
Distributed and Localized Model Predictive Control. Part II:
Theoretical Guarantees

Carmen Amo Alonso, Jing Shuang (Lisa) Li, Nikolai Matni, and James Anderson*

January 3, 2023

Abstract

Engineered cyberphysical systems are growing increasingly large and complex. These systems re-
quire scalable controllers that robustly satisfy state and input constraints in the presence of additive noise
– such controllers should also be accompanied by theoretical guarantees on feasibility and stability. In
our companion paper, we introduced Distributed and Localized Model Predictive Control (DLMPC) for
large-scale linear systems; DLMPC is a scalable closed-loop MPC scheme in which subsystems need
only exchange local information in order to synthesize and implement local controllers. In this paper, we
provide recursive feasibility and asymptotic stability guarantees for DLMPC. We leverage the System
Level Synthesis framework to express the maximal positive robust invariant set for the closed-loop sys-
tem and its corresponding Lyapunov function, both in terms of the closed-loop system responses. We use
the invariant set as the terminal set for DLMPC, and show that this guarantees feasibility with minimal
conservatism. We use the Lyapunov function as the terminal cost, and show that this guarantees stability.
We provide fully distributed and localized algorithms to compute the terminal set offline, and also pro-
vide necessary additions to the online DLMPC algorithm to accommodate coupled terminal constraint
and cost. In all algorithms, only local information exchanges are necessary, and computational com-
plexity is independent of the global system size – we demonstrate this analytically and experimentally.
This is the first distributed MPC approach that provides minimally conservative yet fully distributed
guarantees for recursive feasibility and asymptotic stability, for both nominal and robust settings.

1 Introduction

Model Predictive Control (MPC) enjoys widespread success across diverse applications. Ensuring recursive
feasibility and asymptoptic stability for MPC is a well-studied topic in the centralized setting [1], and suf-
ficient conditions based on terminal sets and cost functions have been established [2]. Porting these ideas
to distributed systems is a challenging task, both theoretically and computationally. High computational
demand, limited and local communication, and coupling among subsystems prevents the use of techniques
from the centralized setting. Thus, efforts have been made to develop theoretical guarantees for distributed
MPC.

Prior work: The majority of distributed MPC approaches rely on the use of distributed terminal costs
and terminal sets to provide theoretical guarantees. In order to obtain structure in the terminal cost, stan-
dard methods rely on Lyapunov stability results, often combined with relaxation techniques to make them

*C. Amo Alonso and J.S. Li are with the Computing and Mathematical Sciences Department at California Institute of
Technology, Pasadena, CA, 91106, USA. N. Matni is with the Department of Electrical and Systems Engineering at the Uni-
versity of Pennsylvania, Philadelphia, PA, 19104, USA. J. Anderson is with the Department of Electrical Engineering and
the Data Science Institute at Columbia University, New York, NY, 10027, USA. {camoalon,jsli}@caltech.edu,
nmatni@seas.upenn.edu, james.anderson@columbia.edu

1

ar
X

iv
:2

20
3.

00
78

0v
1

 [
ee

ss
.S

Y
]

 1
 M

ar
 2

02
2

amenable to distributed settings [3–5]. For terminal sets, proposed distributed methods are often limited by
the coupling among subsystems – this often leads to small terminal sets that result in too conservative solu-
tions (see for example [6, 7] and references therein). In order to overcome these issues, several approaches
have recently been proposed to synthesize structured terminal sets with adaptive properties, i.e. local ter-
minal sets defined as the sub-level set of a structured Lyapunov function, which change at each iteration
in order to avoid unnecessary conservatism [8–13]. These approaches successfully design structured robust
positive invariant sets and reduce conservatism; however, they require online updates of the terminal set at
each MPC iteration, which increase the controller’s overall computational complexity and communication
overhead. Moreover, the imposed structure unavoidably leads to a possibly small approximation of the max-
imal control invariant set (the least conservative option for a terminal set). To move away from structured
sets and costs, a data-driven approach was recently developed in [14], where locally collected data are used
to construct local control invariant sets and costs that provide guarantees. However, this approach is mainly
limited to iterative control tasks, and conservatism of the terminal cost and set only reduces asymptotically
as the system collects data. Online computation and refinements of the terminal set are also key to this
approach.

Given the state of the art, our goal is to design a distributed MPC approach with distributed and min-
imally conservative feasibility and stability guarantees. We seek a distributed MPC algorithm with (i) a
maximal positive invariant terminal set, and (ii) a fully distributed and scalable offline algorithm to compute
this set. This will allow us to use the associated Lyapunov function of the terminal set as the terminal cost,
and requires no explicit a priori structural assumptions. No method satisfying these requirement currently
exists in the literature.

Contributions: We provide theoretical guarantees for the Distributed Localized MPC (DLMPC) for
linear time-invariant systems approach presented in our companion paper [15]. We show that the maxi-
mal positive invariant set of the closed-loop system can be expressed in terms of the closed-loop system
responses as defined in the System Level Synthesis (SLS) framework [16, 17]. We show that when the
closed-loop system is localized, the set is naturally structured without requiring additional assumptions. We
also show that this set can be used to provide recursive feasibility guarantees when used as the terminal set of
the system, and stability guarantees when combined with its associated global Lyapunov function [18]. We
provide a fully distributed and localized offline algorithm for computation of the terminal set – this algorithm
requires only local information exchange between subsystems. We also provide necessary additions to the
original DLMPC algorithm to accommodate coupled terminal constraint and cost. In particular, this can be
done by using a nested Alternating Direction Method of Multipliers (ADMM)-based consensus algorithm.
In the resulting implementation, each sub-controller first solves for its local portion of the terminal set, of-
fline, then solves a local online MPC problem. Throughout all algorithms, only local information exchanges
within some local neighborhood are necessary, and computational complexity is independent of the global
system size. The presented approach applies to the nominal case as well as additive polytopic or locally
norm-bounded disturbances. This approach is the first to compute without approximation the maximal pos-
itive invariant set and its associated global Lyapunov function in a fully distributed and localized manner.
Through numerical experiments, we validate these results and further confirm the minimal conservatism
introduced by this method.

Paper structure: In §II we present the problem formulation and briefly summarize essential concepts
from our companion paper [15]. In §III, we formulate the maximal robust positive invariant set and its
associated Lyapunov function in closed-loop coordinates, and use this to provide recursive feasibility and
stability guarantees for DLMPC; we also discuss convergence guarantees for DLMPC. In §IV we provide
an offline algorithm to distributedly and locally compute the terminal set, and a modified online DLMPC
algorithm that accommodates the terminal set and cost, including any local coupling. In §V, we present a
numerical study and we end in §VI with conclusions and directions of future work.

Notation: Lower-case and upper-case Latin and Greek letters such as x and A denote vectors and

2

matrices respectively, although lower-case letters might also be used for scalars or functions (the distinction
will be apparent from the context). Bracketed indices denote time-step of the real system, i.e., the system
input is u(t) at time t, not to be confused with xt which denotes the predicted state x at time t. Superscripted
variables, e.g. xk, correspond to the value of x at the kth iteration of a given algorithm. Square bracket
notation, i.e., [x]i denotes the components of x corresponding to subsystem i. Calligraphic letters such as S
denote sets, and lowercase script letters such as c denote a subset of Z+, e.g. c = {1, ..., n} ⊂ Z+. Boldface
lower and upper case letters such as x and K denote finite horizon signals and block lower triangular (causal)
operators, respectively:

x =

x0

x1
...
xT

 , K =

K0[0]
K1[1] K1[0]

...
.

KT [T] . . . KT [1] KT [0]

,

where each xi is an n-dimensional vector, and each Ki[j] is a matrix of compatible dimension representing
the value of K at the jth time-step computed at time i. K(r, c) denotes the submatrix of K composed of the
rows and columns specified by r and c respectively. We denote the block columns of K by K{1},...,K{T},
i.e. K {1} := [K0[0]T . . . KT [T]T]T, and we use : to indicate the range of columns, i.e. K {2 : T} contains
the block columns from the second to the last. For compactness, we also define ZAB :=

[
I − ZÂ −ZB̂

]
where Â := blkdiag(A, ..., A) and B̂ := blkdiag(B, ..., B, 0) for the dynamics matrices A and B, and Z
is the block-downshift matrix.

2 Problem Formulation

We begin with a brief summary of the DLMPC formulation, approach, and algorithm (for details, refer to our
companion paper [15]), then formally introduce the problem of providing theoretical guarantees – recursive
feasibility and asymptotic stability – in the DLMPC scheme. We then introduce the open question that we
resolve in this paper.

Setup: Consider a discrete-time linear time invariant (LTI) system

x(t+ 1) = Ax(t) +Bu(t) + w(t), (1)

where x(t) ∈ Rn is the state, u(t) ∈ Rp is the control input, and w(t) ∈ W ⊂ Rn is an exogenous
disturbance at time t. System (1) can be interpreted as N interconnected subsystems. Each subsystem
is equipped with a sub-controller. We model the interconnection topology as an unweighted directed graph
G(A,B)(E ,V), where each subsystem i is identified with a vertex vi ∈ V and an edge eij ∈ E exists whenever
[A]ij 6= 0 or [B]ij 6= 0.

We impose that information exchange between sub-controllers – as defined by the graph G(A,B) – is
confined to a subset of neighboring sub-controllers. We use the d-local communication constraints [19] to
formalize this idea. Each subsystem i:

• Receives information from its d-incoming set ini(d) := {vj | dist(vj → vi) ≤ d ∈ N}, and

• Sends information to its d-outgoing set outi(d) := {vj | dist(vi → vj) ≤ d ∈ N}.

3

We use a model predictive controller to determine the control input; at time step τ , the controller solves:

min
xt,ut,γt

T−1∑
t=0

ft(xt, ut) + fT (xT) (2)

s.t.

x0 = x(τ), xt+1 = Axt +But + wt,

xT ∈ XT , xt ∈ Xt, ut ∈ Ut ∀wt ∈ Wt,

ut = γt(x0:t, u0:t−1), t = 0, ..., T − 1.

To provide tractability, ft(·, ·) and fT (·) are assumed to be closed, proper, and convex, and γt(·) is a mea-
surable function of its arguments. The sets Xt and Ut are assumed to be closed and convex sets containing
the origin for all t. For simplicity, we will consider constant state and input constraint sets X and U .

Note that (2) does not include the d-local communication constraints. It is not possible to introduce such
constraints in a convex manner in the classical MPC formulation (2). However, the DLMPC formulation
allows to incorporate locality constraints into the MPC formulation in a straightforward manner with the
only requirement that the MPC formulation be compatible with the locality constraints.(see our companion
paper [15] for details). Hence, we assume that if two subsystems are coupled through either the constraints
or cost, then the two subsystems must be in the d-incoming and d-outgoing set from one another:

Assumption 1. Given an MPC problem (2) over system (1), the objective function f is such that f(x, u) =∑
f i([x]ini(d), [u]ini(d)) for f i local functions; and the constraint sets are such that x ∈ X = X 1∩ ...∩XN ,

where x ∈ X if and only if [x]ini(d) ∈ X i for all i, and idem for U for the local sets X i and U i.

Approach: In [15], we use the SLS framework to reformulate the MPC problem (2) into the DLMPC
problem. This allows for distributed and localized synthesis and implementation, i.e., each subsystem re-
quires only local information to synthesize its local sub-controller and determine the local control action.
This is made possible by imposing appropriate d-local structural constraints Ld on the closed-loop system
responses of the system Φx and Φu, which become the decision variables of the MPC problem.

The DLMPC subroutine over time horizon T at time τ is as follows:

min
Φ

f(Φ{1}x0) + fT (Φ{1}x0) (3)

s.t.
ZABΦ = I, x0 = x(τ), Φ ∈ Ld,
Φw ∈ P, Φx,Tw ∈ XT , ∀w ∈ W,

where Φ :=
[
Φᵀ
x Φᵀ

u

]ᵀ, ft(·, ·) and fT (·) are closed, proper, and convex cost functions, and P is defined
so that Φw ∈ P if and only if x ∈ X , and u ∈ U . By convention, we define the disturbance to contain
the initial condition, i.e., w = [xᵀ0 w

ᵀ
0 . . . wᵀ

T−1] =: [xᵀ0 δᵀ] and W is defined over δ so that it does not
restrict x0. In the nominal case, i.e., wt = 0 ∀t, P and XT are closed and convex sets containing the origin.
When noise is present, we restrict ourselves to polytopic sets only: P := {[xᵀ uᵀ]ᵀ : H[xᵀ uᵀ]ᵀ ≤ h}, and
consider different options for setW:

• Polytopic set: δ ∈ {δ : Gδ ≤ g}.

• Locally norm-bounded: [δ]i ∈ {δ : ‖δ‖p ≤ σ} ∀i = 1, ..., N and p ≥ 1.

Although (3) solves a distributed control problem, the optimization problem (3) is itself centralized.
To solve (3) in a distributed and localized manner, we perform a variable duplication in order to apply the

4

ADMM distributed optimization technique [20]:

min
Φ̃,Ψ̃

f(M1Φ̃{1}x0) (4)

s.t. ZABM2Ψ̃ = I, x0 = x(τ), Φ̃, Ψ̃ ∈ Ld,
Φ̃x0 ∈ P̃, Φ̃ = H̃Ψ̃

where variables Φ̃ and Ψ̃ are extensions of the system response Φ to account for the robust case and
M1, M2, H̃ are auxiliary matrices.1 We apply ADMM to solve (4) in a distributed and localized manner,
as shown in Algorithm 1:

Algorithm 1 Subsystem i DLMPC implementation
1: Measure local state [x(τ)]i and exchange with neighbors in outi(d). Set k ← 0.
2: Share the measurement with neighbors in outi(d).
3: Solve for local rows of Φ̃k+1 via (11a) in [15].
4: Exchange rows of Φ with d-local neighbors.
5: Solve for local columns of Ψ̃k+1 via (11b) in [15].
6: Exchange rows of Φ with d-local neighbors.
7: Perform the multiplier update step via (11c) in [15].
8: if ADMM has converged:

Apply [u0]i = [Φu,0[0]]i[x0]i. Return to step 1.
else:

Set k ← k + 1. Return to step 3.

Problem statement: The DLMPC approach (4) introduced in [21, 22] lacks feasibility, stability, and
convergence guarantees – our goal is to provide these. Also, (4) does not explicitly consider a terminal
set XT and terminal cost fT – we want to leverage these to provide the aforementioned feasibility and
stability guarantees. Additionally, Algorithm 1 was developed under the assumption that subsystems are
not coupled. We want to augment the algorithm to accommodate coupling as per Assumption 1. In the
remainder of this paper, we address all of these problems; we provide theoretical guarantees by selecting an
appropriate terminal set and cost, and present distributed and localized algorithms that perform the necessary
computations and accommodate coupling.

3 Feasibility and Stability Guarantees

Theoretical guarantees for the DLMPC problem (3) are now derived. First, we describe a maximal positive
invariant set using an SLS-style parametrization; recursive feasibility for DLMPC is guaranteed by using
this set as the terminal set. We also use this set to construct a terminal cost to guarantee asymptotic stability
for the nominal setting and input-to-state stability (ISS) for the robust setting. Convergence results from the
ADMM literature are used to establish convergence guarantees.

3.1 Feasibility guarantees

Recursive feasibility guarantees for the DLMPC problem (3) are given by the following lemma:
1Their actual definition depends on whether the system experiences no disturbances, locally bounded disturbances, or polytopic

disturbances; they are defined in §IV of [15].

5

Lemma 1. Let the terminal set XT for the DLMPC problem (3) be of the form

XT := {x0 ∈ Rn : Φ
[
xᵀ0 δᵀ

]ᵀ ∈ P ∀δ ∈ W}, (5)

for some Φ satisfying ZABΦ = I . Then recursive feasibility is guaranteed for the DLMPC problem (3).
Moreover, XT is the maximal robust positive invariant set for the closed-loop described by Φ.

Proof. First, we show that XT is the maximal robust positive invariant set. By Algorithm 10.4 in [1], the set

S :=

∞⋂
k=0

Sk, with S0 = X ,

Sk = {x ∈ Rn : Ax+Bu+ w ∈ Sk−1 ∀w ∈ W}

is the maximal robust positive invariant set for the closed-loop system (1) with some fixed input u ∈ U . We
show by induction that Sk can also be written as

Sk = {x0 ∈ Rn : xk ∈ X ∀w0:k−1 ∈ W} (6)

for some sequence u0:k−1 ∈ U . The base case at k = 1 is trivially true, since S0 = X . For the inductive
step, assume that equation (6) holds at k. Then, at k = 1,

Sk+1 =
{
x ∈ Rn : Ax+Bu+ w ∈ Sk ∀w ∈ W

}
=
{
x0 ∈ Rn : x := Ax0 +Bu+ w s.t.

Ak+1x+
k∑
j=0

Aj(Buj + w) ∈ X ∀w ∈ W
}

=
{
x0 ∈ Rn : xk+1 ∈ X , ∀w0:k ∈ W

}
for some sequence of inputs u0:k ∈ U . This implies that S can be written as

S = {x0 ∈ Rn : x ∈ X ∀w ∈ W} for some u ∈ U .

From the definition of Φ, this implies directly that

S = {x0 ∈ Rn : Φ
[
xᵀ0 δᵀ

]
∈ P ∀δ ∈ W} := XT ,

for some Φ satisfying ZABΦ = I . This constraint automatically enforces that the resulting closed-loop is
feasible, i.e. that u = Φu

[
xᵀ0 δᵀ

]
exists; furthermore, all inputs u can be captured by this closed-loop

parametrization since it parametrizes a linear time-varying controller over a finite time horizon [17]. Hence,
XT is the maximal robust positive invariant set for the closed-loop system as defined by Φ.

Next, we show that imposing XT as the terminal set of the DLMPC problem (3) guarantees recursive
feasibility. Notice that by definition, XT is not only a robust positive invariant set but also a robust control
invariant set. We can directly apply the proofs from Theorem 12.1 in [1] to the robust setting – recursive
feasibility is guaranteed if the terminal set is control invariant, which XT is.

Remark 1. Recursive feasibility is guaranteed by a control invariant XT . In the ideal case, we want XT
to be the maximal robust control invariant set, in order to minimize conservatism introduced by XT in (3).
However, this set generally lacks sparsity, violates Assumption 1, and is not amenable for inclusion in our
distributed and localized algorithm. For this reason, we use the maximal robust positive invariant set in
Lemma 1. Here, the choice of Φ is critical in determining how much conservatism XT will introduce.

6

As suggested in §12 of [1], we choose Φ corresponding to the unconstrained closed-loop system. In the
interests of distributed synthesis and implementation, we additionally enforce Φ to have localized structure.
We discuss how this Φ is computed in §4, and demonstrate that the resulting terminal set XT introduces no
conservatism in §5.

By Assumption 1, constraint sets are localized, i.e. X = X 1 ∩ ... ∩ XN , where x ∈ X if and only if
[x]ini(d) ∈ X i for all i (and idem for U). Moreover, we can use the constraint Ld to enforce that the system
response Φ is localized. This implies that the set XT is also localized:

X = X 1
T ∩ ... ∩ XNT ,

where
X iT = {[x0]ini(d) ∈ R[n]i : [Φ]ini(d)

[
xᵀ0 δᵀ

]
ini(2d)

∈ P i ∀[δ]ini(2d) ∈ W ini(d)}

and x ∈ XT if and only if [x]ini(d) ∈ X iT for all i. We will show in §4 that this allows for a localized and
distributed computation of the terminal set XT .

3.2 Stability guarantees

Stability guarantees for the DLMPC problem (3) are given by the following lemma:

Lemma 2. Consider system (1) subject to the MPC law (3), where:

1. The cost f is continuous and positive definite.

2. The set P contains the origin and is closed.

3. XT is defined by (5).

4. fT (x) = inf {η ≥ 0 : x ∈ ηXT }.

Then, in the nominal setting, the origin is asymptotically stable with domain of attraction X , and in the
robust setting, XT is input-to-state stable with domain of attraction X .

Proof. It suffices to show that these conditions immediately imply satisfaction of the necessary assumptions
in [23], together with the additional sufficient conditions of Theorem 4.2 in [24]. These results state that if

(i) f and fT are continuous and positive definite,

(ii) X , U , XT contain the origin and are closed,

(iii) XT is control invariant, and

(iv) min
u∈U

f(x, u) + fT (Ax+Bu)− fT (x) ≤ 0 ∀x ∈ XT ,

then the desired stability guarantees hold.
Condition 1) implies satisfaction of the part of (i) that concerns f .
Condition 2) implies satisfaction of (ii). If P contains the origin and is closed, by definition this implies

that X and U also contain the origin and are closed. Also, since XT is defined in terms of P in (5), XT also
contains the origin and is closed.

Condition 3) implies satisfaction of (iii) by virtue of Lemma 1.
Condition 4) implies that fT is a Lyapunov function on {x ∈ Rn : 1 ≤ fT (x)} ⊇ XT since it is the

Minkowski functional of the terminal set XT (see Theorem 3.3. in [18]). Therefore, the condition stated in

7

(iv) is automatically satisfied for all x ∈ XT . Moreover, fT is necessarily positive definite, so the part of (i)
that concerns fT is satisfied as well.

Therefore, by virtue of the results in [23] and [24], we guarantee asymptotic stability of the origin in the
nominal setting and ISS of XT in the robust setting, both with domain of attraction X .

For any cost f and constraint P that satisfy conditions 1) and 2) of Lemma 2, we can choose an appro-
priate terminal set XT and terminal cost fT as per 3) and 4) to satisfy the lemma. This guarantees stability
for the DLMPC problem (3). However – as stated, fT does not satisfy Assumption 1, and therefore it is not
localized. In particular, fT can be written as:

fT (x) = inf
η
{η ≥ 0 : [x]ini(d) ∈ ηX iT ∀i}, (7)

which cannot be written as a sum of local functions. Nonetheless, this scalar objective function admits a
distributed and localized implementation – we can add it in the DLMPC algorithm using the ADMM-based
consensus technique described in §4.

3.3 Convergence guarantees

Algorithm 1 relies on ADMM. We can guarantee convergence of the overall algorithm by leveraging the
ADMM convergence result from [20].

Lemma 3. In Algorithm 1, the residue, objective function, and dual variable converge as k →∞ i.e.

H̃Φ̃k − Ψ̃k → 0, f(Φ̃kx0)→ f(Φ̃∗x0), Ψ̃k → Ψ̃∗,

where ? indicates optimal value.

Proof. Algorithm 1 is the result of applying ADMM to the DLMPC problem (3), then exploiting the sep-
arability and structure of resulting sub-problems to achieve distributed and localized implementation, as
presented in [15]. Thus, to prove convergence, we only need to show that the underlying ADMM algorithm
converges. By the ADMM convergence result in [20], the desired convergence of the residue, objective
function, and dual variable are guaranteed if

1. The extended-real-value functional for the algorithm is closed, proper, and convex, and

2. The unaugmented Lagrangian for the algorithm has a saddle point.

We first show 1). The extended-real-value functional h(Φ̃) is defined for this algorithm as

h(Φ̃) =

f(M1Φ̃{1}x0) if ZABM2H̃

†Φ̃ = I,

Φ̃ ∈ Ld, Φ̃x0 ∈ P̃,
∞ otherwise.

where H̃† is the left inverse of H̃ from (4); H̃ has full column rank. When formulating the DLMPC problem
(3) as an ADMM problem, we perform variable duplication to obtain problem (4). We can write (4) in terms
of h(Φ̃) with the constraint Φ̃ = H̃Ψ̃:

min
Φ̃,Ψ̃

h(Φ̃) s.t. Φ̃ = H̃Ψ̃.

8

By assumption, f(M1Φ̃x0) is closed, proper, and convex, and P̃ is a closed and convex set. The
remaining constraints ZABΦ̃ = I and Φ̃ ∈ Ld are also closed and convex. Hence, h(Φ̃) is closed, proper,
and convex.

We now show 2). This condition is equivalent to showing that strong duality holds [25]. Since problem
(3) is assumed to have a feasible solution in the relative interior of P by means of Lemma 1 (given that
the first iteration is feasible), Slater’s condition is automatically satisfied, and therefore the unaugmented
Lagrangian of the problem has a saddle point.

Both conditions of the ADMM convergence result from [20] are satisfied – Algorithm 1 converges in
residue, objective function, and dual variable, as desired.

4 Feasible and Stable DLMPC

We incorporate theoretical results from §3 into the DLMPC computation. We provide an algorithm to
compute the terminal set XT . We also provide a distributed and localized computation for the terminal cost
function fT . The terminal set and cost generally introduce local coupling among subsystems; this minimizes
conservatism but requires an extension to Algorithm 1 to accommodate coupling. All algorithms provided
are distributed and localized, with computational complexity that is independent of the global system size.

4.1 Offline synthesis of the terminal set XT
Our first result is to provide an offline algorithm to compute terminal set XT from (5) in a distributed
and localized manner. As discussed in §3, we compute the maximal robust positive invariant set for the
unconstrained localized closed-loop system. We use SLS-based techniques to obtain a localized closed-loop
map Φ.

Our algorithm is based on Algorithm 10.4 from [1]. The advantage of implementing this algorithm in
terms of the localized closed-loop map Φ is twofold: i) we can work with locally-bounded and polytopic
disturbance sets W by leveraging Lemmas 1 and 2 in [15], and ii) the resulting robust invariant set is
automatically localized given the localized structure of the closed-loop map.

We start by finding a localized closed-loop map Φ for system (1). To do this, we need to solve

min
Φ
f(Φ) s.t. ZABΦ = I, Φ ∈ Ld. (8)

This is an SLS problem with a separable structure for most standard cost functions f [17]. The separable
structure admits localized and distributed computation. Even when separability is not apparent, a relaxation
can often be found that allows for distributed computation (see for example [26, 27]). The infinite-horizon
solution for quadratic cost is presented in [28]. For other costs, computing an infinite horizon solution to
(8) remains an open question – in these cases, we can use finite impulse response SLS with sufficiently long
time horizon.

Once a localized closed-map Φ has been found, we can compute the associated maximal positive invari-
ant set. In the robust case, we leverage results from Lemmas 1 and 2 in our companion paper [15], which
use duality arguments to tackle specific formulations ofW . We denote σ as the upper bound of ‖[δ]i‖∗ for
all i, where ‖·‖∗ is the dual norm of ‖·‖p. Also, Each ej is the jth vector in the standard basis.

• Nominal (i.e. no disturbance):

S :={x0 ∈ Rn : Φ{1}x0 ∈ P}.

9

• Locally bounded disturbance:

S := {x0 ∈ Rn : [H]i[Φ{1}]i[x0]i +
∑
j

σ
∥∥∥eᵀj [H]i[Φ{2 : T}]i

∥∥∥
∗
≤ [h]i ∀i}.

• Polytopic disturbance:

S := {x0 ∈ Rn : HΦ{1}x0+Ξg ≤ h,where Ξ(j, :) = min
Ξj≥0

Ξjg s.t.H(j, :)Φ{2 : T} = ΞjG ∀j}.

As per Lemma 1, we calculate S by iteratively computing Sk+1 from Sk.2 Assume Sk can be written as

Sk = {x0 ∈ Rn : Ĥx ≤ ĥ}.

Then, we can write Sk+1 as

Sk+1 = {x0 ∈ Rn : Φx,1[1]x0 ∈ F(Sk),Φu,0[0]x0 ∈ U}, (9)

where F(Sk) := Sk in the nominal case. In the case of locally bounded disturbance,

F(Sk) := {x ∈ Rn : [Ĥ]i[x]i +
∑
j

σ
∥∥∥eᵀj [Ĥ]i

∥∥∥
∗
≤ [ĥ]i ∀i},

and for polytopic disturbance,

F(Sk) := {x ∈ Rn : Ĥx+ Ξg ≤ ĥ,where Ξ(j, :) = min
Ξj≥0

Ξjg s.t. Ĥ(j, :) = ΞjG ∀j}.

These formulations use the simplifying fact that Φx,0[0] = I for all feasible closed-loop dynamics. Also,
notice that by using Sk to calculate Sk+1, the only elements of Φ that we require are Φx,1[1] and Φu,0[0].

The conditions stated in (9) are row- and column-wise separable in Φ (and Ξ)3; this allows us to calculate
Sk in a distributed way. Furthermore, F(Sk) and U are localizable by Assumption 1, in both nominal and
robust settings. Since Φ is also localized, we can exploit the structure of Φ to and rewrite Sk+1 as the
intersection of local sets, i.e. Sk+1 = S1

k+1 ∩ · · · ∩ SNk+1, where

Sik+1 = {[x0]ini(d) ∈ R[n]i : [Φx,1[1]]ini(d)[x0]ini(d) ∈ F(S ini(d)
k), [Φx,1[1]]ini(d)[x0]ini(d) ∈ U ini(d)}

(10)
We now present Algorithm 2 to compute the terminal set XT := S in a distributed and local manner.

Each subsystem i computes its own local terminal set Si using only local information exchange. This
algorithm is inspired by Algorithm 10.4 in [1].

If state and input constraints X and U do not induce coupling (as assumed in Algorithm 1), the resulting
terminal set XT will be at most d-localized. If X and U do induce d-local coupling, the terminal set will be
at most 2d-localized since – in the presence of coupling – Alg. 2 requieres communication with not only
local patch neighbors, but also neighbors of those neighbors. Convergence is guaranteed for system (1) if
it is stable when u = 0, w = 0, and when the constraint and disturbance sets X , U , W are bounded and
contain the origin, as per [29].

2For simplicity of presentation, we write out S only for finite-horizon Φ; the proposed algorithm to synthesize S works for
infinite-horizon Φ as well.

3A formal definition or row and column-wise separability is given in [15].

10

Algorithm 2 Subsystem i terminal set computation

input: [Φx,1[1]]ini(d), [Φu,0[0]]ini(d),U ini(d)

for polytopic noise, also [G]ini(d), [g]ini(d)

1: Si0 ← X i, k ← −1
2: repeat:
3: k ← k + 1
4: Share Sik with outi(d) .

Receive Sjk from all j ∈ ini(d).
5: Compute Sik+1 via (10).
6: Sik+1 ← Sik ∩ Sik+1

7: until: Sik+1 = Sik for all i
8: X iT ← Sik

output: X iT
4.2 Online synthesis of DLMPC

DLMPC Algorithm 1 was developed under the assumption that no coupling is introduced through cost
or constraints. We now extend this algorithm to accommodate local coupling, which is allowed as per
Assumption 1. This allows us to incorporate the terminal set and cost introduced in the previous sections,
both of which generally induce local coupling. We will use notation that assumes all constraints and costs
(including the terminal set) are d-localized. In the case that the terminal set is 2d-localized, subsystems will
need to exchange information with neighbors up to 2d-hops away; simply replace { outi(d), ini(d) } with {
outi(2d), ini(2d) } wherever they appear in Algorithms 1, 2 and 3.

Appending the terminal set (5) and terminal cost (7) to the DLMPC problem (4), gives:

min
Φ̃,Ψ̃,η

f(M1Φ̃{1}x0) + η (11)

s.t. ZABM2Ψ̃ = I, x0 =x(τ), Φ̃, Ψ̃ ∈ Ld,
Φ̃x0 ∈ P̃, H̃Φ̃ =Ψ̃,

M1Φ̃T {1}x0 ∈ ηXT , 0 ≤ η ≤ 1,

where Φ̃T represents block rows of Φ̃ that correspond to time horizon T – e.g., in the nominal setting, the
last block row of Φx.

Remark 2. In the robust setting, we incorporate the terminal constraint into P̃ to ensure robust satisfac-
tion of the terminal constraint. However, XT still appears as nominal constraint in order to integrate the
definition of the terminal cost (7) into the DLMPC formulation (3).

In the original formulation (4), we assume no coupling; as a result, all expressions involving Φ̃ are
row-separable, and all expressions involving Ψ̃ are column-separable. If we allow local coupling as per
Assumption 1, we lose row-separability; row-separability is also lost in the new formulation (11) due to
local coupling in the terminal set. This is because without coupling, [x]i and [u]i (which correspond to a
fixed set of rows in Φ), can only appear in f i and P i; thus, each row of Φ (and Φ̃) is solved by exactly one
subsystem in step 3 of Algorithm 1. With coupling, [x]i and [u]i can appear in f j and Pj for any j ∈ ini(d);
now, each row of Φ is solved for by multiple local subsystems at once, and row-separability is lost. This
only affects step 3 of Algorithm 1 (i.e. the row-wise problem); other steps remain unchanged. We write out

11

the row-wise problem corresponding to (11):

min
Φ̃

f(M1Φ̃{1}x0) + η + g(Φ̃, Ψ̃k,Λk) (12)

s.t. Φ̃ ∈ P̃ ∩ Ld, M1Φ̃T {1}x0 ∈ ηXT ,
0 ≤ η ≤ 1, x0 = x(τ),

where g(Φ̃, Ψ̃,Λ) = ρ
2

∥∥∥Φ̃− H̃Ψ̃ + Λ
∥∥∥2

F
, and all other relevant variables and sets are defined as per

equation (10) in our companion paper [15].
Note that if P induces coupled linear inequality constraints, row-separability is maintained. Though [x]i

and [u]i appear in multiple Pj , this corresponds to distinct rows of Ω, each solved by one subsystem, as
opposed to one row of Φ that is solved for by multiple subsystems. A similar idea applies if coupling is
induced by some quadratic cost, i.e. f(Φx0) = ‖CΦx0‖2F for some matrix C which induces coupling. In
this case, we can modify H̃ such that we enforce Φ = CΨ, and rewrite the cost as ‖Φx0‖2F ; now, each row
of Φ is solved by exactly one subsystem, and row-separability is maintained.4 However, this technique does
not apply to coupling in the general case; nor does it apply to the coupling induced by the terminal cost –
it is generally true that each row of Φ̃ will be need to be solved for by several subsystems. We introduce a
new vector variable

X := M1Φ̃{1}x0.

This variable facilitates consensus between subsystems who share the same row(s) of Φ̃. Each subsystem
solves for components [X]ini(d), and comes to a consensus with its neighboring subsystems on the value of
these components. In the interest of efficiency, we directly enforce consensus on elements of X instead of
enforcing consensus on rows of Φ̃. We introduce a similar variable for terminal cost η; we define vector
η :=

[
η1, . . . , ηN

]
. Subsystem i solves for ηi, which is its own copy of η. It then comes to a consensus on

this value with its neighbors, i.e. ηj has the same value ∀j ∈ ini(d). Assuming that G(A,B) is connected,
this guarantees that ηi has the same value ∀i ∈ {1 . . . N}, i.e., all subsystems agree on the value of η. We
combine these two consensus-facilitating variables into the augmented vector variable

X̃ :=
[
Xᵀ ηᵀ

]ᵀ
.

With this setup, we follow a variable duplication strategy and apply ADMM for consensus [30]. In particular,
we duplicate variables so each subsystem has its own copy of the components of X̃. Problem (12) becomes:

min
Φ̃,X̃,Ỹ

f̃(X̃) + g(Φ̃, Ψ̃k,Λk) (13)

s.t. Φ̃, X̃ ∈ Q, X̃ ∈ X̃T , Φ̃ ∈ Ld, x0 = x(τ),

[X̃]i = [M1Φ̃]ir [x0]i, [X̃]j = [Ỹ]j ∀j ∈ ini(d) ∀i,

where we define f̃ , X̃T and Q as follows:

• f̃(X̃) := f(X) + 1
N

∑N
i=1 ηi,

• X̃ ∈ X̃T if and only if M1Φ̃T {1}x0 ∈ ηiXT ∀i,

• Φ̃, X̃ ∈ Q if and only if 0 ≤ η ≤ 1 and {Φ̃ ∈ P̃ if P̃ induces linear inequalities or X̃ ∈ P
otherwise}.5

4We would also need to use [Ψu,0[0]]i for the algorithm output instead of [Φu,0[0]]i.
5By the assumptions in [15], P (and therefore P̃) must induce linear inequalities in the robust setting. The only case where P̃

12

The structure of problem (13) allows us to solve it in a distributed and localized manner via ADMM-
based consensus. In particular, each subsystem i solves:

[Φ̃]k+1,n+1

ir,

[X̃]n+1
ini(d)

=

argmin
[Φ̃]ir ,[X̃]ini(d)

g̃ik(X̃, Φ̃)+
µ

2
hi(X̃, Ỹn, Z̃n)

s.t.
[Φ̃]ri∈Qi, [X̃T]i∈X̃ iT ∩Qi,
[X̃]i = [M1Φ̃]ri [x0]i

 (14a)

[Ỹ]n+1
i =

hi(X̃n+1,0, Z̃n)

|ini(d)|
, (14b)

[Z̃]
n+1

ij = [Z̃]
n

ij + [X̃]
n+1

i − [Ỹ]
n+1

j , (14c)

where to simplify notation, we define

g̃ik(X̃, Φ̃) := f̃ i([X̃]ini(d)) + g
(
[Φ]ir − [Ψ]kir + [Λ]kir

)
,

hi(X̃, Ỹn, Z̃n) :=
∑

j∈ini(d)

∥∥[X]j − [Y]ni + [Z]nij
∥∥2

F
,

Consensus iterations are denoted by n, outer-loop (i.e. Algorithm 1) iterations are denoted by k, and µ is the
ADMM consensus parameter. Intuitively, g̃ik represents the original objective from (12), and hi represents
the consensus objective.

The subroutine described by (14) allows us to accommodate local coupling induced by cost and con-
straint (including terminal), and can be implemented in a distributed and localized manner. As stated above,
this subroutine solves the row-wise problem (12), corresponding to step 3 of Algorithm 1. Thus, in order to
accommodate local coupling (including terminal set and cost), we need only to replace step 3 of Algorithm
1 with the subroutine defined by Algorithm 3 below. Convergence is guaranteed by a similar argument to
Lemma 3.

Algorithm 3 Subsystem i implementation of step 3 in Algorithm 1 when subject to localized coupling
input: tolerance parameters εx, εz, µ > 0.

1: n← 0.
2: Solve optimization problem (14a).
3: Share [X]n+1

i with outi(d). Receive the corresponding [X]n+1
j from j ∈ ini(d).

4: Perform update (14b).
5: Share [Y]n+1

i with outi(d). Receive the corresponding [Y]n+1
j from j ∈ ini(d).

6: Perform update (14c).
7: if

∥∥[X]n+1
i − [Z]n+1

i

∥∥
F
< εx

and
∥∥[Z]n+1

i − [Z]ni
∥∥
F
< εz :

Go to step 4 in Algorithm 1.
else:

Set n← n+ 1 and return to step 2.

Computational complexity of the algorithm: The presence of coupling induces an increase in compu-
tational complexity compared to the uncoupled scenario (i.e., Algorithm 1); however, the scalability prop-
erties from the uncoupled scenario still apply. Complexity in the current algorithm is determined by steps
2, 4, 6 of Algorithm 3 and steps 5 and 7 of Algorithm 1. Except for step 2 in Algorithm 3, all other steps

may induce something other than linear inequalities is in the nominal setting.

13

can be solved in closed form. Sub-problems solved in step 2 require O(d2T 2) optimization variables in the
robust setting (O(dT 2) in the nominal setting) and O(d2T) constraints. All other steps enjoy less complex-
ity since their evaluation reduces to multiplication of matrices of dimension O(d2T 2) in the robust setting,
and O(d2T) in the nominal setting. The difference in complexity between the nominal and robust settings is
consistent with the uncoupled scenario. Compared to the uncoupled scenario, additional computation bur-
den is incurred by the consensus subroutine in Algorithm 3, which increases the total number of iterations.
The consensus subroutine also induces increased communication between subsystems, as it requires local
information exchange. However, this exchange is limited to a d-local region, resulting in small consensus
problems that converge quickly, as we illustrate empirically in §5. As with the original uncoupled algorithm,
complexity of this new algorithm is determined by the size of the local neighborhood and does not increase
with the size of the global network.

5 Simulation Experiments

Using examples, we demonstrate how adding terminal constraint and cost affects the performance of the
DLMPC algorithm. We verify that introducing terminal constraint and cost indeed produces the desired
feasibility and stability properties. We additionally empirically characterize the computational complexity
of algorithms presented in previous sections and verify that complexity is independent of global network
size for both offline and online algorithms. Code to replicate these experiments is available at https://
github.com/unstable-zeros/dl-mpc-sls; this code makes use of the SLS toolbox [31], which
includes ready-to-use MATLAB implementations of all algorithms presented in this paper and its companion
paper [15].

5.1 System model

Simulations are performed on the system from our companion paper [15]; a two-dimensional square mesh,
where each node represents a two-state subsystem that follows linearized and discretized swing dynamics[

θ(t+ 1)
ω(t+ 1)

]
i

=
∑

j∈ini(1)

[A]ij

[
θ(t)
ω(t)

]
j

+ [B]i[u]i + [w]i,

where [θ]i, [θ̇]i, [u]i are the phase angle deviation, frequency deviation, and control action of the controllable
load of bus i. The dynamic matrices are

[A]ii =

[
1 ∆t

− ki
mi

∆t 1− di
mi

∆t

]
, [A]ij =

[
0 0

kij
mi

∆t 0

]
,

and [B]ii =
[
0 1

]ᵀ for all i.
Connectivity among nodes is determined at random; each node connects to each of its neighbors with

a 40% probability. The expected number of edges is 0.8 ∗ n ∗ (n − 1). The parameters in bus i: m−1
i

(inertia inverse), di (damping) and kij (coupling term) are randomly generated and uniformly distributed
between [0, 2], [0.5, 1], and [1, 1.5] respectively. We set the discretization step ∆t = 0.2, and define
ki :=

∑
j∈ini(1) kij .

We study both the nominal setting and robust setting with uniformly distributed polytopic noise. The
baseline parameter values are d = 3, T = 5, N = 16 (4 × 4 grid). Unless otherwise specified, we start
with a random-generated initial condition. We use a quadratic cost and polytopic constraints on both angle
and frequency deviation, and impose upper and lower bounds.

14

https://github.com/unstable-zeros/dl-mpc-sls
https://github.com/unstable-zeros/dl-mpc-sls

5.2 Performance

The addition of the terminal set and cost to the DLMPC algorithm introduces minimal conservatism in both
nominal and robust settings. We study the the DLMPC cost for varying values of the time horizons for three
different cases: (i) without terminal set and cost (ii) with terminal set, (iii) with terminal set and terminal
cost. Results are summarized in Fig. 1. Observe that the difference between the optimal cost across all three
cases are negligible, indicating that our proposed terminal set and cost introduce no conservatism (while still
providing the necessary theoretical guarantees).

Terminal set Terminal cost and terminal set

4 6 8 10

0

2

4

6

8

10-3

4 6 8 10

0

2

4

6

8

10-3

Figure 1: Relative difference of the optimal cost obtained (i) with terminal set (pink) and (ii) with both
terminal set and cost (yellow) compared to the optimal cost computed without terminal set and cost. Rel-
ative difference is obtained by taking the difference of the two costs and normalizing by the non-terminal-
constrained cost. The difference obtained by adding the terminal set (indicated in pink) is on the order of
10−5 and is not visible on the plot.

Generally, the inclusion of the terminal set and cost introduce minimal change. In the vast majority of
cases (e.g. all simulations from [15]), the DLMPC algorithm is feasible and stable even without a terminal
set. This phenomenon has already been observed for the centralized case [1]. However, we also want to
demonstrate how the terminal set and cost can make a difference – example subsystem trajectories for the
three different cases are shown in Fig. 2 for the nominal case and in the presence of polytopic disturbances.
For these simulations only, we use a smaller (N = 5), more unstable (m−1

i between [0, 16]) system,
extremely short time horizon (T = 2), and somewhat hand-crafted initial states and disturbances to obtain
clearly visible differences between cases – without such instability, short time horizon, and hand-crafting,
differences are generally tiny and not visible. In all cases, the centralized solution (computed via CVX [32])
coincides with the solution achieved by the DLMPC Algorithm 1, validating the optimality of the proposed
algorithm. The effects of introducing terminal set and terminal cost are apparent and consistent with the
theoretical results presented in this paper.

5.3 Computational complexity

Simulations results verify the scalability of the proposed methods. We measure runtime6 while varying
different network and problem parameters: locality d, network size N , and time horizon T .7 We run 5

6In online simulations, runtime is measured after the first iteration, so that all iterations for which runtime is measured are
warm-started.

7To increase network size, we vary the size of the grid over 4× 4 (32 states), 6× 6 (72 states), 8× 8 (128 states), and 11× 11
(242 states) grid sizes.

15

No terminal cost or set

Distributed (Alg. 1)

Centralized (CVX)

Terminal set

Distributed (Alg. 1+3)

Terminal cost and set

Distributed (Alg. 1+3)

Centralized (CVX) Centralized (CVX)

0 5 10 15 20
0.4

0.6

0.8

1

0 5 10 15 20
-0.4
-0.2
0

0.2
0.4

0 5 10 15 20

0

0.2

0.4

0.6

0 5 10 15 20

-1

0

1

0 5 10 15 20
-4

-3

-2

-1

0 5 10 15 20

-4

-2

0

2

4

Figure 2: For both nominal cases, upper and lower bounds for all states are 1 and -1 respectively; indicated
by red dashed lines in select plots. Top (nominal): evolution of the states of subsystem 4 under a DLMPC
controller without terminal set and cost (green), with terminal set (pink), and with both terminal set and
cost (yellow). Without a terminal set, the algorithm becomes infeasible after t = 2. With a terminal set,
the algorithm remains feasible. Notice the difference in ω4 for the trajectories at t = 2. The addition of
the terminal cost introduces little change. Middle (nominal): evolution of the states of subsystem 3 under
different initial conditions. Infeasibility is encountered at t = 15; here, the difference between the infeasible
and feasible trajectories is not visible. Note the oscillations in ω3; adding a terminal set itself enables
feasibility but gives large oscillations – additionally including the terminal cost results in much smaller,
decaying oscillations. Bottom (polytopic): upper and lower bounds for θ states are -4 and 4, respectively;
bounds for ω states are -20 and 20. Bounds are indicated by red dashed lines in select plots. Without a
terminal set, the algorithm becomes infeasible after t = 13; with a terminal set, feasibility is maintained.
Notice the difference in trajectories with and without terminal set just before t = 13. The addition of the
terminal cost introduces little change.

16

different simulations for each of the parameter combinations, using different realizations of the randomly
chosen parameters to provide consistent runtime estimates.

First, we study the scalability of the offline Algorithm 2 to compute the terminal set; results are shown
in Fig. 3. Consistent with theoretical analyses in §4, runtime does not increase with the size of the network;
rather, it increases with the size of the neighborhood. As expected, computations for the robust set take
slightly longer than for the nominal set, since the variables in the robust setting have greater dimension.
Overall, synthesis times for both nominal and robust settings are extremely low, especially when a small
locality size is used.

Nominal DLMPC
(Explicit)

Robust DLMPC
(Poly. noise)

4 6 8 10
0

0.1

0.2

0.3

0 50 100
0.01

0.015

0.02

0.025

0.03

Figure 3: Average runtime of Algorithm 2 with network size (left) and locality parameter (right). The lines
are the mean values and the shaded areas show the values within one standard deviation. Since computations
are parallelized across subsystems, runtime is measured on a subsystem, normalized per state, and averaged
after the algorithm computation is finished.

We also study how scalability of the DLMPC algorithm is affected when we impose a terminal set
and terminal cost, and use Algorithm 3 to handle coupling. Results are shown in Fig. 4; this figure was
generated using the same systems and parameters as Fig. 2 from our companion paper [15], allowing for
direct comparison of online runtimes. The addition of the terminal set/cost slightly increases runtime, as
expected. In the nominal case, runtime is increased from about 10−3s to 10−1s. In the case of polytopic
disturbances, runtime is increased from about 1 − 10s to 10s. Scalability is maintained; runtime barely
increases with the size of the network. Overall, simulations indicate that the introduction of a terminal set
and cost preserve scalability, minimally impact computational overhead and performance, and provide the
desired guarantees.

17

Nominal DLMPC
(Explicit)

Robust DLMPC
(Poly. noise)

0 50 100

10-1

100

101

Figure 4: Average runtime per DLMPC iteration with network size when terminal set and terminal cost are
imposed. The lines are the mean values and the shaded areas show the values within one standard deviation.
Since computations are parallelized across subsystems, runtime is measured on a subsystem, normalized per
state, and averaged out after the MPC controller is finished.
6 Conclusion

In this paper we provide theoretical guarantees for the closed-loop DLMPC approach, in both nominal and
robust settings. In particular, we ensure recursive feasibility and stability by incorporating a terminal set and
terminal cost. We also give guarantees for convergence of the algorithm. For the terminal set, we choose the
maximal robust positive invariant set, which can be expressed compactly in the SLS parametrization. We
introduce an algorithm to scalably compute this terminal set. We also provide the requisite modifications to
the online DLMPC algorithm to accommodate local coupling induced by the terminal set and cost, as well
as general coupling induced by process cost and constraints. All algorithms require only local information
exchange, and enjoy computational complexity that is independent of the global system size. The results
presented in this paper are the first to provide a distributed and localized computation of the maximal robust
positive invariant control set and Lyapunov function of a large-scale system.

Acknowledgements

Carmen Amo Alonso is partially supported by a Caltech/Amazon AI4Science fellowship. Jing Shuang
(Lisa) Li is supported in part by a postgraduate scholarship from the Natural Sciences and Engineering
Research Council of Canada [NSERC PGSD3-557385-2021]. Nikolai Matni is supported in part by NSF
awards CPS-2038873 and CAREER award ECCS-2045834, and a Google Research Scholar award. James
Anderson is partially supported by NSF CAREER ECCS-2144634 and DOE award DE-SC0022234.

References

[1] F. Borrelli, A. Bemporad, and M. Morari, Predictive Control for Linear and Hybrid Systems. Cam-
bridge University Press, 2017.

18

[2] D. Q. Mayne, M. M. Seron, and S. V. Rakovic, “Robust model predictive control of constrained linear
systems with bounded disturbances,” Automatica, vol. 41, pp. 219 – 224, 2005.

[3] C. Langbort, C. R.S., and D. R., “Distributed control design for systems interconnected over an arbi-
trary graph,” IEEE Trans. Autom. Control, vol. 49, no. 9, pp. 1502 – 1519, 2004.

[4] A. Jokic and M. Lazar, “On decentralized stabilization of discrete-time nonlinear systems,” in Proc.
IEEE ACC, 2009, pp. 5777–5782.

[5] A. I. Zecevic and D. D. Siljak, Control of Complex Systems. New York: Commun. Control Eng.,
Springer, 1988.

[6] B. T. Stewart, A. Venkat, J. Rawlings, S. Wright, and G. Pannocchia, “Cooperative distributed model
predictive control,” Syst. Control Lett., vol. 59, no. 8, pp. 460 – 469, 2010.

[7] J. M. Maestre, D. Muñoz de la Peña, E. F. Camacho, and T. Alamo, “Distributed model predictive
control based on agent negotiation,” J. Process Control, vol. 21, no. 5, pp. 685 – 697, 2011.

[8] C. Conte, C. N. Jones, M. Morari, and M. N. Zeilinger, “Distributed synthesis and stability of coop-
erative distributed model predictive control for linear systems,” Automatica, vol. 69, pp. 117–125, Jul
2016.

[9] P. A. Trodden and J. M. Maestre, “Distributed predictive control with minimization of mutual distur-
bances,” Automatica, vol. 77, pp. 31 – 43, 2017.

[10] G. Darivianakis, A. Eichler, and J. Lygeros, “Distributed model predictive control for linear systems
with adaptive terminal sets,” IEEE Trans. Autom. Control, vol. 65, no. 3, pp. 1044 – 1056, 2020.

[11] A. Aboudonia, A. Eichler, and J. Lygeros, “Distributed model predictive control with asymmetric
adaptive terminal sets for the regulation of large-scale systems,” 2020. [Online]. Available:
https://arxiv.org/abs/2005.04077

[12] S. Muntwiler, K. P. Wabersich, A. Carron, and M. N. Zeilinger, “Distributed model predictive safety
certification for learning-based control,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 5258 – 5265, 2020.

[13] Y. Wang and C. Manzie, “Robust distributed model predictive control of linear systems: analysis and
synthesis,” 2021. [Online]. Available: https://arxiv.org/abs/2005.04006

[14] Y. R. Sturz, E. L. Zhu, U. Rosolia, K. H. Johansson, and F. Borrelli, “Distributed learning model
predictive control for linear systems,” in Proc. IEEE CDC, 2020, pp. 4366–4373.

[15] C. Amo Alonso, J. S. Li, N. Matni, and J. Anderson, “Distributed and localized model
predictive control. Part I: Synthesis and implementation,” 2021. [Online]. Available: https:
//arxiv.org/abs/2110.07010

[16] Y.-S. Wang, N. Matni, and J. C. Doyle, “A system-level approach to controller synthesis,” IEEE Trans.
Autom. Control, vol. 64, no. 10, pp. 4079–4093, 2019.

[17] J. Anderson, J. C. Doyle, S. H. Low, and N. Matni, “System level synthesis,” Annu. Rev. Control,
vol. 47, pp. 364 – 393, 2019.

[18] F. Blanchini, “Set invariance in control,” Automatica, vol. 35, no. 11, pp. 1747–1767, 1999.

19

https://arxiv.org/abs/2005.04077
https://arxiv.org/abs/2005.04006
https://arxiv.org/abs/2110.07010
https://arxiv.org/abs/2110.07010

[19] Y. Wang, N. Matni, and J. C. Doyle, “Separable and localized system-level synthesis for large-scale
systems,” IEEE Trans. Autom. Control, vol. 63, no. 12, pp. 4234–4249, Dec. 2018.

[20] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed Optimization and Statistical
Learning via the Alternating Direction Method of Multipliers,” Foundations and Trends® in Machine
Learning, vol. 3, no. 1, pp. 1–122, 2010.

[21] C. Amo Alonso and N. Matni, “Distributed and localized closed-loop model predictive control via
System Level Synthesis,” in Proc. IEEE CDC, 2020, pp. 5598–5605.

[22] C. Amo Alonso, J.S. Li, N. Matni, and J. Anderson, “Robust distributed and localized model
predictive control,” 2021. [Online]. Available: https://arxiv.org/abs/2103.14171

[23] D. Mayne, J. Rawlings, C. Rao, and P. Scokaert, “Constrained model predictive control: Stability and
optimality,” Automatica, vol. 36, no. 6, pp. 789–814, 2000.

[24] J. Löfberg, “Minimax approaches to robust modelpredictive control,” PhD thesis, Department of Elec-
tricalEngineering, Linköping University, Sweden, 2003.

[25] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge, UK ; New York: Cambridge
University Press, 2004.

[26] C. Amo Alonso, D. Ho, and J. Maestre, “Distributed linear quadratic regulator robust to communica-
tion dropouts,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 3072 – 3078, 2020.

[27] H. Wang and J. Anderson, “Large-scale system identification using a randomized SVD,” 2021.
[Online]. Available: https://arxiv.org/abs/2109.02703

[28] J. Yu, Y.-S. Wang, and J. Anderson, “Localized and distributed H2 state feedback control,” 2020.
[Online]. Available: https://arxiv.org/abs/2010.02440

[29] E. Gilbert and K. Tan, “Linear systems with state and control constraints: the theory and applications
of maximal output admissible sets,” IEEE Trans. Autom. Control, vol. 36, no. 9, pp. 1008 –1020, 1991.

[30] G. Costantini, R. Rostami, and D. Gorges, “Decomposition Methods for Distributed Quadratic Pro-
gramming with Application to Distributed Model Predictive Control,” in IEEE Proc. Annu. Allerton
Conf. Commun., Control, Comput., 2018, pp. 943 – 950.

[31] J. S. Li, “SLS-MATLAB: Matlab toolbox for system level synthesis,” 2019. [Online]. Available:
https://github.com/sls-caltech/sls-code

[32] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.1,”
http://cvxr.com/cvx, Mar. 2014.

20

https://arxiv.org/abs/2103.14171
https://arxiv.org/abs/2109.02703
https://arxiv.org/abs/2010.02440
https://github.com/sls-caltech/sls-code
http://cvxr.com/cvx

	1 Introduction
	2 Problem Formulation
	3 Feasibility and Stability Guarantees
	3.1 Feasibility guarantees
	3.2 Stability guarantees
	3.3 Convergence guarantees

	4 Feasible and Stable DLMPC
	4.1 Offline synthesis of the terminal set XT
	4.2 Online synthesis of DLMPC

	5 Simulation Experiments
	5.1 System model
	5.2 Performance
	5.3 Computational complexity

	6 Conclusion

