrate this model using the Anaheim transportation
network.

Our work also opens some new research questions. For
example, although the identification of the parameters for
ground transportation networks–such as free travel time and
link capacity–are well studied in the literature, similar results
are still missing for the air transportation networks. In order
to use the mathematical models we developed, it is important
to identify these parameters using realistic air traffic data.
Another example is to consider the impacts of different
weather conditions in the vertiport selection problem. Since
weather conditions are more likely to affect the operation
of aircraft than automobiles, it is critical to ensure the air
transportation network is robust against temporary capacity
decrease caused by extreme weather conditions. We aim to
answer these open questions in our future work.

VII. APPENDIX

A. Proof of Proposition 1

We start by deriving the dual of linear program (8). Let
the Lagrangian be defined as

L(X,U, V, p, q) = c>X1d − tr(V >EX) + tr(V >S)

− tr(U>X) + p>(X1d − f) + q>(DX1d − g).
(26)

The dual of linear program is given by

maximize
U,V,p,q

ψ(U, V, p, q)

subject to U ≥ 0, p ≥ 0, q ≥ 0.
(27)

where ψ(U, V, p, q) = minX L(X,U, V, p, q). Since matrix
trace is invariant under cyclic permutation, we have

c>X1d = tr(1dc
>X), p>X1d = tr(1dp

>X),

q>DX1d = tr(1dq
>DX).

Substitute the above equalities into (26), we can show the
following

∂

∂X
L(X,U, V, p, q)

=
∂

∂X
tr((1d(c

> + p> + q>D)− V >E − U>)X)

= (c+ p+Dq)1d − E>V − U

Since L(X,U, V, p, q) is a linear function of X , we
have ψ(U, V, p, q) = L(X,U, V, p, q) if and only if
∂
∂XL(X,U, V, p, q) = 0. Therefore we can rewrite optimiza-
tion (27) equivalently as follows

maximize
U,V,p,q

tr(V >S)− f>p− g>q

subject to (c+ p+Dq)1>d = E>V + U

U ≥ 0, p ≥ 0, q ≥ 0.

(28)

Using [29, Thm. 1.3.3], we conclude that X and U, V, p, q
are optimal for linear program (8) and (28), respectively, if
and only if the primal and dual feasibility condition in (9)
and the complementary slackness condition (10) are satisfied.
Furthermore, the complementary slackness conditions in (10)
are equivalent to the zero duality gap condition in (11).

B. Proof of Corollary 1

Since u?, u ∈ P(i, s(j)), by pre-multiplying equation (9)
with u? and u and we can show the following:

(u?)>c = Vij − Vs(j),j +
∑nl

k=1[u
?]j [U ]kj , (29a)

u>c = Vij − Vs(j),j +
∑nl

k=1[u]j [U ]kj . (29b)

In addition, the constraints in (9c) and (10) together implies
that [U ]kj = 0 for all k such that [X]kj > 0. Combining this
fact with the assumption that [X]kj > 0 for all k such that
[u?]k = 1, we conclude that [U ]kj = 0 for all k such that
[u?]k = 1. Hence

(u?)>c = Vij − Vs(j),j +
∑nl

k=1[u
?]j [U ]kj = Vij − Vs(j),j .

(30)
By combining (29) and (30), we obtain the following

(u?)>c = Vij − Vs(j),j = u>c−
∑nl

k=1[u]j [U ]kj ≤ u>c,

where the last step is because u and U are both elementwise
nonnegative.

C. Proof of Proposition 2

First, suppose δ, q, B and g satisfy the constraints in (21).
Let [Y ]ij = [g]i[qt]i[B]ij for all i = 1, 2, . . . , nv and j =
1, 2, . . . , nm, and µ = maxi,j [q]i[G]ij . Then one can verify
that δ, q, B and Y satisfy the constraints in (22).

Second, suppose δ, q, B and Y satisfy the constraints in
(22) for some sufficiently large µ ∈ R++. The constraints
B ∈ {0, 1}nv×nm and B1nm ≤ 1nv implies that each row



of matrix B can have at most one entry equals one. Hence
we can obtain an unique vector g by defining its i-th entry
as follows:

[g]i =

{
[G]ij , if [B]ij = 1,

0, if [B]ij = 0 for all j = 1, 2, . . . , nm.
(31)

Next, since µ ∈ R++ is sufficiently large, an upper bound
of µ can be treated as redundant. As a result, if [B]ij =
0, then the constraints in (22) implies that [Y ]ij = 0 and
[G]ij [q]i ≥ 0. Since q ≥ 0 and G ≥ 0, the latter constraint
is redundant. Furthermore, if [B]ij = 1, then the constraints
in (22) implies that

0 ≤ [Y ]ij , [G]ij [q]i = [Y ]ij .

By combining the above two cases with the definition in
(31), we conclude that

∑nv

i=1

∑nm

j=1[Y ]ij =
∑nv

i=1[g]i[q]i for
all i = 1, 2, . . . , nv and j = 1, 2, . . . , nm. Therefore, δ, q, B
and g satisfy the constraints in (21).
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