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A Decomposition Approach to Multi-Agent
Systems with Bernoulli Packet Loss

Christian Hespe, Hamideh Saadabadi, Adwait Datar, Herbert Werner, and Yang Tang

Abstract—In this paper, we extend the decomposable
systems framework to multi-agent systems with Bernoulli
distributed packet loss with uniform probability. The pro-
posed sufficient analysis conditions for mean-square stabil-
ity and H2-performance – which are expressed in the form
of linear matrix inequalities – scale linearly with increased
network size and thus allow to analyse even very large-
scale multi-agent systems. A numerical example demon-
strates the potential of the approach by application to a first-
order consensus problem.

I. INTRODUCTION

Controlling large-scale networks of dynamic systems is

a challenging problem that has attracted a lot of research

interest. Due to their vast size, systematic centralized controller

synthesis or system analysis quickly become infeasible due

to computational demands. For that reason, decentralized or

distributed approaches have become the methods of choice

for this class of systems [1].

One particular type of such large-scale systems are multi-

agent systems (MAS), in which groups of simple systems

– called agents – collectively solve tasks by applying agent-

level rules. Examples for such tasks include formation control,

distributed estimation or source seeking [2]. In order to analyse

these MAS, the flexible and powerful framework of decompos-

able systems introduced by Massioni and Verhaegen in [1] can

be employed. It is built upon the idea of decoupling the MAS

into smaller modal subsystems and analysing these subsystems

independently, a technique which was originally introduced in

[3] for stability analysis only. By decoupling the analysis, the

framework improves the scalability in terms of computational

complexity from quadratic to linear, in some instances even

constant, in the number of agents [1]. Originally proposed for

linear-time invariant (LTI) systems, the framework has been

extended to linear parameter-varying systems [4] and analysis

using integral quadratic constraints [5].

An important aspect of MAS is how the exchange of

information is implemented. Depending on the requirements,

relative measurements or a communication network are prefer-

able. In this paper, we will be focusing on the latter and

consider the case where the communication network is subject

to stochastic uncertainty in form of lost information. More
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specifically, we investigate how to analyse the effect of packet

loss described by independent Bernoulli distributed random

variables with uniform probability on stability and perfor-

mance in a scalable manner. As noted by the authors of [6],

most existing work on networked MAS with stochastic packet

loss assumes identical loss, i.e., that all communication links

fail at the same time, an assumption very few systems satisfy

in practice. Amongst others, this scenario is studied in [7],

[8] and [9] for Bernoulli and Markov packet loss models,

respectively. On the other hand, there are approaches that

consider not identical loss but uniform loss probability, e.g.

[2], [10]–[12]. All four assume symmetric loss, i.e., that link

failure is identical in both directions. Finally, Bernoulli packet

loss with non-uniform probabilities and independent links is

considered in [13] for directed tree graphs using only a lower

bound on the transmission probabilities and in [6] for general

graphs with know probability for each link.

Of the aforementioned papers, only [2], [10], [12] consider

system performance in addition to stability, the first two in

terms of the convergence rate, the third using the L2 system

norm. Another important performance measure for MAS is

the H2-norm, see [1], [12], [14] and [15] amongst others. A

stochastic generalization of this norm for Markov jump linear

systems (MJLS) was introduced for optimal control in [16]

and used for optimal filtering in [17]. An existing approach

for analysing large MAS with MJLS can be found in [18].

However, while the conditions scale linearly with the number

of agents, they scale exponentially with the maximum vertex

degree and are thus intractable for many MAS.

Modelling packet loss with identically Bernoulli distributed

random variables is invalid in many real-world scenarios.

Nonetheless, this paper provides a first step towards scalable

analysis of MAS with more realistic networking models.

A. Contributions

The main contribution of this paper are the sufficient anal-

ysis conditions for mean-square stability and H2-performance

of MAS presented in Theorems 6 and 7 that scale linearly with

the number of agents in presence of non-identical Bernoulli

distributed packet loss with uniform probability. The con-

ditions are based on extending the decomposable systems

framework to stochastic jump linear systems and the analytic

calculation of the expected Laplacian matrices in Lemma 4.

Similar analytic calculations have been presented before in

[11], however, in contrast to previous works and at the cost

of losing necessity, the current paper does not rely on having
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symmetric packet loss and brings out the inherent structure of

the expected Laplacian matrices allowing for decomposition,

which is exploited in Lemma 5. Two further smaller contribu-

tions are necessary conditions in Theorem 10 supporting the

sufficient conditions and an analysis approach for uncertain

transmission probabilities and communication topologies that

is based on convexity arguments.

B. Outline

Following this introduction, Section II proceeds with defin-

ing notation, setting up the problem and extending the decom-

posable systems framework. Section III contains the calcula-

tion of the expected Laplacians. The main results are presented

in Section IV, followed by a numerical example in Section V.

Finally, the paper is concluded in Section VI.

II. PROBLEM STATEMENT

A. Notation and Definitions

We let IN denote the N × N identity matrix and 1N the

vector in R
N with all entries equal to 1. M ≻ (�) 0 or

M ≺ (�) 0 mean that M is positive or negative (semi-)

definite. M1 ⊗ M2 is the Kronecker product, which has the

mixed product property (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD).
IS denotes the set-membership indicator function defined as

IS(x) :=

{

1 if x ∈ S,

0 else.
(1)

Depending on the context, we use ‖z‖ either for the Euclidean

vector norm, the induced matrix 2-norm, or the 2-norm for

(stochastic) signals defined by ‖z‖2 := ∑∞
k=0 E

[

zT (k)z(k)
]

.

The interconnections between agents are modelled using

graphs G := (V , E), which are composed of the vertex set

V = {v1, v2, . . . , vN} and the edge set E ⊂ V × V , where

an edge eij := (vj , vi) is read as pointing from vj to vi
and eii /∈ E . G is called undirected if eij ∈ E ⇔ eji ∈ E .

The set N−
i

:= {vj ∈ V : eij ∈ E} is called the in-

neighbourhood of vi and its cardinality d−i := |N−
i | is the

in-degree of vi. Equivalently, define the out-neighbourhood

N+
i

:= {vj ∈ V : eji ∈ E} and out-degree d+i := |N+
i |. If for

every vertex in V the in- and out-degree are identical, G is said

to be balanced. A sequence of vertices is called directed path

on G if eji ∈ E for all pairs of consecutive vertices (vi, vj).
If there exists a directed path from all vr ∈ V to all other

vi ∈ V \ vr, G is said to be strongly-connected. The transpose

GT is defined as the graph in which the direction of every edge

is inverted, i.e. GT := (V , ET ) with eij ∈ E ⇔ eji ∈ ET .

For a graph G, define element-wise the Laplacian matrix

L(G) := [lij(G)], where

lij(G) :=











−1 if i 6= j and vj ∈ N−
i ,

0 if i 6= j and vj /∈ N−
i ,

d−i if i = j.

(2)

L(G) is symmetric if and only if G is undirected. We will drop

the argument from the notation if the corresponding graph can

be determined from context.

B. Jump Linear Systems for Modelling Packet Loss

The focus of this paper are MAS which are subject to

stochastic packet loss. This kind of system cannot be modelled

in a time-invariant manner, since loss of packets means that

connections between individual agents break momentarily and

thus the interconnection topology between agents is time-

varying. For this reason, we will use a special case of MJLS

to model the MAS.

An MJLS is a discrete-time, switched linear system whose

switching is controlled by a corresponding Markov chain. At

every time instance, the MJLS is in exactly one of m possi-

ble modes, where each mode can have a different dynamic

behaviour. It is described by the state-space system

G :

{

x(k + 1) = Aσ(k)x(k) +Bσ(k)w(k)

z(k) = Cσ(k)x(k) +Dσ(k)w(k),
(3)

where x(k) ∈ R
Nnx is the dynamic state, σ(k) ∈ K :=

{i ∈ N : 1 ≤ i ≤ m} is the state of the Markov chain and

w(k) ∈ R
Nnw and z(k) ∈ R

Nnz are the performance input

and output, respectively. N denotes the number of agents in

the system, the initial state of the system is x(0) = x0 and the

Markov chain is initially distributed according to σ(0) = σ0.

For each mode i ∈ K, the dynamics of the system are governed

by the matrices Ai, Bi, Ci and Di. Note that system (3) does

not have a control input or measured output since this paper is

only concerned with system analysis in contrast to controller

synthesis. (3) should thus be considered as a closed-loop

model, containing an agent model and potentially a controller.

In this paper, we only consider the case where the switch-

ing probability of the Markov chain is independent of the

chain’s state, thus the distribution of {σ(k)} is stationary and

described by

Pr
(

σ(k) = i
)

= ti, (4)

for all k ≥ 0.

There is a variety of definitions for stability in the context

of MJLS. Amongst them are stability in expectation, almost

sure stability and mean-square stability (MSS). Here we will

focus on the latter. In comparison, MSS has the advantage that

it is easy to test for and implies stability as in the other two

definitions [19].

Definition 1 (Mean-Square Stability [19]). The MJLS (3) is

mean-square stable if

lim
k→∞

E
[

‖x(k)‖
]

= 0 and lim
k→∞

E

[

‖x(k)xT (k)‖
]

= 0

for all initial conditions x0 and initial distributions σ0.

In the following, we will often refer to an MJLS as stable

if it is MSS. As shown in [19], stability of the individual

modes of an MJLS is neither necessary nor sufficient for

MSS. Instead, we will make use of the following linear matrix

inequality (LMI) based stability test:

Theorem 1 (LMI Condition for MSS [20]). The MJLS (3) is

mean-square stable if and only if there exists a Q ≻ 0 such

that
∑

i∈K

tiA
T
i QAi −Q ≺ 0. (5)
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Remark. Note that we can express the above LMI using an

unconditional expectation. Thus, (5) is equivalent to

E

[

AT
σQAσ

]

−Q ≺ 0, (6)

where the expectation is taken with respect to σ.

This theorem is a specialization of the general stability

test from [20] to MJLS with state-independent switching

probabilities as given in (4). Compared to the general case,

this theorem results in a sizeable reduction in computational

complexity, since the stability test contains only a single matrix

variable Q and a single LMI constraint, instead of having

one of both for each mode. Still, it is necessary to enumerate

all modes in (5), which renders the analysis of systems with

numerous agents intractable. For the specific system structure

that is introduced in the next subsection, we will develop an

approach that eliminates the need for mode enumeration.

In addition to MSS, we consider system performance in

terms of the H2-norm from input w to output z. For the

special case of mode independent transition probabilities in

the Markov chain, the norm is defined as follows:

Definition 2 (H2-norm for MJLS [21]). The H2-norm of the

stable MJLS (3) is defined as

‖G‖2H2
:=

∑

i∈K

nw
∑

s=1

ti‖zs,i‖2,

where zs,i is the response of G to a discrete impulse applied

into the sth input with x0 = 0 and σ0 = i.

Similar to Theorem 1 for MSS, we can exploit the stationar-

ity of the transition probabilities to obtain an analysis condition

in two variables and LMI constraints. For general MJLS, the

corresponding condition requires two LMIs and variables for

each mode, resulting in much larger computational cost. The

procedure to obtain this simplified analysis condition was

introduced in [22].

Theorem 2 (LMI condition for MJLS H2-norm [21]). Given

the stable MJLS (3), ‖G‖H2
< γ if and only if there exist a

Q ≻ 0 and a symmetric Z with tr (Z) < γ2 such that

∑

i∈K

ti

(

AT
i QAi + CT

i Ci

)

−Q ≺ 0, (7a)

∑

i∈K

ti

(

BT
i QBi +DT

i Di

)

− Z ≺ 0. (7b)

Remark. Theorem 2 reformulates the result from [21] by

introducing Z . To see that both are equivalent, use Y −X ≺
0 ⇒ tr (X) > tr (Y ) with symmetric X,Y for the first

direction and chose Z = εI +
∑

i∈K ti(B
T
i QBi + DT

i Di)
with sufficiently small ε > 0 for the other.

For the same reason as for Theorem 1, direct application

of the above result to large MAS would quickly lead to

numerically intractable problems. We introduce a subset of

jump systems for which the computational complexity can be

vastly reduced next.

C. Decomposable Jump Linear Systems

Coming from the general MJLS in subsection II-B, this

paper considers systems with a specific structure in their

state-space matrices which allows to utilize the decomposable

systems framework introduced by Massioni and Verhaegen in

[1]. According to their definition, a matrix M is said to be

decomposable if it can be split up into a decoupled component

Md and a coupled component M c as M = IN⊗Md+P⊗M c,

where P is called the pattern matrix. Moreover, an LTI

system is called decomposable if all matrices of its state-

space representation are decomposable with respect to the

same pattern matrix.

Applying this concept to the MJLS (3) means that Ai, Bi,

Ci and Di must be decomposable, we do however not insist

on having the same pattern matrix for all modes i ∈ K. On the

contrary, we will assume the pattern matrix is the only part

of the system that changes between the modes. This choice

is motivated by the fact that – in the context of networked

multi-agent systems – the pattern matrix is given by the graph

Laplacian and that the communication graph is a stochastic

process due to packet loss. We then introduce the nominal

graph G0 = (V , E0) and its corresponding Laplacian L0 :=
L(G0). All together, this leads to the decomposable MJLS

Ĝ :







































x(k + 1) =
(

IN ⊗Ad + L
(

Gσ(k)

)

⊗Ac
)

x(k)

+
(

IN ⊗Bd + L
(

Gσ(k)

)

⊗Bc
)

w(k),

z(k) =
(

IN ⊗ Cd + L
(

Gσ(k)

)

⊗ Cc
)

x(k)

+
(

IN ⊗Dd + L
(

Gσ(k)

)

⊗Dc
)

w(k),

(8)

where Gi := (V , Ei) and where Ei ⊆ E0 is the subset of edges

that successfully transmit a packet in mode i of the MJLS.

Analogously to L0, define Li := L (Gi) as shorthand notation.

More specifically, consider a stationary stochastic process

{αij(k)} for each eij ∈ E0, where αij(k) ∈ {0, 1}. Here,

αij(k) = 1 means the edge eij is active, or equivalently

that the packet is transmitted, while αij(k) = 0 means

eij is inactive and the packet is lost. The edges might fail

asymmetrically, i.e., it might happen that αij(k) 6= αji(k).
In the following, we assume that the stochastic processes are

Bernoulli distributed and independent in time. Furthermore, at

any given time instant, the packet loss between two different

pairs of vertices is assumed to be independent. This is formal-

ized in the following assumption.

Assumption 1. The stochastic processes {αij(k)} are par-

tially independent and identically Bernoulli distributed such

that, for all k, k′ ≥ 0, eij , ers ∈ E0, we have

Pr
(

αij(k) = 1
)

= p Pr
(

αij(k) = 0
)

= 1− p (9)

with p ∈ [0, 1] and αij(k) and αrs(k
′) are independent random

variables whenever k 6= k′ or (r, s) 6= (i, j) ∧ (r, s) 6= (j, i).

Remark. For many real world scenarios, modelling packet loss

as independent Bernoulli distributed random variables with

uniform probability is an idealization. Similar to [23], we

proceed in this way for reasons of mathematical tractability.
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Note that compared to assuming identical or symmetric loss

as e.g. in [7], [9], [11], Assumption 1 is closer to reality due

to allowing opposing links to be correlated or not.

To map from the stochastic processes {αij(k)} to the

MJLS (8), define a function ν : E0 →
{

1, . . . , |E0|
}

that

assigns each eij ∈ E0 a unique integer. Then, we have

σ(k) = 1 +
∑

eij∈E0

αij(k)2
ν(eij)−1 (10)

and accordingly m = 2|E
0|. The map from αij(k) to σ(k) is

bijective, such that we can equivalently represent the Bernoulli

packet loss model in form of the MJLS. Thus, our commu-

nication model has two parameters: The graph G0 and the

probability of successful transmission p.

To reap maximum benefit from introducing the decom-

posable system framework, we will impose that the matrix

variable Q has block repeated structure. While this may

be a conservative choice, it allows generating stability and

performance tests that are particularly easy to check.

Corollary 3 (MSS for Decomposable Jump Systems). The

decomposable jump system (8) is mean square stable if there

exists a Q ≻ 0 such that

IN ⊗
(

AdTQAd −Q
)

+ E
[

Lσ

]

⊗
(

AdTQAc
)

+

E
[

LT
σ

]

⊗
(

AcTQAd
)

+ E
[

LT
σLσ

]

⊗
(

AcTQAc
)

≺ 0.
(11)

Proof. Take the LMI condition (6) and insert Q = IN ⊗ Q̃ as

well as the decomposable MJLS from (8) for Aσ , resulting in

E

[

(IN ⊗Ad + Lσ ⊗Ac)T (IN ⊗ Q̃)

(IN ⊗Ad + Lσ⊗Ac)
]

− IN ⊗ Q̃ ≺ 0.

Using the mixed product rule and the commutation property

(M1 ⊗ I)(I ⊗M2) = (I ⊗M2)(M1 ⊗ I) we obtain

IN ⊗
(

AdT Q̃Ad − Q̃
)

+ E

[

Lσ ⊗
(

AdT Q̃Ac
)

+

LT
σ ⊗

(

AcT Q̃Ad
)

+
(

LT
σLσ

)

⊗
(

AcT Q̃Ac
)

]

≺ 0,

from where we get to (11) by linearity of the expectation,

E[X⊗M ] = E[X ]⊗M , which holds if X is a random matrix

and M a constant, and renaming Q̃ → Q.

Remark. The only source of conservatism in Corollary 3 is the

assumption on Q to have block repeated structure. A similar

result can be obtained without this assumption, however,

isolating the expectation of LT
σLσ would not be possible,

since the commutation property cannot be used. Instead, one

would have to consider a weighted squared expectation of the

form E[(LT
σ ⊗ I)Q(Lσ ⊗ I)], similar to [11, Lemma 1] but

with additional Kronecker products. In that case, the analysis

conditions cannot be decomposed using the approach proposed

in Section IV-A below.

A similar corollary can be derived for the H2-performance

conditions in Theorem 2. However, since the derivation would

be analogous to the proof of Corollary 3, we skip this

intermediate result.

III. EXPECTED LAPLACIAN MATRICES

From Corollary 3, we have seen how the expectation of the

Laplacian is essential in determining if a decomposable MJLS

is MSS or not. We thus derive an analytic calculation of the

expectation in terms of G0 and p in the following.

As preparation, notice how the elements of the Laplacian

change compared to (2) when packet loss is introduced. Using

the element-wise notation Lσ(k) = [lσij(k)], the stochastic

Laplacian is given by

lσij(k) =























−αij(k) if i 6= j and vj ∈ N−
i ,

0 if i 6= j and vj /∈ N−
i ,

∑

vm∈N−

i

αim(k) if i = j.
(12)

As noted above, {Lσ(k)} is a stochastic process due to

packet loss. Since {αij(k)} and {Lσ(k)} are stationary by

Assumption 1, we will drop the index k in the remainder of

the paper when referring to an instance of these processes.

Lemma 4 (Expected Laplacian Matrices). Given the nominal

graph G0 and packet loss according to Assumption 1, we have

E[Lσ] = pL(G0),

E[LT
σLσ] = p2L(G0)TL(G0) + p(1− p)

(

L(G0) + L(G0T )
)

.

Proof. See Appendix I.

Lemma 4 enables us to calculate the expected Laplacians

analytically from the two parameters G0 and p, which allows

applying Corollary 3 and Theorem 2 effectively without expen-

sive numerical calculation of the expectations by enumeration

of all modes. Note that L(GT ) = L(G)T if and only if G is

balanced. For certain graphs G0, we can further exploit the

following diagonalizability property:

Lemma 5 (Simultaneous Diagonalizability). Given the nom-

inal graph G0 and packet loss according to Assumption 1,

there exists a similarity transformation U that diagonalizes

E[Lσ], E[L
T
σ ] and E[LT

σLσ] if and only if L(G0) is normal,

i.e. L(G0)L(G0)T = L(G0)TL(G0).

Proof. According to [24, p. 62], there exists a similarity

transformation that diagonalizes two diagonalizable matrices at

the same time if and only if the matrices commute. As shown

in [25], L(G0) being normal and having zero row sum implies

that it has zero column sum as well, therefore G0 is balanced

and L(G0T ) = L(G0)T . By Lemma 4, we thus need to show

that L0, L0T and L0TL0 commute. From the definition of

normality, this is trivial for the first pair and easy to verify for

L0 and L0TL0. Conversely, if there exists a transformation

that diagonalizes both E[Lσ] and E[LT
σ ], then L0 and L0T

commute, implying that L0 is normal.

For some scenarios in the context of MAS control and dis-

tributed consensus, normality of the Laplacian is too restrictive

for Lemma 5 to be applicable. In particular, leader-follower

schemes cannot be handled, since they require unbalanced

communication graphs.
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IV. SCALABLE ANALYSIS WITH PACKET LOSS

A. Decomposed Analysis LMIs

With the results from Section III, we can now formulate

our final MSS and H2-performance analysis conditions for

decomposable MJLS. The motivation for defining a decom-

posable system like in [1] is that we can decouple the system

as long as we can diagonalize the pattern matrix. Assuming

there exists a transformation U such that UPU−1 is diagonal

– with P being the pattern matrix –, then (U ⊗ I) decouples

the system matrices. In particular, if the underlying graph G0

is undirected, such a transformation is guaranteed to exist with

UUT = I . We will thus make the following assumption in the

remainder of the paper:

Assumption 2. The communication graph G0 is undirected.

Assumption 2 restricts the classes of MAS the following

results can be applied to. Note, however, that it is different

from assuming the packet loss is symmetric, which would be

equivalent to assuming all Gi are undirected, in contrast to just

G0. Applied to Corollary 3, this gives rise to the following

stability test consisting of a set of decoupled LMIs:

Theorem 6 (Decomposed MSS Test). Given the MJLS (8)

with nominal communication graph G0 and packet loss satis-

fying Assumptions 1 and 2, the MJLS is mean-square stable

if there exists a Q ≻ 0 such that

(

Ad + pλiA
c
)T

Q
(

Ad + pλiA
c
)

−Q

+ 2p(1− p)λiA
cTQAc ≺ 0

(13)

for all i ∈ {1, . . . , N}, where λi are the eigenvalues of L0.

Proof. Since G0 is undirected, L0 is symmetric, and we know

from Lemma 5 that E[Lσ], E[L
T
σ ] and E[LT

σLσ] can be diag-

onalized using an orthogonal matrix U . Apply a congruence

transformation to (11) from Corollary 3 by multiplying with

(U ⊗Inx
) and (UT ⊗Inx

) from the left and right, respectively.

Using the mixed product rule and commutation property of

the Kronecker product, this results in

IN ⊗
(

AdTQAd −Q
)

+
(

U E
[

LT
σLσ

]

UT
)

⊗
(

AcTQAc
)

+
(

U E
[

Lσ

]

UT
)

⊗
(

AdTQAc
)

+
(

U E
[

LT
σ

]

UT
)

⊗
(

AcTQAd
)

≺ 0.

By Lemma 4, we have U E
[

Lσ

]

UT = U E
[

LT
σ

]

UT = pΛ
and U E

[

LT
σLσ

]

UT = p2Λ2 + 2p(1 − p)Λ, where Λ is a

diagonal matrix containing the eigenvalues of L0. After the

transformation, we have

IN ⊗
(

AdTQAd −Q
)

+ pΛ⊗
(

AdTQAc +AcTQAd
)

+
(

p2Λ2 + 2p(1− p)Λ
)

⊗
(

AcTQAc
)

≺ 0,

which is a block-diagonal matrix inequality. Finally, (13) can

be obtained by algebraic matrix manipulations and considering

the blocks independently.

Theorem 6 has multiple advantages in terms of computa-

tional complexity compared to the original stability test in

Theorem 1. The first and most impactful is replacing the

mode enumeration of the MJLS by the formula given in

Lemma 4. Since the number of modes scales at least with

2N for strongly-connected graphs – there exists at least one

edge per agent –, the original formulation has exponential

complexity while the analytic calculation scales quadratically.

The second improvement comes from decomposing the single

large constraint on the whole network into multiple smaller

ones with the size of a single agent. In analogy to the modal

subsystems from [1], we may term these as modal constraints.

Instead of scaling the number of variables and constraints

quadratically with the agent count, the decoupled formulation

is of constant complexity in the variables and linear complexity

in the constraints. Analogous steps can be applied to the H2-

performance analysis LMIs from Theorem 2:

Theorem 7 (Decomposed H2-Performance). Given the

MJLS (8) with nominal communication graph G0 and packet

loss satisfying Assumptions 1 and 2, Ĝ is mean-square stable

and ‖Ĝ‖H2
< γ if there exist a Q ≻ 0 and symmetric Zi with

∑N

i=1 tr (Zi) < γ2 such that

ĀT
i QĀi + C̄T

i C̄i −Q

+ 2p(1− p)λi

(

AcTQAc + CcTCc
)

≺ 0
(14a)

B̄T
i QB̄i + D̄T

i D̄i − Zi

+ 2p(1− p)λi

(

BcTQBc +DcTDc
)

≺ 0
(14b)

for all i ∈ {1, . . . , N}, where λi are the eigenvalues of L0,

Āi denotes Ad + pλiA
c and equivalently for B̄i, C̄i and D̄i.

Proof. See Appendix II.

The computational performance improvements achieved by

Theorems 6 and 7 come at the cost of some conservatism

due to imposing that Q is identical for all modal constraints.

As noted in the remark to Corollary 3, this restriction is

inherently required to utilize the commutation property of

the Kronecker product and thus to apply Lemmas 4 and 5

for the calculation of the expected Laplacians. Calculation

of weighted expected Laplacians and whether their structure

allows for a decomposition of the analysis is subject to further

research. To evaluate how much conservatism is introduced by

the restriction to a single Q, we will present a numerical ex-

ample that demonstrates the trade-off between computational

speed and overestimation of the H2-norm in Section V.

B. Handling Uncertain Loss Probabilities

Theorems 6 and 7 consider the case where the transmission

probability p is known exactly. In practice that is often not

the case and only a lower bound
¯
p ≥ 0 on the transmission

probability is known. If an upper bound p̄ ≤ 1 is provided

in the same vein, whether the MJLS (8) is stable or has H2-

norm less than γ for a constant but uncertain transmission

probability can be answered by applying the theorems for all

p in [
¯
p, p̄]. However, since [

¯
p, p̄] is a real interval, numerical

evaluation of the LMI constraints for all such p is intractable.

Instead, we can make use of the fact that all three LMIs are

convex in p under conditions specified in the following lemma.

Lemma 8 (Convexity in p). With fixed Q ≻ 0 and Zi, define

the quadratic form Vi(p, y) := yTMi(p)y, where Mi(p) is

5



the left-hand side of either (11), (14a) or (14b). Vi(p, y) is

convex in p for all i ∈ {1, . . . , N} if and only if either the

relevant matrices from {Ac, Bc, Cc, Dc} are zero matrices or

all non-zero eigenvalues of L0 satisfy λi ≥ 2.

Proof. We prove the lemma for (14a) as representative of all

three inequalities. Vi(p, y) is convex in p if and only if [24]

∂2Vi(p, y)

∂p2
≥ 0 ∀y ⇔

(

λ2
i − 2λi

)(

AcTQAc + CcTCc
)

� 0.

From Q ≻ 0, it follows that AcTQAc � 0 and CcTCc � 0
for all Ac, Cc. We then distinguish two cases: If λ2

i ≥ 2λi, we

are done. This condition is satisfied for λi = 0 and otherwise

equivalent to λi ≥ 2 since all eigenvalues of L0 are non-

negative [2]. On the other hand, if λ2
i < 2λi, we must have

AcTQAc + CcTCc � 0 and thus AcTQAc = CcTCc = 0,

which in turn implies Ac = 0 and Cc = 0. The proof for (11)

and (14b) follows along the same lines, replacing (Ac, Cc) by

(Bc, Dc) for (14b) and considering just Ac for (11).

For a convex function V (x), its sublevel set {x : V (x) <
0} is convex as well. On the interval [

¯
p, p̄], this ensures that

checking the condition on the boundary is sufficient to verify

it is satisfied throughout. Thus, assuming that the conditions

of Lemma 8 are fulfilled, the problem is reduced to applying

Theorem 6 or 7 at
¯
p and p̄ with shared Q and Zi.

To give some meaning to the conditions from the lemma,

the zero matrix condition implies that there exists no coupling

between the agents and is thus irrelevant for the analysis of

MAS in practice. The remaining condition on the eigenvalues

of L0 can be seen as a lower bound on the connectivity of

the underlying communication graph G0. In particular, if G0

is undirected and connected, it is a lower bound on the Fiedler

eigenvalue λ2, the smallest non-zero eigenvalue of L0 [2].

C. Handling Uncertain Nominal Communication Graphs

In the form stated above, Theorems 6 and 7 require complete

knowledge of the spectrum of L0 and thus centralized infor-

mation. However, it is possible to utilize another convexity

property of the LMIs to relax this restriction.

Lemma 9 (Convexity in λi). With fixed Q ≻ 0 and Zi, define

the quadratic form Vp(λi, y) := yTMp(λi)y, where Mp(λi) is

the left-hand side of either (11), (14a) or (14b). Vp(λi, y) is

convex in λi for all p.

Proof. The proof is analogous to the proof of Lemma 8,

outlined exemplarily for (14a). Q ≻ 0 guarantees that

∂2Vp(λi, y)

∂λ2
i

≥ 0 ∀y ⇔ p2
(

AcTQAc + CcTCc
)

� 0

is always satisfied regardless of p.

Lemma 9 implies that knowledge of the boundary of the

spectrum of L0 is sufficient to evaluate Theorems 6 and 7.

An upper bound on λN can for example be obtained from

the maximum node degree and Cheeger’s inequality could

be used to bound λ2 [2, Section 2.4.2]. For Theorem 6,

this adaptation comes without additional conservatism, giving

sufficient stability conditions independent of network size. For

Theorem 7 on the other hand, one needs to further restrict

Zi = Zj for all i, j ∈ {1 . . .N}, making the upper bound on

the H2-norm possibly more conservative.

D. Necessary Conditions for the Analysis of MJLS

To evaluate the conservatism introduced by restricting The-

orems 6 and 7 to a single Q for all modal constraints, we

can compare their results to those obtained from the lossless

theorems from Section II-B. However, this comparison is only

tractable for MAS with few agents because of the exponential

scaling of the lossless theorems. Thus, we propose necessary

conditions for Theorems 1 and 2 that can be checked with

the same (linear) complexity as the sufficient conditions from

Section IV-A, which enables us to estimate the conservatism

for large MAS.

For the analysis, we introduce the mean system Ḡ, which is

the LTI system whose system matrices are given by the mean

of the MJLS matrices. For the MJLS (8), this results in the

LTI state-space model

Ḡ :







































x̄(k + 1) =
(

IN ⊗Ad + pL0 ⊗Ac
)

x̄(k)

+
(

IN ⊗Bd + pL0 ⊗ Bc
)

w̄(k)

z̄(k) =
(

IN ⊗ Cd + pL0 ⊗ Cc
)

x̄(k)

+
(

IN ⊗Dd + pL0 ⊗Dc
)

w̄(k).

(15)

The mean system can be seen as advancing the ensemble

average state in time, in contrast to the MJLS, which advances

one specific realization. Based on the mean system, we can

then state the following result:

Theorem 10 (LTI Necessary Conditions). Given the decom-

posable MJLS (8), its mean Ḡ, and any γ > 0, the following

implications hold:

i) Ĝ is MSS ⇒ Ḡ is stable

ii) ‖Ĝ‖H2
< γ ⇒ ‖Ḡ‖H2

< γ

Proof. See Appendix III.

Theorem 10 implies that stability of Ḡ is necessary for MSS

of Ĝ and that ‖Ḡ‖H2
is a lower bound for ‖Ĝ‖H2

. A similar

result can be obtained for general MJLS in that stability in the

second moment, i.e. mean-square stability, implies stability in

the first moment [19, Proposition 3.6]. Since Ḡ is LTI, we

may apply the analysis based on modal subsystems proposed

by Massioni and Verhaegen in [1], resulting in LMI conditions

that scale linearly in the number of agents.

V. EXAMPLE: FIRST ORDER CONSENSUS

A. Setting up the Problem

To demonstrate the scalability of and judge the amount of

conservatism in the analysis conditions from Section IV, let us

now finally apply the approach to a numerical example. The

example we chose is the discrete-time first-order consensus

problem, which can be described as the problem of reaching

agreement in a network of linear first-order integrators while

each agent is only communicating to a subset of the remaining
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Fig. 1. Graph structures that are used to evaluate the scalability of the
analysis conditions.

agents. The communication between agents is modelled using

the graph G0, with agent i receiving information according

to its in-neighbourhood N−
i . For each individual agent, the

dynamics are then described by (16) with xi(k) ∈ R, while a

solution to the consensus problem is given by the consensus

protocol in (17) with parameter κ > 0 chosen small enough.

xi(k + 1) = xi(k) + ui(k) + wi(k) (16)

ui(k) = κ
∑

vj∈N−

i

(

xj(k)− xi(k)
)

(17)

In contrast to the standard consensus problem, we introduce

disturbance inputs wi(k) in order to use the H2-norm as a

performance measure. By stacking the states and inputs in

x(k) := [x1(k), . . . , xN (k)]T and w(k), we can write the

network dynamics as x(k + 1) = (I − κL0)x(k) +w(k). For

details on the consensus problem and its solution, see [26].

For our example, we study the consensus problem with

uncertain exchange of information. Thus, we introduce packet

loss using stochastic processes {αij(k)} adhering to Assump-

tion 1 and modify the consensus protocol (17) to

ui(k) = κ
∑

vj∈N−

i

αij(k)
(

xj(k)− xi(k)
)

. (18)

For the network, this results in x(k + 1) = (I − κLσ)x(k) +
w(k), which has the form of the decomposable MJLS (8) with

Ad = 1, Bd = 1, Cd = 1, Dd = 0,

Ac = −κ, Bc = 0, Cc = 0, Dc = 0,

where we are using the full state as performance output, so

z(k) = x(k), and use κ = 0.1 in the following.

In the numerical example, we are using the two graph

structures shown in Fig. 1 to interconnect the agents. The

family of circular graphs G◦
N shown in Fig. 1b has twice

as many edges as vertices (note that eij is different from

eji), which makes it suitable for testing the scalability of

Theorem 2 because applying the theorem to networks even

with edge counts in the low double digits is challenging. On

the other hand, they suffer from poor connectivity for networks

with many agents. Therefore, we will be using the triangle

shaped graphs G△
h from Fig. 1a for larger networks. If the

number of vertices in the last row is denoted by h, then G△
h

has N = h
2 (h + 1) vertices and |E△

h | = 3h(h − 1) edges.

Note that both graph structures are undirected and thus satisfy

Assumption 2.

An issue with analysing the system that describes the

solution to the consensus problem is its inherent marginal

stability. In the decomposable systems framework without

packet loss from [1], a convenient approach to resolve this

issue is to neglect the modal subsystem that corresponds to

the 0 eigenvalue of the Laplacian [3]. For the calculation of

the H2-norm, this means that (Π⊗Inz
)Ĝ is analysed instead of

Ĝ, where Π := IN− 1
N
1N1

T
N is the orthogonal projection onto

the disagreement space. The same approach can be applied to

the decoupled analysis conditions from Theorems 6 and 7 as

well as the necessary LTI conditions in Theorem 10 and – in

adapted form – the coupled LMIs in Theorems 1 and 2.

Consider again a transformation U with UTU = IN such

that UTL0U is diagonal, which does exist under Assumption 2.

Note that because L0 has zero row and column sum, U can

be chosen as U = [1N/
√
N Ũ ] with ΠU = [0 Ũ ]. We can

then apply U as state and signal transformation to (Π⊗Inz
)Ĝ,

giving x̃(k) := (UT ⊗Inx
)x(k), w̃(k) := (UT ⊗Inw

)w(k) and

z̃(k) := ((UTΠ)⊗ Inz
)z(k), resulting in

x̃(k + 1) =

[

Ad l̃i ⊗Ac

0 IN−1 ⊗Ad + L̃i ⊗Ac

]

x̃(k)

+

[

Bd l̃i ⊗Bc

0 IN−1 ⊗Bd + L̃i ⊗Bc

]

w̃(k),

(19a)

z̃(k) =

[

0 0

0 IN−1 ⊗ Cd + L̃i ⊗ Cc

]

x̃(k)

+

[

0 0

0 IN−1 ⊗Dd + L̃i ⊗Dc

]

w̃(k),

(19b)

where l̃i := 1
T
NLiŨ/

√
N and L̃i := ŨTLiŨ . It was shown in

[1] that the H2-norm is invariant under this kind of orthogonal

transformation of input and output.

In the transformed system (19), it is apparent that the centre

of gravity, which x̃k contains in its first nx entries, does not

affect the remaining states, since the bottom left block of every

system matrix is 0. The converse does however only hold

if all Gi are balanced, since this implies that l̃i = 0 for all

i ∈ K. For stability analysis using Theorem 1, this one-way

coupling may be ignored, as stability of the remaining system

would imply the centre of gravity stays finite as long as the

decoupled part Ad is at least marginally stable. On the other

hand, when calculating the H2-norm of the system, we can

take advantage of the fact that the full first columns are zero

for the C and D matrices of the transformed system. This

implies that even though the centre of gravity is affected by

the remaining system, this is not apparent in the output z̃(k)
and thus does not increase the H2-norm. The desired H2-norm

can therefore be obtained by only considering the bottom right

block of the transformed system.

B. Numerical results

To analyse the scalability and conservatism of the ap-

proaches described in this paper, we implemented the LMI

7
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Fig. 2. H2-performance of the MJLS at different transmission probabil-
ities p with each of the three analysis conditions.

conditions from Theorems 2, 7, and 10 in MATLAB using the

YALMIP [27] toolbox. All three conditions are affine in γ2

such that we can directly minimize γ2 – and thus γ – subject

to either of the LMIs. The minimum γ obtainable by each

of the conditions will be plotted below as the respective H2-

performance. All source code is available at [28].

Let us first evaluate how the H2-performance changes with

the transmission probability p for each of the three conditions.

For two test graphs, G△
3 and G△

50, we perform a sweep over

p, which is shown in Fig. 2. In the figure, the “decomposed”

graph refers to the best upper bound on the H2-norm that can

be obtained from Theorem 7, “mean” is the lower bound based

on Theorem 10 and “enumerated” corresponds to the original

analysis condition in Theorem 2 and thus shows the true H2-

norm of the system. Theorem 2 is only applied to the small

MAS in Fig. 2a, since G△
50 has m = 2|E

△

50
| = 27350 modes,

which are intractable to enumerate.

As expected, the performance figures obtained from the

decomposed analysis results in Theorems 7 and 10 do not

match the H2-norm of the system but over- and underestimate

it, respectively. Furthermore, the gap between the upper and
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Fig. 3. Scalability of the three analysis conditions for small networks
with graphs G◦

N
.

lower bound is significantly increased for the larger MAS.

However, while the mean system recovers the exact norm for

p = 1 because it coincides with the MJLS, the upper bound

is conservative for all transmission probabilities.

In a second step, we compare how the analysis conditions

from Theorems 2 and 7 scale in terms of computational speed

and conservatism of the calculated H2-norm. We start by

analysing the MAS with the circular graphs G◦
N for N between

2 and 12. Because the number of edges is relatively small for

these graphs, we can apply all three conditions. For each N ,

we calculate the H2-performance with p = 0.5, which was

chosen since it is the transmission probability with the largest

variance. The results are shown in Fig. 3.

As observed before, the conservatism of Theorem 7 grows

with increasing agent count. The lower bound obtained from

the mean system is close to the exact norm regardless of

the agent count. Concerning the computational speed, it is

apparent that the analysis conditions from Theorem 2 show an

exponential growth in complexity such that the problem will

quickly become intractable even for networks of moderate size.

On the other hand, the conditions from Theorem 7 show no
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substantial increase in computation time.

Finally, for the last test we apply the decomposed analysis

conditions to MAS based on the triangle-shaped graphs G△
2

to G△
142, ranging from a network with three agents to one with

10011. Again, we calculate bounds on the H2-norm for p =
0.5 with each of the graphs. The corresponding performance

and computation time curves are displayed in Fig. 4.

While the exact H2-norm for these systems is unknown, the

gap between the upper and lower bound on the performance

widens with increasing number of agents, up to one and

a half orders of magnitude for the largest MAS. Still, the

decomposed conditions allow to calculate an upper bound

on the H2-performance for networks of that size at all, in

contrast to the original conditions from Theorem 2, which

is intractable to validate for systems that large. In terms of

computational speed, the linear scaling of the decomposed

conditions is confirmed by Fig. 4b for networks with more

than 40 agents. For smaller MAS the constant cost of setting

up the optimization problem shadows the cost of solving the

LMIs, resulting in diminishing returns when the number of

agents is decreased below that threshold.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes an extension of the decomposable

systems framework to stochastic jump linear systems in order

to analyse the effect of Bernoulli distributed packet loss with

uniform packet loss probability on multi-agent systems. Based

on analytic expressions for the expected Laplacians, sufficient

analysis conditions for mean-square stability and bounds on

the H2-norm that scale linearly with the number of agents

were derived. Finally, it was demonstrated that the proposed

conditions are applicable to very large networks but that their

conservatism increases with the size of the network.

In future work, it will be investigated if the restriction

to identical matrix variables in the presented analysis con-

ditions can be removed without losing sufficiency, possibly

leading to lossless complexity reduction similar to the LTI

case. An instrumental step would be to extend the result on

simultaneous diagonalizability to the more general weighted

expectation. Furthermore, current research is aiming at how

the restrictive assumption of Bernoulli distributed loss with

uniform probability can be relaxed.

APPENDIX I

PROOF OF LEMMA 4

Proof. The expectations are calculated element-wise. Thus, for

E[Lσ] we get E[lσij ] = −p if vj ∈ N−
i and E[lσij ] = 0

otherwise for the off-diagonal entries. On the diagonal, we

have E[lσii] = pd−i . Together, this is equal to pL(G0).

On the other hand, for the expectation of LT
σLσ, calculate

the entries of L(G0)TL(G0) first. We get

l0Ti l0i = (d−i )
2 + d+i , (20)

l0Ti l0j =
∣

∣N+
i ∩ N+

j

∣

∣− d−i IN−

i
(vj)− d−j IN−

j
(vi) (21)

for the diagonal and off-diagonal entries respectively, where

l0i and l0j are the ith and jth column of L0. Notice that vi ∈
N−

s ⇔ vs ∈ N+
i and {vi, vj} ⊆ N−

s ⇔ vs ∈ N+
i ∩ N+

j .

Then, define βij as the elements of E[LT
σLσ] and see that

βij = E

[

lσTi lσj

]

=

N
∑

s=1

E[lσsil
σ
sj ] =:

N
∑

s=1

βs
ij . (22)

To calculate their values, recall the definition of lσij in (12) and

distinguish the following five cases:

βs
ij =







































pIN+

i
(vs) if i = j 6= s,

(d−i )
2p2 + d−i p(1− p) if i = j = s,

p2IN+

i
∩N+

j
(vs) if s 6= i 6= j 6= s,

−
(

d−i p
2 + p(1− p)

)

IN−

i
(vj) if s = i 6= j,

−
(

d−j p
2 + p(1− p)

)

IN−

j
(vi) if i 6= j = s.

With all five cases covered, sum up the results according to

(22) to obtain βij . On the main diagonal, we have

βii = p2
(

(d−i )
2 + d+i

)

+ p(1− p)
(

d−i + d+i
)

, (23)
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while for the off-diagonal entries use IN−

j
(vi) = IN+

i
(vj) to

arrive at

βij =p2
(

∣

∣N+
i ∩ N+

j

∣

∣− d−i IN−

i
(vj)− d−j IN−

j
(vi)

)

− p(1− p)
(

IN−

i
(vj) + IN+

i
(vj)

)

.
(24)

Notice that (23) and (24) contain p2 multiplied by (20) and (21)

respectively, resulting in the first term in the lemma. Finally,

use the fact that in the transposed graph G0T the in- and out-

neighbourhoods are exchanged compared to the original graph

G0 to see that the remaining terms correspond to the second

part of the equation.

Remark. It is possible to exclude opposing links from the

independence clause in Assumption 1 because there are no

products between αij and αji for any pair (i, j) in the

calculations leading up to βs
ij .

APPENDIX II

PROOF OF THEOREM 7

Proof. First, notice that (7a) is equivalent to

E

[

AT
σQAσ + CT

σ Cσ

]

−Q ≺ 0. (25)

Then, imposing Q = IN ⊗ Q̃, apply the same steps as in the

proof to Corollary 3 to arrive at

IN ⊗
(

AdT Q̃Ad + CdTCd − Q̃
)

+ E
[

LT
σ

]

⊗
(

AcT Q̃Ad + CcTCd
)

+ E
[

Lσ

]

⊗
(

AdT Q̃Ac + CdTCc
)

+ E
[

LT
σLσ

]

⊗
(

AcT Q̃Ac + CcTCc
)

≺ 0.

Following the proof of Theorem 6, we utilize Lemmas 4 and

5 to apply a congruence transformation, resulting in

IN ⊗
(

AdT Q̃Ad + CdTCd − Q̃
)

+
(

p2Λ2 + 2p(1− p)Λ
)

⊗
(

AcT Q̃Ac + CcTCc
)

+ pΛ⊗
(

AdT Q̃Ac + CdTCc +AcT Q̃Ad + CcTCd
)

≺ 0.

Since every component is block diagonal, this is equivalent

to (14a). Moreover, apply the same steps to (7b) without

imposing additional constraints on Z , leading to

IN ⊗
(

BdT Q̃Bd +DdTDd
)

− Z̃

+
(

p2Λ2 + 2p(1− p)Λ
)

⊗
(

BcT Q̃Bc +DcTDc
)

+ pΛ⊗
(

BdT Q̃Bc +DdTDc +BcT Q̃Bd +DcTDd
)

≺ 0,

with Z̃ := (UT ⊗ Inw
)Z(U ⊗ Inw

). Neglecting Z̃ , this

LMI is block diagonal. The Schur complement implies that

the diagonal blocks of any negative definite matrix must be

negative definite, therefore we can – without loss of generality

– assume Z̃ is block diagonal with Z̃i on the diagonal, such

that the LMI becomes equivalent to (14b). Finally, tr(Z) =
∑N

i=1 tr
(

Z̃i

)

and we rename Q̃ → Q and Z̃i → Zi.

Furthermore, because all λi are non-negative [2] and p is in

the interval [0, 1], C̄T
i C̄i+2p(1−p)λiC

cTCc � 0 and thus any

Q ≻ 0 satisfying (14a) also satisfies (13). This implies mean-

square stability for Ĝ according to Theorem 6 and completes

the proof by application of Theorem 2.

APPENDIX III

PROOF OF THEOREM 10

Proof. Both implications in the theorem are based on showing

that the LMIs in Theorems 1 and 2 imply their LTI counter-

parts for Ḡ. As for Lemma 8, we demonstrate the argument for

(7a) only, since it can be applied to (5) and (7b) analogously.

The main idea of the proof is to exploit a definiteness

property of a variance like term for matrix-valued random

variables. For any matrix-valued random variable X , we have

0 � E
[

(X − E[X ])T (X − E[X ])
]

= E
[

XTX −XT
E[X ]− E[X ]TX + E[X ]T E[X ]

]

= E
[

XTX
]

− E[X ]T E[X ].

To apply this result, we restate the sum in (7a) as
∑

j∈K

tj

(

AT
j QAj + CT

j Cj

)

= E
[

ÃT
σ Ãσ

]

+ E
[

CT
σ Cσ

]

where Ãσ := Q
1
2Aσ . We thus obtain

E
[

Ãσ

]T
E
[

Ãσ

]

+ E
[

Cσ

]T
E
[

Cσ

]

−Q =

E
[

Aσ

]T
QE

[

Aσ

]

+ E
[

Cσ

]T
E
[

Cσ

]

−Q ≺ 0
(26)

as a necessary condition for (7a). By Lemma 4, we have

E[Aσ] = IN ⊗ Ad + pL0 ⊗ Ac, which corresponds to Ḡ,

and similarly for E[Cσ]. Thus, (26) is equivalent to the first

LMI required to calculate the H2-norm of Ḡ [29]. The same

procedure can be applied to (5) and (7b).
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