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Robust Two-Layer Control of DC Microgrids with
Fluctuating Constant Power Load Demand

Grigoris Michos, Pablo R. Baldivieso-Monasterios, George C. Konstantopoulos, Paul A. Trodden

Abstract—This paper proposes a cascaded control structure
for the regulation of DC Microgrids (MG). It is well-known
that the negative impedance characteristics of a constant power
load (CPL) adversely affect the stability of the network, and
can cause problems such as voltage collapse or damage the
electronic components. To mitigate this, we propose a two-
layer control structure, where at the inner layer, the proposed
controller achieves fast tracking of the supplied reference points
and ultimate boundedness of the trajectories in a desired set.
The outer layer generates the inner layer reference points,
accounts for system constraints, and introduces robustness of
the voltage dynamics to unknown perturbations of the CPL
demand. For the first time, an investigation of the nonlinear
geometric behaviour of the CPL is carried out to derive
necessary conditions that ensure boundedness of the network
dynamics and feasible regulation to a desired equilibrium set.
Finally, Control Lyapunov functions are formulated to prove
the stability and estimate the region of attraction of the closed
loop dynamics. A simulated scenario of a meshed MG network
is presented to confirm the validity of the results.

I. Introduction
The concept of a MG brought a paradigm change to

the architecture of conventional power networks [1]. The
traditionally centralized structure has shifted to geograph-
ically decentralized clusters that are able to operate both
in a grid-connected setting and isolated, known as islanded
mode. The MG structure can be found in both AC and
DC applications, however in many cases the use of a DC
structure is often preferred because it provides higher effi-
ciency and reliability, e.g. in High-Voltage-Direct-Current
networks, aircrafts and transportation vehicles [2].

At the heart of the DC MG lies the bidirectional
DC/DC converter, achieving integration of renewable
energy sources in the network. These devices are utilized
to achieve MG voltage/current regulation, power flow
control and ensure that normal network operation is
retained in the presence of external disturbances. One of
the main challenges of DC/DC converter control is the
instability caused by the nonlinearities of CPLs, [3], [4].
CPLs introduce negative impedance characteristics to the
dynamics, which result in unstable equilibrium points. A
plethora of studies have tried to address this problem,
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with the majority adopting a linear control approach; see
for example [5], [6] or [7]. The main drawback of linear
approaches is the use of small-signal model analysis, which
only guarantees local stability in an area around a desired
operating point, where the linearization remains valid.
In the presence of large load demand fluctuations, the
nonlinearity of the CPL can drive the system outside
the linearization region and destabilise the system. In
light of this issue, more sophisticated control techniques
have been developed that include the nonlinearity inside
the control formulation. In [8], an adaptive backstepping
technique was proposed for MGs feeding CPLs, where the
estimation of the load demand is carried through a Kalman
filter. A sliding-mode controller was presented in [9], where
the sliding surface is designed as a linear combination
of the voltage and current tracking errors. Stability of
a boost converter feeding a CPL is demonstrated and
the control scheme regulates the voltage to a desired
reference point. Other methods using passivity theory [10],
[11] or output regulation [12] have also been proposed.
Enhancing the robustness of DC networks comprising of
buck converters to unknown CPL demand is also a topic
of rising interest. Passivity theory was used in [13] and [14]
to establish robust stability of the network equilibria to
perturbations of the load demand. This work was extended
in [15] to achieve global robust stability in the case of
constant-impedance-current loads. It has been shown that
the adoption of a more advanced technique can enlarge
the region of attraction and provide stronger stability
guarantees with respect to changes in the load demand.
However, the majority of the proposed techniques do
not take system constraints into consideration, while the
behaviour induced by the CPL is not extensively studied.
A question that arises is whether the behaviour of the CPL
can be included in the design of a unified constrained MG
controller that guarantees stability and boundedness of
the voltage and current states in the presence of unknown
load demand perturbations.

The need to adopt a control scheme that is able to
satisfy constraint sets arise naturally in MG control, most
commonly in the form of actuation limits, current and
voltage network capacities, or in order to prevent damage
of electronic components. Therefore, the system is required
to operate within a predefined operating range which
can be translated to the form of constraints on both
the current and the voltage of each DC/DC converter.
One of the most popular and effective techniques for
achieving control in the presence of constraints is Model
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Predictive Control (MPC). There is a rich literature
behind robust MPC approaches, the majority of which
follow a Tube MPC formulation. The term Tube MPC
refers to a collection of control approaches that bound
the trajectories of the uncertain system within a sequence
of sets and regulate this sequence to desired terminal sets
[16]. One of the most famous approaches dates back to
the work of [17], which standardized the Tube MPC for
linear systems. First, the uncertain system is decomposed
into nominal and error dynamics, then an approximation
of the minimum robust positive invariant (mRPI) set is
calculated to bound the error, while the uncertain system
is driven by regulating the nominal state trajectory in
conjunction with feedback control on the error dynamics.
Calculation of the mRPI set approximation requires an
explicit form of the integral flow of the system, i.e. the
solution of the ordinary differential equation describing
the system dynamics, [18]. Calculating this would present
a challenging task in the nonlinear setting, as an analytical
solution of the dynamics may not even exist. A few
approaches have focused on the nonlinear case, for example
in [19] a linearization around each point in the horizon
was proposed, while a feedback linearization was utilized
in [20]. A tube nonlinear MPC (NMPC) was proposed in
[21], however the calculation of the ”restricted” nominal
constraints is carried through simulations and lacks an
analytic approach. The Contraction Theory is used to
construct the tubes in [22] for a design of a distributed
NMPC for dynamically decoupled subsystems. A method
to optimize the tube size online was proposed in [23] by
exploiting the structure of the adopted boundary layer
sliding controller. An approach that constructs positive
invariance sets for globally Lipschitz systems was proposed
in [24], where the control action relies in computing a
quadratic Lyapunov function for the system. However,
imposing a globally Lipschitz condition restricts the scope
of possible applications of this control method and may
result in a conservative controller. It is evident from
the literature that a robust NMPC scheme is a subject
open for investigation, and is often reliant on the specific
form of the dynamics. According to the authors’ best
knowledge, despite its distinct advantages, the extension
of such a scheme to MGs is still on its early stages. In
a previous work of the authors, a robust NMPC scheme
for islanded DC MGs was developed in [25], where the
inherent robustness properties of the nominal MPC are
exploited to ensure recursive feasibility of the optimal
control problem. It is shown that the system demonstrates
a degree of robustness, by bounding the fluctuations of the
power demand among the sampling intervals. However,
only linear loads were considered in this study. This work
was extended to include CPLs in the network in [26],
where tools from economic MPC where used to guarantee
the recursive feasibility of the proposed control scheme.

In this study we propose a unified approach for the MG
regulation, i.e. we include both a current and a voltage
controller. We extend our previous work, by relaxing the
bound on the load demand fluctuations and investigate

its effect on the rest of the network. More specifically, we
propose a robust NMPC scheme for regulating the voltage
of the network in the presence of persisting, unknown,
power demand fluctuations. We exploit the dynamic struc-
ture of the converter system, in order to parametrize a
control law that bounds the system dynamics in a desired
region. As it will be shown, this results in a Tube MPC
performance but in a nonlinear setting, where the bound
on the error is chosen based on the interplay of the
control and drift vector fields. A preliminary version of
this was recently proposed by the authors in [27], where
local approximations techniques were used to show local
input to state stability of the dynamics and establish a
tube-like behaviour of the system trajectories. This paper
significantly extends this work by employing candidate
Lyapunov functions of the original nonlinear dynamics as
opposed to using linearization techniques. In addition, we
study the geometric effect of the CPL on the network
dynamics, to characterize a positive invariant set under
the solution of the voltage dynamics. Contrary to our
previous work, this is done in a global sense, by studying
the behaviour of the network equilibria. Thus, we avoid
possible approximation errors due to linearization tech-
niques and reduce the conservativeness of the controller.
More specifically, the contributions of this work are:

• C1: We propose a modified version of the state-
limiting PI, introduced in [28], in order to bound the
converter current and introduce overcurrent converter
protection during transient performance. Contrary to
the literature, instead of a saturation unit, we employ
a nonlinear parametrization of the input and show
that by the proposed control law, the system flow is
smooth and ultimately bounded in a predefined set,
thus facilitating the stability analysis of the overall
system.

• C2: For the first time, we investigate the geometric
behaviour of the CPL and exploit the effect it has on
the network to construct a robust positive invariant
set of the system dynamics. Contrary to [27], this set
is constructed using the displacement of the voltage
equilibria due to the power demand instead of em-
ploying local linearizations. Then, we employ energy-
like functions to establish ultimate boundedness and
specify an explicit bound of the error trajectories,
as opposed to relying on local approximations of
the system’s region of attraction. This way, we can
characterize a positive invariant set in a global sense,
provide stronger theoretical guarantees and reduce
conservativeness by allowing larger unknown load
demand perturbations.

• C3: We propose the adoption of an MPC control
scheme to drive the nonlinear nominal dynamics to
desired reference voltages. We expand the results from
[27], by deducing a necessary condition of the aug-
mented nominal control law that guarantees stability
of the cascaded dynamics and recursive feasibility of
the optimal control problem. Furthermore, we include
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a result on the estimation of the region of attraction
for the nominal dynamics.

• C4: We introduce a Control Lyapunov Function to
prove the stability of the inner current dynamics and
estimate the region of attraction of the respective
equilibrium points. Then, we prove the stability of the
cascaded dynamics and establish stronger stability
guarantees compared to the linearization approaches,
as these do not require explicit knowledge of the load
demand and are not affected by linearization errors.

In what follows, in Section II we formulate the problem
of controlling the DC MG network, in Section III we
introduce the current controller and prove the ultimate
boundedness of the current dynamics. In Section IV we
formulate the voltage control that guarantees constraint
satisfaction and robustness to constant power demand
perturbations. Then, Section V provides the the stability
results of the cascaded structure and in Section VI
we demonstrate the application of the proposed control
scheme with a simulation scenario.

A. Notation
A polytope A ⊂ R

n with complexity nc is charac-
terized by A = {x ∈ R

n : Px ≤ q} with P ∈ R
nc×n

and q ∈ R
nc . The notation |A| denotes the cardinality

of A. The closure, boundary and interior of a set A
are denoted as cl(A), ∂A and int(A) respectively. The
Pontryagin Difference of polytopes A and B is defined as
A⊖B = {a ∈ R

n : a+b ∈ A, ∀b ∈ B}. For a vector x ∈ R
n

the notation [x] denotes a diagonal matrix on R
n×n, where

xi = [x]ii, for i = 1, 2, . . . , n. A sequence of length k

is denoted as {x}k = {x1, x2, . . . , xk}. The Hausdorff
distance between two sets A,B ⊂ R

n is h(A,B) =
max

{
supa∈A infb∈B |a− b|2, supb∈B infa∈A |a− b|2

}
.

A topological space M is called a smooth manifold if
for any p ∈M there exist an open set in a neighbourhood
of p, O ⊂ M and diffeomorphism ψ : O → R

n. The
combination (ψ,O) is called a coordinate chart of M . The
tangent space on a point p ∈ M is denoted as TpM , and
a vector field X is a map assigning a vector X(p) ∈ TpM

at each point p ∈ M . A Riemannian metric G represents
the inner product of the tangent space of M at x, where
G : TxM × TxM → R. The pair of a smooth manifold
together with G is called a Riemannian manifold. Let
γ : [0, 1] → M be a smooth function with γ(0) = x1
and γ(1) = x2 for x1, x2 ∈ M . The Riemannian distance
between x1 and x2 is given by dR = inf ℓR(γ), where ℓR(γ)
is the arc length of γ on M . The respective Riemannian
norm is denoted as ∥·∥R. The Lie derivative of a function
f ∈ C∞(M) along a vector field X ∈ TM is given as
LieXf =

∑n
i=1Xi

∂f
∂xi

. The inner product between two
vectors a, b ∈ R

n is denoted as ⟨a, b⟩ =
∑n

i=1 aibi.
A MG can be seen as an undirected and connected

graph G = (M, E) where the set of nodes M represent
a collection of power converters and local loads; the set
of edges E ⊆ M × M defining the MG topology is
characterized by the node-edge matrix B ∈ R

|E|×|M| which

Fig. 1. Network topology of a meshed islanded DC MicroGrid.

for edge ε = (i, j) ∈ E involving nodes i and j can be
defined as [B]ei = 1 if node i is the source of e ∈ E , and
[B]ej = −1 if node j is its sink, and zero otherwise. The
weights of the edge ε, representing the admittances of the
lines, are collected in the line admittances matrix R−1.

We also use the following well-known result that we
include here for reference.

Theorem 1 (Nagumo’s Theorem). Let ẋ = f(x), where
the map f is at least once continuously differentiable and
the solutions exists inside an open set O ⊆ R

n. Then, the
closed subset S ⊂ O is positive invariant under the flow
of the system if and only if

lim
λ→0+

inf
d(S, x+ λf(x))

λ
= 0

for all x ∈ ∂S, where d(·, ·) denotes the euclidean distance.

II. Problem Formulation
In this section we investigate the system of an is-

landed meshed DC Microgrid composed of n number of
power converters, where each ith converter is connected
to local CPL, with i ∈ M = [1, 2, . . . , n]. Our aim
is to introduce robustness of the system operation to
load demand fluctuations and ensure that the system
dynamics are restricted in a predefined operational range.
It is common to represent an islanded DC Microgrid
as a meshed, connected, undirected graph, see Fig. 1.
Each node models an interlinking DC/DC buck converter,
integrating an energy source to the power network. The
power consumption of the network is modelled by CPLs,
connected to the output capacitor of each converter.
This is represented in the converter circuit diagram as a
controlled current source, see Fig. 2. In order to simplify
the analysis, we only consider the pure resistive component
of the lines. This is a common approach in DC MGs as
it has been shown that the same stability results can be
obtained by omitting the line inductance, see for example
[29]. Therefore, we will consider the Kirchhoff model of
the network dynamics given by

L
di

dt
= νE − ri− v, (1a)

C
dv

dt
= i− io. (1b)

The capacitance and inductance of each node are collected
into diagonal matrices L and C respectively, r denotes a
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diagonal matrix collecting the node parasitic resistances,
and E denotes the input voltage of the converter. The
states of the system are the capacitor voltage v ∈ R

n and
the inductor current i ∈ R

n, while the duty ratio of the
switching mechanism ν ∈ [0, 1], is regarded as the input
to the system.

The connection between the nodes of the graphs can be
represented by the weighted adjacency matrix A(R) ∈
R

n×n, where aij = R−1
ij , with R−1

ij the admittance of
the line between nodes i and j, and aij = 0 if the edge
(i, j) is not incident. The full topology of the network is
represented by the Laplacian matrix L = [A(R)1n]−A(R).
Therefore, the output network current can be modelled as

io = Lv + [v]−1P, (2)

where P ∈ R
n is the power demand vector. To allow the

development of a robust control strategy, we assume that
the load demands are bounded in a set P ⊂ R

n. In addi-
tion, the system is subjected to operational constraints, i.e.
desired regions of voltage and current operation, denoted
as X and I respectively. In order to ensure a smooth region
of operation we invoke the following assumption on the
structure of the constraint sets.

Assumption 1. The constraint sets X, I and load demand P

are polytopic and compact sets, where the origin is within
the interior of P and I.

It is common to require the inner current and output
voltage of a converter to operate in a predefined range,
usually as a bounded deviation from a rated value. The
above assumption translates this requirement into a math-
ematical notion, as well as ensures that the load demand
acquires a finite maximum value. This property is used
to ensure convexity of the optimization problem that is
introduced in Section IV. In addition, a consequence of this
assumption is that the origin is not necessarily included in
the voltage constraint set. Thus, the voltage dynamics are
smooth over the constraint set which allows us to consider
the respective state subspace as a Riemannian manifold M
embedded in R

n. Compactness of the constraint set also
implies that any closed subset of X is also compact. As a
result, any subspace of the metric space (X, dR) has the
Heine-Borel property, i.e. the metric space is compact and
complete. This is a particularly useful property that will
assist us in the following sections to establish convergence
of the system flow.

Linearity of (2) with respect to the load allows us to
separate the load current into a nominal current depending
on an a-priori known nominal load P̄ and an uncertain one
parametrized by a deviation δP = P − P̄ . Then, we define
the set of deviations from the nominal load demand as a
disturbance set W := {δP ∈ R

n : P̄ + δP ∈ P}. Following
Assumption 1, the disturbance set W inherits the same
properties of P. The control objective is to introduce
robustness to the system with respect to fluctuations of
the load demand δP from the known, constant value P̄ .
To this aim, in the following sections we first introduce
boundedness of each converter inner current state ii. Then,

Ei

Liii ri

Pi

vi
Ci

io,ivi

Fig. 2. Node circuit modelled as a DC/DC Buck converter connected
in parallel to a local constant power load.

we decompose the true voltage dynamics into a nominal
state, where the load demand is P̄ at all times, and an error
between the true and the nominal voltage emanating from
the fluctuations of the load demand δP from the nominal
value P̄ . Finally, we introduce conditions on the choice of
the tuning parameters such that the distance between the
trajectory of the nominal and the true voltages is bounded,
the network satisfies the desired operational constraints
at all times and the stability of the overall system is
guaranteed.

III. Inner Current Control
The current controller regulates the input current to

a desired setpoint by adjusting the duty ratio ν. It is
common in the literature to use some form of a saturated
controller in order to achieve overcurrent protection of
each power converter. To this aim, we employ a mod-
ified version of the state-limiting PI, firstly introduced
in [28]. This ensures smoothness of the dynamics, thus
avoiding performance degradation or instabilities caused
by traditional saturated controllers, as highlighted in [30].
Moreover, it allows us to formulate an analytic procedure
to choose the control parameters that achieve the desired
transient performance and boundedness properties. The
parametrization of the duty ratio ν is given by

ν = (v − kpi+Mσ)E−1

Mσ̇ = kI(1n − σ2)(̂i− i).
(3)

resulting in closed loop current dynamics,

L
di

dt
= −(kp + r)i+Mσ

Mσ̇ = kI(1n − σ2)
(

î− i
)

.

(4)

where î is the reference current, M, kp, kI ∈ R
n×n are

the tuning parameters and σ is the controller introduced
integrator state. As shown in the following proposition,
this control parametrization restricts the flow of the closed
loop system in a control invariant subset of the constraint
set C ⊆ I.

Proposition 1 (Current limitation). For each node i ∈ M,
the set C = [−Imax, Imax] × [−1, 1] with Imax,i = Mi

kp,i
is

control invariant for the current dynamics (4).

Proof. We begin by showing the boundedness of the inte-
grator dynamics. For each individual component σi(0) ∈
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[−1, 1], let there be time instants τ1 > 0 and τ2 > τ1
such that |σ(τ1)| = 1 and |σi(τ2)| > 1. By defining
an energy function Eσ,i = 1

2σ
2
i with time derivative

Ėσ,i = σi
kI,i

Mi
(1−σ2

i )(̂i−i), the derivative vanishes at point
|σi| = 1, i.e. this point represents an equilibrium point
of the integrator dynamics. Leveraging on the continuity
property of (4) and the form of Eσ,i, then the trajectory
cannot escape the ball defined by |σi| = 1, which leads into
a contradiction on the existence of a point σi(τ2) outside
this ball.

Now we proceed with the boundedness of the current
dynamics. We consider the C1 energy function of the
inductor Ec,i =

1
2Li

2
i , with time derivative

Ėc,i = −(kp,i + ri)i
2
i + iiMiσi < −kp,i|ii|

2 + |ii|Mi.

Following [31, Theorem 4.18], the flow of the system
ϕc(i

0
i , t) for i0i ≤ Mi

kp,i
is ultimately bounded with bound

Imax,i =
Mi

kp,i
.

Therefore, the desired behaviour of the inner current
loop can be achieved by adjusting the tuning parameters
according to the desired bound Imax,i =

Mi

kp,i
. The stability

of the system will be investigated in Section V, where we
will discuss the stability properties of the overall cascaded
dynamics. In addition, we note that the choice of the inner
current bound needs to be made according to the required
voltage constraint set X, in order to satisfy the requirement
νi ∈ (0, 1) for all (ii, σi) ∈ Ci and vi ∈ Xi.

IV. Voltage Control
In this section, we formulate the robust control scheme

for the voltage node dynamics. To this aim, we separate
the dynamics into a nominal and an uncertain part. In
the following, we will show that the uncertain part of
the dynamics can be bounded within a positive invariant
set, leveraging on the geometric properties of the closed
loop vectorfield. Then, the nominal dynamics are shown
to act as a driving subsystem, regulating the true system
to some desired reference behaviour. We will use the
notion of control sets to guarantee constraint satisfaction
of the nominal subsystem, which, by an appropriate
parametrization of the constraint sets, implies constraint
satisfaction of Y = X × C by the uncertain dynamics.
In this study, we assume that the current operates in
a faster time-scale than the voltage. This is a common
assumption in the literature, see for example [32] or [33],
as it allows to study each of the dynamic components
separately and thus significantly simplifies the analysis.
This leads to a cascaded structure where the input current
in (1b) represents a piecewise constant reference and is
considered as the input to the voltage dynamics. Following
[34, Theorem 4.4] and [35, Appendix A] the reachability,
and consequently convergence, properties are preserved
under the replacement of integrable smooth controls with
piecewise constant controls. Having established bounded-
ness of the solution of (4), we formalize the time-scale
separation by invoking the following assumption.

Assumption 2 (Time-scale separation). The network pa-
rameters satisfy

max
i∈M

{

Li

kp,i + ri
,
kp,i

kI,i

}

≪ min
i∈M

{

CiPi

(Imax,i)2

}

Remark 1. As a consequence of Assumption 1, the load
demand Pi is bounded and thus one can enforce the
time-scale separation of the node dynamics by an appro-
priate selection of the tuning parameters, as shown in
Assumption 2 where we provide explicit time constants
derived using singular perturbation analysis. We refer
the interested reader to [31, Chapter 11] for a detailed
analysis.

A. Formulation and boundedness of the error dynamics
Following Assumption 2, we begin by writing the node

voltage uncertain system

Cv̇ = −Lv − [v]−1P̄ − [v]−1δP + î (5)

and define the error term e = v − z, that separates the
nominal part of the dynamics from the uncertain. Our
aim is to use the nominal state z as a driving state of
the system’s flow ϕv(·), while restricting the effect of the
disturbance such that the distance between the flow of the
uncertain system and the nominal satisfy dR(ϕv, ϕz) ≤ ε

for some ε > 0. We define the control policy

î(e) = −Ke+ u (6)

where u is the nominal control policy that will be defined
later. Then, isolating the nominal part of (5), results in

Cż = −Lz − [z]−1P̄ + u. (7)

Therefore, the evolution of the error dynamics can be
described by the ordinary differential equation

Cė = −Le−Ke− [e+ z]−1P̄ + [z]−1P̄ − [e+ z]−1δP. (8)

We define the vector field map γ : M → TM ,

Cė = γ(e) (9)

where for a constant power demand deviation δPs and
converged nominal dynamics to a point ẑ, we have

γ(ê) = 0. (10)

Many studies have been focused on the existence of
real solutions for the voltage equilibrium map usually
deriving a necessary condition to be satisfied by the system
parameters, see for example [36]. It is shown that, if the
necessary conditions are met, the equilibrium map is a
diffeomorphism where a high and a low voltage solution
exist, see [37] or [38]. Note that γ(ê) = 0 is the result of
the state transformation v = e+z, similar results with the
voltage v equilibrium map can be obtained for ê = γ−1(0).
Therefore, the discontinuity of the true voltage dynamics
is translated to the critical point e = −z of the error
state space. The second solution of γ(ê) = 0 is then
the steady state displacement caused by the load demand
perturbations δP between the true voltage trajectory and
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the nominal. In the following, we intend to use the imposed
properties of the vector field γ(·) in an area around the
origin to restrict the error flow ϕe in a positive invariant
set. Considering the solution of ê = γ−1(0) closest to the
origin, the maximum displacement due to the load demand
can be found by

em = max
δP∈W

(∥
∥
∥γ−1(0)

∥
∥
∥

)

. (11)

Next we define the polytope,

N := {e ∈M : Pe ≤ ξ(em)} (12)

where P = [In − In]
⊤ and ξ(em) = [1ne

m
1ne

m]⊤, that
is the set N is a n-dimensional “box” around the origin.
The question that arises is under which conditions does
the system guarantee the desired theoretic properties, i.e.
existence of a unique solution of the error dynamics in N ,
as well as positive invariance of N . The former is addressed
in the following result.

Lemma 1 (Lipschitz continuity). Consider the error dy-
namics given in (8) and bounded positive nominal voltage
z ≤ z ≤ z. Given a constant power load demand
Ps ∈ {P̄} ⊕ W and a scalar positive definite matrix K,
the map γ(·) is Lipschitz continuous on N , with Lipschitz
constant

K =

∣
∣
∣
∣
λmax

(

−K + [−1ne
m + z]−2[Ps]

)
∣
∣
∣
∣
.

Proof. We begin by finding the Lie derivative for a
constant power demand Ps ∈ {P̄} ⊕W

Lie(γ) = −(L+K) + [e+ ẑ]−2[Ps].

Due to the fact that z and em are positive values, the
matrix ℓ2 − norm is given by

∥
∥Lie(γ)

∥
∥
ℓ2

= sup
e∈N

∥
∥Lie(γ)

∥
∥
ℓ2

=
∥
∥
∥−(L+K) + [−1ne

m + z]−2[Ps]
∥
∥
∥
ℓ2

≤
∥
∥
∥−(L+K) + [−1ne

m + z]−2[Ps]
∥
∥
∥
ℓ2
.

We define K =
∥
∥−(L+K) + [−1ne

m + z]−2[Ps]
∥
∥
ℓ2

and
note that the resulting matrix within the norm is sym-
metric. Then, for a symmetric matrix the largest singular
value is given by its spectral radius, i.e.

K =

∣
∣
∣
∣
λmax

(

−(L+K) + [−1ne
m + z]−2[Ps]

)
∣
∣
∣
∣
.

By the properties of the Laplacian matrix we have λn ≥
· · · ≥ λ2 ≥ λ1 = 0 and thus λmax(−L) = 0. The above
takes the form,

K =

∣
∣
∣
∣
λmax

(

−K + [−1ne
m + z]−2[Ps]

)
∣
∣
∣
∣
.

This establishes the desired upper bound on the norm of
the Lie derivative, i.e.

∥
∥Lie(γ)

∥
∥
ℓ2

≤ L. Therefore, for two

infinitesimally different e1, e2 ∈ N and a ξ ∈ (e1, e2), an
application of the mean value theorem states

∥
∥γ(e1)− γ(e2)

∥
∥
ℓ2

=
∥
∥Lie|ξ(γ)

∥
∥
ℓ2
∥e1 − e2∥ℓ2

≤ K∥e1 − e2∥ℓ2 .

Therefore, the vector field is Lipschitz continuous on N

with Lipschitz constant K.

Having established the Lipschitz continuity of the sys-
tem flow inside N , we now are able to investigate the
stability properties of the equilibrium ê ∈ N . This is
demonstrated in the following result.

Proposition 2 (Stability and Positive Invariance of the
error dynamics). For bounded local nominal dynamics
zi ≤ zi ≤ zi, the error dynamics of every node i ∈ N ,
admit an asymptotically stable equilibrium point in N , if
the local feedback gain satisfies

Kii > max

{

P̄i

zie
m
i

,
Pm
i

(zi − emi )2

}

with Pm
i = max

(
|P̄i + δPi|

)
and δPi ∈ Wi. In addition,

the set N is positive invariant under the flow of the system
ϕe(e

0, t), for all t > 0 and e0 ∈ N .

Proof. For any equilibrium point ê ∈ N and respective
constant load demand P̂ , the resulting Jacobian matrix
takes the form

J = C−1(−(L+K) + [(z + ê)2]−1P̂ ).

In order for the equilibrium point ê to be stable, the
respective Jacobian matrix J needs to be Hurwitz, i.e.
to have negative eigenvalues. Using Lyapunov theory, it
suffices to investigate the largest eigenvalue of the matrix

−(L+K) + [(z + ê)2]−1P̂ .

Hence, it is sufficient to show that λmax(−K + [(z +
ê)2]−1P̂ ) < 0, i.e.

−Kii +
P̂i

(zi + ê)2
< 0

where we have used the fact that λmax(−L) = 0. In order
to ensure that a similar condition holds for any ê ∈ N

and any P̂ ∈ P, we note that

Pm
i

(zi − em)2
≥

P̂i

(zi + êi)2
,

holds for all ê ∈ N . Therefore, we require

Kii >
Pm
i

(zi − emi )2

where we have used the fact that zi ≤ zi ≤ zi, where the
lower bound is positive. Following the definition of N , for
some point at ∂N we have that ei = em for i ∈ [1, . . . , n]
and ej ≤ em for j ̸= i. We consider the quadratic function
V = 1

2e
⊤Ce and our aim is to show that V̇ |e∈∂N is negative

outside the set N . Since ei ≤ em for all i ∈ [1, . . . , n], it
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suffices to show V̇i|ei∈∂Ni
is non-positive in both cases of

ei = emi and ei = −emi , i.e. we require

V̇ |ei∈∂N = eiγi(ei)

or

ei



−(Lii +Kii)ei −
∑

j∈Ni

Lijej +
P̄i

zi
−

Pi

ei + zi





to be non-positive, where Ni = {j ∈ M : Lij ̸= 0, i ̸= j}
denotes the set of neighbours of the ith node, i.e. the nodes
of the network where there exists a direct line connecting
the two nodes. We bifurcate the analysis in two cases: (a)
ei = em and (b) ei = −em. In case of (a) we need the
term inside the parenthesis to be negative. Since em ≥ ej ,
the diagonal Laplacian term dominates the off-diagonal
elements. Comparing the lower bound of the feedback Kii,
it can be seen that when the gain obtains its lower value,
it is not necessarily true that −Kiiei +

P̄i

zi
≤ 0, unless

the deviation between the maximum load demand and
the nominal is “large enough”. In order to ensure that the
desired result holds in every case, we need to impose an
additional condition on the feedback,

Kii > max

{

P̄i

zie
m
i

,
Pm
i

(zi − emi )2

}

.

Then, the desired inequality V̇i|ei=em
i

≤ 0 holds as the
expression inside the parenthesis is a summation of strictly
negative elements. In case of (b), we note that, by
construction, at the point e = −1ne

m the velocity is given
by

Liie
m +

∑

j∈Ni

Lije
m

︸ ︷︷ ︸

= 0

+Kiie
m +

P̄i

zi
−

Pm
i

−em + zi
= 0,

when Kii, zi obtain their respective lower bound and the
load demand Pi is maximized. Then, for any ej ≥ −em,
Pi ≤ Pm

i and zi ≥ zi we have that

≥ 0
︷ ︸︸ ︷

Liie
m −

∑

j∈Ni

Lijej +Kiie
m +

P̄i

zi
−

Pi

−em + zi

≥ Kiie
m +

P̄i

zi
−

Pm
i

−em + zi

and therefore we obtain the desired inequality

Liie
m −

∑

j∈Ni

Lijej +Kiie
m +

P̄i

zi
−

Pi

−em + zi
≥ 0,

which ensures V̇ ≤ 0. Therefore, the convex nature of set
N allows us to conclude that the velocity vector assigned
to every point e ∈ ∂N by the map γ : N → TN is sub-
tangential to the set N and by direct application of the
Nagumo’s theorem, the set N is positive invariant under
the flow of the error dynamics with ϕe : N → N .

(a) Given a constant power de-
mand Pm, any solution starting
in N will remain in N and con-
verge to ∂N

(b) For a power demand P ∈ P

the region of the dynamic map
shrinks within the set S(P ) ⊂ N

Fig. 3. Vector field and positive invariant set N for a two node
system.

The invariance of set N combined with the asymptotic
stability of every equilibrium point in N implies the
following result.

Corollary 1. The set N is within the region of attraction
of system (8).

Remark 2. The above results reveal the immediate effect
of the feedback gain K on the degree of conservativeness
of N . Higher values of K result in higher magnitudes of
the velocity introduced by the linear part and therefore a
decrease in the maximum displacement of the equilibrium
point from the origin. Therefore, there exists a subset
of N parametrized by K, Ñ(K) ⊂ N , such that Ñ is
positive invariant and contains the limit of the flow for
any e0 ∈ N , i.e. limt→∞ ϕe(e0, t) ∈ Ñ(K). However, while
a high feedback gain would diminish the effect of the load
demand on the voltage dynamics, this has a negative effect
on the converter current steady state, as can be seen
by the reference current parametrization î = −Ke + u.
Higher values of the feedback introduce larger deviations
of the reference current î from the desired reference u,
revealing an inherent trade-off on the choice of the system
parameters.

The results are illustrated in Fig. 3, where the set
S(P ) is a polytope similar to N but parametrized by
an equilibrium point corresponding to some load demand
with Pi < Pm

i . It is seen that the vector field drives
the flow on the boundary of S(P ), while N is positive
invariant. The above results also suggests that the set
Ω = N ⊕ ẑ is positive invariant for the uncertain system.
A question that arises is that under which conditions,
the uncertain state flow ϕv, parametrized by the control
input î, is driven in Ω, while v ∈ X is satisfied at all
times. One way to guarantee this is to prove the existence
of a robust control invariant set (RCI) for the uncertain
voltage dynamics within the constraint set. To this end,
we recall the following definition from [39], adapted to our
setting.

Definition 1 (Robust Control Invariant Set). The set R is
said to be robust control invariant for the system (5), if
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there exists a control î ∈ C such that for all initial states
v0 ∈ R and any w ∈ W the flow of the system satisfies
v = ϕ(v0, î, w, T ) ∈ R, for all T > 0.

Using this notion of RCI sets, we require

Ω ⊆ R ⊆ X.

Following the previous analysis, we recall that Ω = N ⊕ ẑ

with N being a positive invariant set, therefore, we can
formulate the above question in the nominal setting, by
defining the nominal constraint sets as

Z := X⊖N, U := C⊖ (−K)N.

The above indicates that the input constraint set is
“shrinking” with larger choices of the control gain K,
while on the other hand the nominal state constraint set Z
approaches the size of the original constraint set X. As it
was also discussed in Remark 2, this is the expected trade-
off that needs to be considered when choosing the tuning
parameter K. The aim of this interplay is to proportionally
distribute the high-transients effect of the CPL between
the current and the voltage trajectories, in order to satisfy
the operational constraints.

Furthermore, we note that the computation of the
positive invariant set can be done offline and only utilizes
the information regarding the bound on the load demand;
this significantly simplifies the development of a control
scheme for the nominal voltage dynamics and substan-
tially reduces conservativeness stemming from the need of
instantaneous load measurements during operation.

B. Formulation of the nominal voltage controller
The problem now becomes of choosing references within

the nominal constraint set, i.e. ẑ ∈ Z, and proving
the existence of a control invariant set for the nominal
dynamics. While the former can be trivially satisfied, the
latter requires the association of a control policy with
the candidate control invariant set. A common way to
resolve this, is by employing an MPC control scheme. In
MPC, the control policy is generated by solving a finite
horizon optimal control problem subject to the system
constraints and dynamics. The cost function is often
adopted as a quadratic function penalizing the deviation
of the system current state from a reference point, thus
achieving regulation of the flow to a desired equilibrium.
At each time instant, a sequence of control actions is
generated and the first element is used as an input to
the system, while the rest of the sequence is discarded.
This process is repeated in the next time instant, thus
achieving the receding horizon implementation. Efficient
techniques have been developed to solve the continuous-
time counterpart of the optimal control problem that
usually involve an approximation of the solutions using
a numerical solver. Some of the most commonly adopted
techniques are the interior point method (IPOPT) or
sequential quadratic programming (SQP), see [40, Chapter
10] for a detailed analysis.

One way to achieve a stabilizing and recursively feasible
controller is by adopting a positive definite cost, compact
constraint sets and invariant terminal ingredients [17],
[41]. Noting Assumption 1, it is straightforward to satisfy
the first two requirements. However, the CPL destabilizes
every fixed point ẑ ∈ Z. To overcome this, we define

u = −Kzz + ηo,

where ηo is the optimal control policy generated by solving
the MPC problem. Thus, the nominal dynamics take the
form

Cż = −(L+Kz)z −
P̄

z
+ ηo. (13)

We provide the following result to establish asymptotic
stability of the terminal dynamics.

Proposition 3 (Stability of the terminal dynamics). Con-
sidering the nominal system (13), there exists a δ > 0 such
that the fixed point ẑ is an asymptotically stable equilib-
rium with region of attraction A = {z ∈M : ∥z − ẑ∥ ≤ δ},
if and only if,

Kz,i >
P̄i

ẑ2i
,

for all ẑi ∈ Zi.

Proof. To investigate the stability of the fixed point ẑ we
linearize (13) and find the Jacobian matrix

J = ∇z=ẑ ż = C−1(−L+ [ẑ2]−1P̄ −Kz).

The point ẑ is asymptotically stable if and only if the
Jacobian is a Hurwitz matrix. Exploiting the properties of
the Laplacian matrix we can define a worst case scenario
at λmax(−L) = 0. Then, in combination with the fact
that the rest of the terms are symmetric matrices, we can
deduce the scalar condition

−Kz,i +
P̄i

ẑ2i
< 0

Which results in the required inequality

Kz,i >
P̄i

ẑ2i
,

for all ẑi ∈ Zi. Shifting the axes to the desired point ẑ the
new dynamics can be described by

˙̃z = Jz̃ + g(z̃)

where z̃ = z−ẑ and for some ε > 0 and δ > 0, g(z̃) satisfies
∥
∥g(z̃)

∥
∥ ≤ ε∥z̃∥ in some neighbourhood of the origin, i.e.

∥z̃∥ ≤ δ. Then, let V (z̃) = z̃⊤P z̃ be a Lyapunov candidate
function, where P is a solution of PJ + J⊤P = −Q
with Q ≻ 0. Note that existence and uniqueness of P is
guaranteed due to J being a Hurwitz matrix [31, Theorem
4.6]. The time derivative of V (·) results in,

V̇ = z̃⊤P(Jz̃ + g(z̃)) + (z̃⊤J⊤ + g⊤(z̃))P z̃ (14)
= −z̃⊤Qz̃ + 2z̃⊤Pg(z̃) (15)
≤ (λmin(Q) + 2∥P∥ ε)∥z̃∥2 (16)
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where we have used the fact that
∥
∥g(z̃)

∥
∥ ≤ ε∥z̃∥ and

z̃⊤Qz̃ > λmin(Q)∥z̃∥2. Now, for ε < λmin(Q)
2∥P∥ , the function

V (z̃) = z̃⊤P z̃ is a Lyapunov function for the shifted
system as V̇ ≤ 0 and thus there exists a δ > 0 such that the
region of attraction of ẑ is A = {z ∈M : ∥z − ẑ∥ ≤ δ}.

Corollary 2. Any level set Z0 satisfying Z0 = βA for 0 ≤
β ≤ 1 is positive invariant for the dynamics (13).

Following the above result above, we formalize the
definition of the optimization problem as

Jo(z(0), ẑ, η̂) = min
η

∫ tf

t0

ℓ(z− ẑ, η− η̂)dt+ Jf (zf − ẑ)

(17)

subject to the constraints,

z(0)− z ∈ N,

Cż = −(L+Kz)z − [z]−1P̄ + η,

(z, η) ∈ Z× U⊕KzZ, zf ∈ Zf ,

(18)

where ℓ(·) is a positive definite function. The resulting
control is applied in a receding horizon fashion, where at
some time t1 the first element of the resulting optimal
control sequence is used as input to the system and the
process is repeated at the next sampling instant t2 =
t1 + T . Note that a direct consequence of Proposition 3
and Corollary 2, is that choosing Zf = Z0 and Jf =
1
2 (zf − ẑ)⊤P(zf − ẑ) leads to recursive feasibility of (17)
provided that the problem is feasible at some initial time
t0. In addition, any sublevel set of the stabilizing terminal
cost function is control invariant for the nominal dynamics.
For completeness purposes, we will provide here a sketch of
the recursive feasibility result and we refer the interested
reader to [40, Chapter 5] for a detailed analysis.

Proposition 4 (Recursive Feasibility of OCP). Let the
problem (17) be feasible at some initial state z0 and time
t0 > 0. Then, the problem remains feasible for all t > t0.

Proof. Let z(z0, t0) and η(z0, t0) denote the feasible so-
lutions of the optimal control problem respectively, with
initial state z0 and time t0. In addition, let z(ϕz(z0, t0 +
T ), t0 + T ) and η(ϕz(z0, t0 + T ), t0 + T ) be the candidate
state and control sequences at the next immediate sam-
pling instant, i.e. at time t0 + T . Assuming no additive
uncertainties to the system, following Proposition 3 and
Corollary 2, the candidate solutions at time t0 + T are
formulated as the tails of the ones at time t0 where
the predicted state at the end of the horizon satisfies
zf (t0 + T + tf ) ∈ Zf . Positive invariance of Zf implies
that z(ϕz(z0, t0 + T ), t0 + T ) and η(ϕz(z0, t0 + T ), t0 + T )
are feasible and the problem is recursively feasible for all
t > t0.

V. Stability analysis of the cascaded dynamics

Following the analysis of the previous sections, the
problem has been shifted to regulating the following

cascaded dynamics,

L
di

dt
= −(kp + r)i+Mσ (19a)

M
dσ

dt
= kI(1n − σ2)(u−Ke− i) (19b)

C
dz

dt
= −Lz − [z]−1P̄ − u (19c)

C
de

dt
= −Le−Ke− [e+ z]−1P̄ + [z]−1P̄ − [e+ z]−1δP.

(19d)
The stability of a cascaded structure has been thoroughly
investigated in the literature, see [42]. The conventional
procedure is to separate the dynamics into a driving
subsystem and a driven one, where the state of the former
is considered an input to the latter. Then, asymptotic
stability of the overall dynamics follows from asymptotic
stability of the driving subsystem and asymptotic stability
or some form of boundedness of the driven dynamics.
Given a desired reference nominal voltage zss, we define
the equilibrium set for (19) with state vector x = (i, σ, z, e)
as

E := {̂i, σ̂, ẑ, ê ∈ R
n : î = u−Kê, σ̂ =M−1(kp + r)̂i,

ẑ = zss, ê ∈ N}. (20)
We begin the stability analysis by showing asymptotic
stability of the node current.

Theorem 2 (Lyapunov stability of the driving dynamics).
For every node i ∈ M, the C1 function Wi : R× R → R,

W(ii, σi) =
1

2
Li(ii − îi)

2+

M2
i −Mi(kp,i + ri)̂ii

kI,i
ln

1

1− σ2
i

+

Mi(kp,i + ri)̂ii
kI,i

ln
1

1 + σi
, (21)

is a Control Lyapunov Function for the subsystem (19a),
(19b), and the subsystem is asymptotically stable with
equilibrium point described by (20) and region of attrac-
tion C = [−Imax, Imax]× [−1, 1].

Proof. Following the definition of W, it can be seen that
it is positive definite. Therefore, all we need to show is
negative definiteness of the first derivative. Following the
assumption on the time scale separation of the dynamics,
the input current is constant, i.e. îi = ī. Then, the time
derivative of Wi results in

Ẇi =Li

dii

dt
(ii − īi) +

M2
i −Mi(kp,i + ri)̄ii

2kI,i

2σi
1− σ2

i

dσi

dt

−
Mi(kp,i + ri)̄ii
kI,i(1 + σi)

dσi

dt

=− (kp,i + ri)(ii − īi)
2,

where
Ẇi = −(kp,i + ri)(ii − īi)

2 ≤ 0

for kp,i, ri > 0. Following La Salle’s invariance theorem
and noting that the derivative vanishes only at i ∈ E , the
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Fig. 4. Network topology of a meshed islanded MicroGrid.

driving subsystem is asymptotically stable with respect
to the equilibrium set E . In addition, following Prop.1 the
region of attraction for the current equilibria is the set
C.

The next Theorem combines the aforementioned results
to establish the stability of the cascaded dynamics under
the proposed control scheme.

Theorem 3 (Assymptotic stability of the cascaded dy-
namics). The cascaded dynamics (19) are asymptotically
stable with limt→∞ ϕ(x, u, w, t) ∈ E .

Proof. Asymptotic stability of the driving subsystem fol-
lows from Theorem 2. In addition, following Proposition
4, the dynamics described by (19c) are also asymptotically
stable, where the proof follows the common approach
of exploiting the recursive feasibility properties of the
optimal control problem and using the cost function as a
Lyapunov function for the system. Finally, boundedness
of (19d) follows from Proposition 2. Thus, the cascaded
dynamics are an interconnection of Lyapunov stable driv-
ing subsystems (19a), (19b), (19c) and a bounded driven
subsystem (19d). Then, according to [42], the equilibrium
points in (20) are asymptotically stable for the cascaded
dynamics (19).

VI. Simulations
In this section we demonstrate the proposed control

scheme in a simulated scenario of a seven node meshed
network, see Fig. 4. We require the nominal voltage
to reach given references, while satisfying the ”tighter”
constraint sets, hence the uncertain voltage to always
remain within the original constraint set X. The node
voltage evolution is depicted in Fig. 5, where each node
voltage is always contained within the respective set Ni.
The current trajectories of Node 1, 3 and 7, along with
the respective generated references, are shown in Fig. 6.
It is seen that both the trajectories and the references are
contained within the desired constraint set, validating the
analysis developed in the previous sections. In addition,
we note that the fluctuations of the current references are

0 0.5 1 1.5 2 2.5 3 3.5 4

·10
−2

98

100

102

Time (s)
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lta

ge
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Fig. 5. Voltage and nominal voltage trajectories for Node
1( , ), Node 2( , ), Node 3( , ), Node
4( , ), Node 5( , ), Node 6( , ) and Node
7( , ) respectively. The constrained region is represented
with black solid lines ( ) and the voltage references by black
dashed lines ( ). The voltage trajectories are within the respective
Si ( ) at all times.
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Fig. 6. Converter Current trajectories for Node 1( ), Node
3( ) and Node 7( ) respectively.The constrained region C

is represented by black solid lines ( ) and the current references
îi by black dashed lines ( ).

a result of the varying load demand which also affects the
error dynamics. Here, the choice to allow larger current
fluctuations is made, however, as it was demonstrated
by the previous sections, one may choose to limit the
fluctuations of the input currents by enlarging the set N ,
hence allowing larger deviations between the nominal and
uncertain node voltages.

The rated voltage is set to v∗ = 100V . The current loop
control parameters are chosen as kp,i = 600,Mi = 9000
resulting in a maximum current Imax,i = 17A. The
nominal power demand is P̄i = 500W and we bound
the maximum deviation at |δPi| ≤ 500, see Fig. 7. We
furthermore parametrise the voltage constraint set as Xi =
{vi ∈ R

n : 97.9 ≤ vi ≤ 102.6}. A quadratic cost functional
is chosen of the form ℓ(z − ẑ, η− η̂) =∥z − ẑ∥2 +∥η − η̂∥2

and the problem is solved using the SQP solver and
“ICLOCS” MATLAB toolbox provided by [43]. Finally,
we choose the voltage control parameters as Ki = 50 and
Kz,i = 4.
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Fig. 7. Load fluctuations around the nominal value P̄ for Node 1.
A similar load profile is shared among the rest of the Nodes.

VII. Conclusions

In this study we propose a robust control scheme that
ensures stability of the closed loop system in the presence
of fluctuating load demand in a meshed DC Microgrid.
As it was shown, a “tube” behaviour naturally arises
from the interplay of the control policy with the rest
of the dynamics, allowing us to constraint the uncertain
system trajectory within a predefined positive invariant set
centred on a generated nominal trajectory. Furthermore,
an inherent trade-off was revealed between the choice of
the tube size and the availability of the current values that
reside within the operational constraints and satisfy the
load demand. We employed a MPC scheme to generate
the nominal voltage trajectory and include the constraint
sets in the control design process. To ensure recursive
feasibility of the receding horizon optimization problem,
the nominal control action was parametrized by a feedback
gain that ensures positive invariance of the terminal
ingredients. Finally, demonstration of the results was given
by a simulation scenario on a seven node network with
local constant power loads.

In future versions, the potential of extending the current
approach to Plug & Play scenarios will be investigated.
Additionally, we will focus on enlarging the feasibility
region of the optimization problem by allowing the con-
straint sets to be time-varying.

References

[1] R. H. Lasseter, Microgrids 1 (2002) 305–308.
[2] C. De Persis, E. R. Weitenberg, F. Dörfler, A power consensus

algorithm for DC microgrids, Automatica 89 (2018) 364–375.
doi:10.1016/J.AUTOMATICA.2017.12.026.

[3] E. Hossain, R. Perez, A. Nasiri, S. Padmanaban, A Com-
prehensive Review on Constant Power Loads Compen-
sation Techniques, IEEE Access 6 (2018) 33285–33305.
doi:10.1109/ACCESS.2018.2849065.

[4] Q. Xu, N. Vafamand, L. Chen, T. Dragicevic, L. Xie, F. Blaab-
jerg, Review on Advanced Control Technologies for Bidirec-
tional DC/DC Converters in DC Microgrids, IEEE Journal of
Emerging and Selected Topics in Power Electronics 9 (2) (2021)
1205–1221. doi:10.1109/JESTPE.2020.2978064.

[5] P. Magne, D. Marx, B. Nahid-Mobarakeh, S. Pierfederici, Large-
signal stabilization of a dc-link supplying a constant power load
using a virtual capacitor: Impact on the domain of attraction,
IEEE Transactions on Industry Applications 48 (3) (2012) 878–
887.

[6] X. Zhang, X. Ruan, Q.-C. Zhong, Improving the stability
of cascaded dc/dc converter systems via shaping the input
impedance of the load converter with a parallel or series virtual
impedance, IEEE Transactions on Industrial Electronics 62 (12)
(2015) 7499–7512.

[7] M. Wu, D. D.-C. Lu, A novel stabilization method of lc input
filter with constant power loads without load performance
compromise in dc microgrids, IEEE Transactions on industrial
electronics 62 (7) (2014) 4552–4562.

[8] S. Yousefizadeh, J. D. Bendtsen, N. Vafamand, M. H. Khooban,
F. Blaabjerg, T. Dragičević, Tracking control for a dc microgrid
feeding uncertain loads in more electric aircraft: Adaptive back-
stepping approach, IEEE Transactions on Industrial Electronics
66 (7) (2018) 5644–5652.

[9] B. A. Martinez-Treviño, A. El Aroudi, E. Vidal-Idiarte, A. Cid-
Pastor, L. Martinez-Salamero, Sliding-mode control of a boost
converter under constant power loading conditions, IET Power
Electronics 12 (3) (2019) 521–529.

[10] P. Nahata, G. Ferrari-Trecate, On existence of equilibria, voltage
balancing, and current sharing in consensus-based dc micro-
grids, in: 2020 European Control Conference (ECC), IEEE,
2020, pp. 1216–1223.

[11] J. E. Machado, R. Ortega, A. Astolfi, J. Arocas-Pérez, R. Griñó,
A. Pyrkin, A. Bobtsov, Active damping of a dc network with
a constant power load: An adaptive observer-based design, in:
2019 18th European Control Conference (ECC), IEEE, 2019,
pp. 411–416.

[12] A. Silani, M. Cucuzzella, J. M. Scherpen, M. J. Yazdanpanah,
Output regulation for voltage control in dc networks with time-
varying loads, IEEE Control Systems Letters 5 (3) (2020) 797–
802.

[13] J. Ferguson, M. Cucuzzella, J. M. Scherpen, Exponential stabil-
ity and local iss for dc networks, IEEE Control Systems Letters
5 (3) (2020) 893–898.

[14] A. Silani, M. Cucuzzella, J. M. Scherpen, M. J. Yazdanpanah,
Robust output regulation for voltage control in dc networks with
time-varying loads, Automatica 135 (2022) 109997.

[15] M. Cucuzzella, K. C. Kosaraju, J. M. Scherpen, Voltage control
of dc microgrids: Robustness for unknown zip-loads, IEEE
Control Systems Letters 7 (2022) 139–144.

[16] B. Kouvaritakis, M. Cannon, Model predictive control, Switzer-
land: Springer International Publishing 38.

[17] D. Q. Mayne, M. M. Seron, S. V. Raković, Robust
model predictive control of constrained linear systems with
bounded disturbances, Automatica 41 (2) (2005) 219–224.
doi:10.1016/j.automatica.2004.08.019.

[18] S. V. Raković, E. C. Kerrigan, K. I. Kouramas, D. Q. Mayne,
Invariant approximations of the minimal robust positively in-
variant set, IEEE Transactions on Automatic Control 50 (3)
(2005) 406–410. doi:10.1109/TAC.2005.843854.

[19] M. Cannon, J. Buerger, B. Kouvaritakis, S. Rakovic, Robust
tubes in nonlinear model predictive control, IEEE Transactions
on Automatic Control 56 (8) (2011) 1942–1947.

[20] S. V. Rakovic, A. R. Teel, D. Q. Mayne, A. Astolfi, Simple robust
control invariant tubes for some classes of nonlinear discrete
time systems (2006) 6397–6402.

[21] D. Q. Mayne, E. C. Kerrigan, E. Van Wyk, P. Falugi, Tube-
based robust nonlinear model predictive control, International
journal of robust and nonlinear control 21 (11) (2011) 1341–
1353.

[22] X. Liu, Y. Shi, D. Constantinescu, Robust distributed model
predictive control of constrained dynamically decoupled non-
linear systems: A contraction theory perspective, Systems &
Control Letters 105 (2017) 84–91.

[23] B. T. Lopez, J.-J. E. Slotine, J. P. How, Dynamic tube mpc
for nonlinear systems, in: 2019 American Control Conference
(ACC), IEEE, 2019, pp. 1655–1662.

[24] S. Yu, C. Maier, H. Chen, F. Allgöwer, Tube mpc scheme based
on robust control invariant set with application to lipschitz
nonlinear systems, Systems & Control Letters 62 (2) (2013)
194–200.

[25] G. Michos, P. R. Baldivieso-Monasterios, G. C. Konstantopou-
los, Nonlinear primary and supervisory control of dc microgrids
for distributed optimal operation with neighbour-to-neighbour
communication, in: 2021 25th International Conference on Sys-
tem Theory, Control and Computing (ICSTCC), IEEE, 2021,
pp. 302–307.



12

[26] G. Michos, P. R. Baldivieso-Monasterios, G. C. Konstantopou-
los, Distributed economic nonlinear mpc for dc micro-grids with
inherent bounded dynamics and coupled constraints, Systems
& Control Letters 167 (2022) 105327.

[27] G. Michos, P. R. Baldivieso-Monasterios, G. C. Konstantopou-
los, Robust distributed control for dc microgrids with system
constraints, in: 2022 30th Mediterranean Conference on Control
and Automation (MED), IEEE, 2022, pp. 1036–1041.

[28] G. C. Konstantopoulos, P. R. Baldivieso-Monasterios, State-
limiting pid controller for a class of nonlinear systems with
constant uncertainties, International Journal of Robust and
Nonlinear Control 30 (5) (2020) 1770–1787.

[29] A. P. N. Tahim, D. J. Pagano, E. Lenz, V. Stramosk, Modeling
and stability analysis of islanded dc microgrids under droop
control, IEEE Transactions on power electronics 30 (8) (2014)
4597–4607.

[30] N. Bottrell, T. C. Green, Comparison of current-limiting strate-
gies during fault ride-through of inverters to prevent latch-up
and wind-up, IEEE Transactions on Power Electronics 29 (7)
(2014) 3786–3797. doi:10.1109/TPEL.2013.2279162.

[31] H. K. Khalil, Nonlinear systems; 3rd ed., Prentice-Hall, Upper
Saddle River, NJ, 2002, the book can be consulted by contact-
ing: PH-AID: Wallet, Lionel.
URL https://cds.cern.ch/record/1173048

[32] F. Dörfler, F. Bullo, Synchronization and transient stability in
power networks and nonuniform Kuramoto oscillators, SIAM
Journal on Control and Optimization 50 (3) (2012) 1616–1642.
arXiv:0910.5673, doi:10.1137/110851584.

[33] P. Vorobev, P. H. Huang, M. A. Hosani, J. L. Kirtley, K. Turit-
syn, A framework for development of universal rules for micro-
grids stability and control, 2017 IEEE 56th Annual Conference
on Decision and Control, CDC 2017 2018-Janua (Cdc) (2018)
5125–5130. doi:10.1109/CDC.2017.8264418.

[34] V. Jurdjevic, J. Velimir, D. Velimir, Geometric control theory,
Cambridge university press, 1997.

[35] F. Colonius, W. Kliemann, The dynamics of control, Springer
Science & Business Media, 2012.

[36] Z. Liu, M. Su, Y. Sun, W. Yuan, H. Han, J. Feng, Existence
and stability of equilibrium of dc microgrid with constant power
loads, IEEE Transactions on Power Systems 33 (6) (2018) 6999–
7010.

[37] A.-C. Braitor, G. Konstantopoulos, On the existence and
uniqueness of equilibria in meshed dc microgrids with cpls, in:
30th Mediterranean Conference on Control and Automation,
Proceedings, Institute of Electrical and Electronics Engineers
(IEEE), 2022.

[38] J. W. Simpson-Porco, F. Dörfler, F. Bullo, Voltage stabilization
in microgrids via quadratic droop control, IEEE Transactions
on Automatic Control 62 (3) (2016) 1239–1253.

[39] F. Blanchini, Set invariance in control, Automatica 35 (11)
(1999) 1747–1767. doi:10.1016/S0005-1098(99)00113-2.

[40] L. Grüne, J. Pannek, Nonlinear model predictive control, in:
Nonlinear model predictive control, Springer, 2017, pp. 45–69.

[41] M. Lazar, M. Tetteroo, Computation of terminal costs and sets
for discrete–time nonlinear mpc, IFAC-PapersOnLine 51 (20)
(2018) 141–146.

[42] A. Isidori, E. Sontag, M. Thoma, Nonlinear control systems,
Vol. 3, Springer, 1995.

[43] Y. Nie, O. Faqir, E. C. Kerrigan, Iclocs2: Try this optimal
control problem solver before you try the rest, in: 2018 UKACC
12th international conference on control (CONTROL), IEEE,
2018, pp. 336–336.

Grigoris Michos is a Ph.D student in the De-
partment of Automatic Control and Systems
Engineering, University of Sheffield, UK. He
received his BSc in Automation Engineering
from the West Attica University, Greece in
2017 and his MSc in Advanced Control and
Systems Engineering from the Department
of Automatic Control and Systems Engineer-
ing, University of Sheffield, UK in 2019. His
research interests include nonlinear system
analysis and control, robust and distributed

optimisation-based methods and smart grid applications.

Pablo R. Baldivieso-Monasterios is a post-
doctoral research associate in the Department
of Automatic Control and Systems Engineer-
ing, University of Sheffield, UK. He received
a Ph.D in robust distributed model predictive
control from the University of Sheffield, UK in
2018. His research interests include robust and
distributed model predictive and optimisation-
based control, and game theoretic methods for
control and smartgrids.

George C. Konstantopoulos (Member, IEEE)
received his Dipl.Eng. and Ph.D. degrees in
electrical and computer engineering from the
Department of Electrical and Computer Engi-
neering, University of Patras, Rion, Greece,
in 2008 and 2012, respectively. From 2011
to 2012, he was an Electrical Engineer with
the Public Power Corporation of Greece. In
2013, he joined the Department of Automatic
Control and Systems Engineering, The Uni-
versity of Sheffield, U.K., where he held the

positions of Research Associate, Research Fellow, Lecturer and Senior
Lecturer. Since 2019, he has been with the Department of Electrical
and Computer Engineering, University of Patras, Greece, as an
Associate Professor. He has been an EPSRC UKRI Innovation
Fellow in the priority area of cheap and clean energy technologies
and he currently serves as an Associate Editor of the IET Smart
Grid Journal and the International Journal of Systems Science. His
research interests include nonlinear modeling, control and stability
analysis of power converters in microgrid and smart grid applications,
renewable energy systems and electrical drives. Dr. Konstantopoulos
is a Member of the National Technical Chamber of Greece

Paul Trodden received the MEng degree in En-
gineering Science from the University of Ox-
ford in 2003 and the PhD degree in Aerospace
Engineering from the University of Bristol in
2009. He subsequently held a PDRA positions
in the Department of Aerospace Engineer-
ing, University of Bristol (200910) and the
School of Mathematics, University of Edin-
burgh (201012). Since 2012, he has been a
Lecturer and then Senior Lecturer with the
Department of Automatic Control and Sys-

tems Engineering, University of Sheffield. His research interests
include model predictive and optimization-based control, especially
distributed and robust forms, and applications of control and opti-
mization to aerospace and power & energy systems. He is a member
of the IEEE CSS Conference Editorial Board and an Associate Editor
for IET Smart Grid.


