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A Partially Distributed Fixed-Time Economic

Dispatch Algorithm with Kron’s Modeled Power

Transmission Losses
Shivanshu Tripathi, Anoop Jain, and Abhisek K. Behera

Abstract—A partially distributed economic dispatch algorithm,
which renders optimal value in fixed time with the objective of
supplying the load requirement as well as the power transmission
losses, is proposed in this paper. The transmission losses are mod-
eled using Kron’s B−loss formula, under a standard assumption
on the values of B−coefficients. The total power supplied by the
generators is subjected to time-varying equality constraints due
to time-varying nature of the transmission losses. Using Lyapunov
and optimization theory, we rigorously prove the convergence of
the proposed algorithm and show that the optimal value of power
is reached within a fixed-time, whose upper bound dependents
on the values of B−coefficients, parameters characterizing the
convexity of the cost functions associated with each generator
and the interaction topology among them. Finally, an example is
simulated to illustrate the theoretical results.

Index Terms—Fixed-time convergence, distributed control, eco-
nomic dispatch, B-loss coefficients, transmission loss.

I. INTRODUCTION

A. Motivation and Literature Survey

The economic dispatch problem (EDP) has been a cele-

brated problem in the optimal operation and management of

power systems. With the rapid integration of renewable energy

sources in the microgrid, solving EDP becomes a challenging

task due to the scalability of the power network. To en-

counter such systems with increased robustness, reliability, and

efficiency, the centralized power generation infrastructure is

slowly moving towards a distributed one [1]. The primary goal

of EDP in a distributed infrastructure is to seek the minimum

value of a collective cost function defined over a network

of generators. This led to the requirement of an algorithm

that works with renewable energy resources in a distributed

manner. In this direction, there exist several approaches in the

existing literature; for instance, [2, 3] discussed consensus-

based algorithms; [4] described a distributed gradient-based

algorithm; [5] studied initialization-free privacy-guaranteed

distributed algorithm; [6] presented a gossip-based distributed

algorithm; an adaptive event-triggered distributed algorithm is

considered in [6] etc.

One of the main concerns in designing a distributed algo-

rithm is that it must ensure a faster convergence rate, as the

power output changes frequently due to the continuous use

of distributed generation systems and dynamic pricing [7].
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Addressing these facts, the efforts in existing literature have

been towards developing algorithms with finite or fixed-time

convergence based on [8, 9]. For example, [10] proposes a

distributed finite time algorithm which can address the EDP

in the smart grid with/without power generation constraints;

[11] presents a distributed continuous-time algorithm to solve

a convex optimization problem with equality constraint, which

reaches the optimal value in fixed time; [12] extends these

results by proposing a new lemma which guarantees finite-time

convergence with a tighter upper bound on the convergence

time; [13] discusses user-specified fixed-time consensus-based

algorithm to solve EDP with time-varying topology.

In addition to supplying the load demand, it is equally

important that the distributed algorithm must satisfy the

constraints posed by the time-varying power transmission

losses [14]. Existing works in this direction primarily consider

a simplified model for the transmission losses and discuss

asymptotic or exponential convergence to the optimal solu-

tion [15–20]. Further, [10–13] do not address the aspect of

transmission losses. Unlike these works, in this paper, we

propose an algorithm that accounts for Kron’s modeled power

transmission losses and reaches the optimal solution of the

EDP in a fixed time.

B. Contributions

Aggregation of the Kron’s modeled power transmission

losses, by nature, poses an additional requirement of globally

sharing the generated power information among the genera-

tors. Addressing this fact, the proposed algorithm in the paper

considers that the generators have a two-layered communica-

tion topology−the generated power is shared globally in order

to obtain the total power transmission losses, while the cost

function and other auxiliary variables are shared locally. Such

multi-layered topological considerations are motivated from

many works [21–23] in this direction in the context of multi-

agent systems, deployed for various collaborative missions.

Further, our analysis is based on certain assumptions relying

on an interplay between the eigenvalues of the matrix B, and

parameters characterizing the convexity of the cost functions

associated with each generator. The main contributions of this

work can be summarized as follows:

i) We propose a novel consensus-based partially distributed

algorithm, which solves the EDP in the presence of power

transmission losses characterized by the Kron’s B-loss

formula [24].
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ii) Using tools from Lyapunov stability and optimization

theory, we rigorously show that the optimal solution

of the EDP is rendered in a fixed time. An analytical

expression of the upper bound on the convergence time is

obtained, which is independent of initial values of power

and dependent on the eigenvalues of the Kron’s B−loss

matrix, the convexity of the cost function associated with

each generator and network topology among them.

C. Paper Structure

The paper unfolds as follows: Section II describes Kron’s

transmission loss formula, formulates the problem, and

presents some preliminary results on finite-time stability.

Section III derives a few introductory results, describes the

proposed algorithm, and obtain an upper bound on the con-

vergence time. Theoretical results are illustrated through a sim-

ulation example in Section IV. Finally, Section V concludes

the paper and presents future directions of the work.

Notations: Throughout the paper, R and R+ denote the

set of real and non-negative real numbers, respectively. For

any x ∈ R, we define function sigµ : R → R as sigµ(x) =
|x|µsign(x), µ > 0, where sign(x) is the signum function of

x. The Hadamard product (or element-wise product) of two

matrices X and Y of the same dimension m × n is defined

as [(X ⊙ Y )ij ] := [Xij ][Yij ]. Let ψ = [ψ1, . . . , ψN ]T ∈ R
N ,

then diag{ψ} denotes the diagonal matrix with the entries of ψ
along its principal diagonal. ∇f(•) and ∇2f(•) represent the

gradient and Hessian of the function f : Rn → R with respect

to its argument •, respectively. The Jacobian of a function

g : Rn → R
m is defined to be an m×n matrix whose (i, j)th

entry is Jij = ∂gi/∂xj . We represent by 111N = [1, . . . , 1]T ∈
R

N and 000N = [0, . . . , 0]T ∈ R
N , respectively. IN denotes

the identity matrix of order N ×N . We use symbols �,� to

represent element-wise comparison between two matrices of

the same size.

An undirected graph G = (V , E ,A) is a collection of node

set V = {1, . . . , N}, the edge set E ⊆ V×V , along with edge

weights captured by the adjacency matrix A = [aij ] ∈ R
N×N

with aij = aji > 0 if (i, j) ∈ E , and aij = 0 otherwise.

The Laplacian of G is defined as L = [ℓij ] ∈ R
N×N with

ℓii =
∑

j∈Ni
aij and ℓij = −aij , ∀i 6= j, where Ni is

the set of neighboring vertices of vertex i. For an undirected

and connected graph, 0 is a simple eigenvalue of L with the

corresponding eigenvector 111N , and all the other eigenvalues

are positive.

II. KRON’S FORMULA, PROBLEM DESCRIPTION, AND

PRELIMINARY RESULTS

This section reviews the Kron’s B−loss formula for power

transmission losses, formulates the problem in this paper, and

discuss some preliminary results.

A. Transmission Losses

Transmission losses in a power system network are often

evaluated using Kron’s approximated loss Formula. An expres-

sion for transmission losses in terms of source loading and a

set of loss coefficients (usually referred to as B−coefficients)

is of the quadratic form:

PL =

N
∑

i=1

N
∑

j=1

PiBijPj +

N
∑

i=1

PiBi0 + B00, (1)

where Bij , Bi0 and B00 are constant B−loss coefficients and

can be evaluated using methods as discussed in [24, 25].

Further, Pi and Pj are the power outputs of generators i
and j in megawatts, respectively. The expression (1) can be

compactly re-written as PL =
∑N

i=1 PLi, where,

PLi =
N
∑

j=1

PiBijPj + PiBi0 + B00i , (2)

is the power transmission loss associated with the ith generator

and B00 =
∑N

i=1 B00i .

B. Problem Formulation

Consider a network comprising N generators in a grid and

the cost function of individual generators is given as Ci(Pi).
The main objective here is to cooperatively minimize the total

cost, that is, the sum of all individual local objective functions

Ci(Pi), while maintaining an equality constraint, defined in

terms of the load demand and power transmission losses PL.

Let D and PT be the total load demand, and total power

supplied by the system of generators, respectively. With this

description, the economic dispatch problem can be formulated

as:

Min C(P ) =

N
∑

i=1

Ci(Pi) (3a)

subject to

N
∑

i=1

Pi = D + PL =

N
∑

i=1

Di +

N
∑

i=1

PLi

=

N
∑

i=1

Di0 +

N
∑

i=1

PLi
= PT ,

(3b)

where Di0 is the initial value of the time-varying load

demand Di correspond to the ith generator-load pair. It is

assumed that the load demand is constant at all time, that is,
∑N

i=1Di =
∑N

i=1Di0 for all t ≥ 0, which is often a standard

assumption in power system networks [11]. It is worth noting

that inclusion of power transmission losses PL does not result

in trivially regularizing the overall cost function (3a), instead,

it affects the equality constraints (3b) of the optimization

problem (3) and makes it challenging. Unless otherwise stated,

Pi ≥ 0, ∀i in our analysis, as the generated power can not be

negative.

C. Some Preliminary Results

Below we describe some useful results that will be helpful

in the sequel.

Lemma 1 ([9]). Consider the dynamical system ẋ = f(x(t)),
where x ∈ R

n, f : RN → R
N is a continuous function with

f(000N ) = 000N . Assume that the origin is the equilibrium point



of the system. If there exist a continuous radially unbounded

Lyapunov function V : RN → R+ ∪ {0} such that V (x) =
0 ⇔ x = 0 and any solution of x(t) of the system satisfies the

inequality V̇ (x(t)) ≤ −(αV p(x(t)) + βV q(x(t)))k for some

α, β, p, q, k > 0; pk < 1, qk > 1, then the origin of the system

is globally fixed-time stable, and the following estimates of the

settling time holds:

Ts ≤
1

αk(1− pk)
+

1

βk(qk − 1)
. (4)

Lemma 2 ([26]). Let ζi ≥ 0 for i = {1, . . . , N}. Then

N
∑

i=1

ζmi ≥

(

N
∑

i=1

ζi

)m

, if 0 < m ≤ 1, (5a)

N
∑

i=1

ζmi ≥ N (1−m)

(

N
∑

i=1

ζi

)m

, if 1 < m <∞. (5b)

III. MAIN RESULTS

This section presents our main results by proposing an

algorithm to solve the optimization problem (3a) with equality

constraints (3b) in the presence of transmission losses (1). The

proposed algorithm is as follows:


























































































λi =
∂Ci(Pi)

∂Pi

Hi =

(

1 +
∂PLi

∂Pi

)

żi = −k1 sig





∑

j∈Ni

aij (Hjλj −Hiλi)





µ

− k2 sig





∑

j∈Ni

aij (Hjλj −Hiλi)





ν

Pi =
∑

j∈Ni

aij(zj − zi) +Di0 + PLi,

(6)

where k1, k2, µ and ν are constants such that they satisfy

conditions 0 < µ < 1 and ν > 1; Hi, zi and λi are

intermediate variables. Unlike [10, 11], the algorithm (6) also

accounts for transmission losses PL by assimilation of an

additional term Hi, which further influences the dynamics żi
of the auxiliary variable zi. Later, we also discuss through

simulations that proposed consensus dynamics of auxiliary

variables zi can handle a special class of bounded disturbances.

Remark 1. As will be shown in below Lemma 3, the com-

putation of term ∂PLi
/∂Pi in algorithm (6) requires the

information of power generated by all the generators. Thereby,

the implementation of (6) requires global topology for ob-

taining Hi, and local topology for sharing the information

about the cost function λi and the auxiliary variables zi for

each i. This is the reason we call it a partially distributed

consensus algorithm. Although the problem can be solved in

a completed distributed way by considering only a single local

network for the simplified Korn’s modeled transmission losses

PL =
∑N

i=1 BiP
2
i as discussed in [15, 18], however, this

would be a special case of the problem addressed in our paper.

Before proceeding further, we incorporate the following

assumptions in our analysis:

Assumption 1 (Network topology). The generators have a

two-layered network topology − the information (only) about

generated powers is shared globally among them, and the

information about their cost function and other auxiliary

variables is shared locally, according to an undirected and

connected topology.

Assumption 2 (Cost function). For i = {1, . . . , N}, the

cost function Ci(Pi) is a strongly convex function such that

∇2Ci(Pi) ≥ σ > 0 for constant σ ∈ R+. Further, there exists

a δ ∈ R \ {0} such that ∇Ci(Pi) ≥ δ, ∀i.

Assumption 3 (B−loss coefficients). The kron’s B−loss

coefficient matrix B = [Bij ], ∀i, j = {1, . . . , N} in (1) is

symmetrical with all its elements Bij ≥ 0 such that

(A1) 0 ≤ ∂PLi
/∂Pi < 1, ∀i = {1, . . . , N}.

(A2) Let b1 ≤ b2 ≤ · · · ≤ bN be the eigenvalues of B. Denote

by ρ = mini{Bi0}. Then, the parameters σ, δ and ρ are

such that they satisfy: (1 + ρ)σ+ b1δ > 0, if δ > 0, and

(1 + ρ)σ + bNδ > 0, if δ < 0.

Remark 2. It is to be noted that Assumption (A1) is common

for practical power system networks (for instance, please

refer to [25, 27–29]). This is due to the fact that the values

of B-loss coefficients are usually very small such that total

transmission losses PL are negligible compared to the value

of total load demand D. Following this, one can write from

(3b) that
∑N

i=1 Pi ≈
∑N

i=1Di0 = D̄ (say) for small values of

B-coefficient. This implies that Pi ≤ D̄ for each i. According

to Assumption (A1), it follows from (2) that the inequality

∂PLi
/∂Pi =

∑N
j=1,j 6=i BijPj + 2BiiPi + Bi0 < 1 must hold

true for all t ≥ 0. For the given D̄, this can be assured only

if the B−coefficients are such that
∑N

j=1,j 6=i Bij + 2Bii +

Bi0D̄
−1 < D̄−1 for each i. In fact, the term ∂PLi

/∂Pi can be

obtained from the well known notion of penalty factor, defined

by 1/(1− (∂PLi
/∂Pi)) in the literature [27–29], and justifies

our assumption. Obviously, ∂PL/∂Pi ≥ 0, as Pi ≥ 0 for all

i and t ≥ 0.

We now discuss the following lemmas before stating the

main result.

Lemma 3. Under Assumption 3, the following relation holds:

∂PLi

∂Pi

=
1

2

∂PL

∂Pi

+ BiiPi +
Bi0

2
, ∀i. (7)

Proof. Differentiating (1) and (2) with respect to Pi, we have

∂PL

∂Pi

= 2

N
∑

j=1,j 6=i

BijPj + 2BiiPi + Bi0, (8)

∂PLi

∂Pi

=
N
∑

j=1,j 6=i

BijPj + 2BiiPi + Bi0, (9)

which leads to required result, as [Bij ] = [Bji], ∀i, j.



Lemma 4. Let P = [P1, . . . , PN ]T be the vector of all gen-

erator bus net outputs. Define F = ∇PL(P )⊙∇C(P ),M =
∇R(P )⊙∇C(P ), and Q = ∇2C(P )+0.5∇F+∇M, where,

∇R(P ) =

[(

B11P1 +
B10

2

)

, . . . ,

(

BNNPN +
BN0

2

)]T

.

Further, let S be an N × N matrix with diagonal entries

[Sii] = (1 + Bi0)σ + 2Biiδ and off-diagonal entries [Sij ] =
Bijδ. Under Assumptions 2 and 3, the following properties

hold:

(R1) [∇Fii] ≥ 2Biiδ + Bi0σ and [∇Fij ] ≥ 2Bijδ.

(R2) ∇M is a diagonal matrix with [∇Mii] ≥
(

Biiδ +
Bi0

2 σ
)

.

(R3) [Qii] ≥ σ + 2Biiδ + Bi0σ and [Qij ] ≥ Bijδ.

(R4) S is a symmetric matrix satisfying S 4 Q.

(R5) Let τ1 ≤ τ2 ≤ · · · ≤ τN be the eigenvalues of S. Then,

b1δ ≤ τi − σ(1 + Bi0) ≤ bNδ, if δ > 0; and bNδ ≤
τi − σ(1 + Bi0) ≤ b1δ, if δ < 0, for each i, where b1
and bN are the smallest and largest eigenvalues of B, as

defined in Assumption (A2).

Please refer to Appendix for the proof. We are now ready

to state the main result:

Theorem 1. The algorithm (6), under the Assumptions 1, 2

and 3, solves the economic load dispatch problem (3) in a

fixed time.

Proof. The sum of power supplied by each generator at any

time instant satisfies

N
∑

i=1

Pi =

N
∑

i=1





∑

j∈Ni

aij(zj − zi) +Di0 + PLi





=

N
∑

i=1

Di0 +

N
∑

i=1

PLi
= PT , (10)

as
∑N

i=1

∑

j∈Nj
aij(zj − zi) = 0 for an undirected and

connected graph with aij = aji. Clearly, (10) satisfies the

desired equality constraint (3a). Substituting for Pi from

(6), the optimization problem (3a) can be represented as the

following unconstrained optimization problem:

Min C(z) =

N
∑

i=1

Ci





∑

j∈Ni

aij(zj − zi) +Di0 + PLi



.

(11)

From (6), the derivative of Pi with respect to zj is obtained

as:

∂Pi

∂zj
=

{

−
∑N

j=1 aij +
∂PLi

∂zj
if j = i

aij +
∂PLi

∂zj
if j 6= i

(12)

=

{

−
∑N

j=1 aij +
∂PLi

∂Pi

∂Pi

∂zj
if j = i

aij +
∂PLi

∂Pi

∂Pi

∂zj
if j 6= i.

(13)

Once again using (12) in (13) for ∂Pi

∂zj
, we have

∂Pi

∂zj
=















−
∑N

j=1 aij +
∂PLi

∂Pi

×
[

−
∑N

j=1 aij +
∂PLi

∂Pi

∂Pi

∂zj

]

if j = i

aij +
∂PLi

∂Pi

[

aij +
∂PLi

∂Pi

∂Pi

∂zj

]

if j 6= i.

(14)

Continuing the substitution in each step, an infinite series is

formed for ∂Pi/∂zj , as below:

∂Pi

∂zj
=



















−
∑N

j=1 aij −
∑N

j=1 aij
∂PLi

∂Pi
−

∑N
j=1 aij

(

∂PLi

∂Pi

)2

− · · · j = i

aij + aij
∂PLi

∂Pi
+ aij

(

∂PLi

∂Pi

)2

+ · · · j 6= i.

(15)

Following Assumption (A1), the higher order terms are ne-

glected to get:

∂Pi

∂zj
=







−
∑N

j=1 aij

(

1 + ∂PLi

∂Pi

)

if j = i

aij

(

1 + ∂PLi

∂Pi

)

if j 6= i,
(16)

which on substitution for ∂PLi/∂Pi from Lemma 3 results in

∂Pi

∂zj
=











−
N
∑

j=1

aij

(

1 + 1
2
∂PL

∂Pi
+ BiiPi +

Bi0

2

)

if j = i

aij

(

1 + 1
2
∂PL

∂Pi
+ BiiPi +

Bi0

2

)

if j 6= i.

(17)

Similarly, it can be written from (6) about the cost function

that:

∂Ci

∂zj
=
∂Ci

∂Pi

∂Pi

∂zj

=











−
N
∑

j=1

aij

(

1 + 1
2
∂PL

∂Pi
+ BiiPi +

Bi0

2

)

λi if j = i

aij

(

1 + 1
2
∂PL

∂Pi
+ BiiPi +

Bi0

2

)

λi if j 6= i.

(18)

Note that the gradient of PL is ∇PL(P ) =
[

∂PL

∂P1
, . . . , ∂PL

∂PN

]T

,

using which, (17) can be expressed in the form of Jacobian as

JP =
∂(P1, . . . , PN )

∂(z1, . . . , zN )

= −(IN + 0.5 diag{∇PL(P )}+ diag{∇R(P )})L,
(19)

where ∇R(P ) is defined in Lemma 4 and L is the Laplacian

of the underlying topology. Further, the gradient of C(z), using

(18), is given by

∇C(z) = −L

[(

IN + 0.5 diag{∇PL(P )}

+ diag{∇R(P )}

)

∇C(P )

]

.

(20)

We emphasize here that Jp is N ×N matrix, while ∇C(z) is

an N×1 vector, as ∇C(P ) =
[

∂C1

∂P1
, . . . , ∂CN

∂PN

]T

. The Hessian

of (20) satisfies,

∇2C(z) = −L∇

[(

IN + 0.5 diag(∇PL(P ))

+ diag(∇R(P ))

)

∇C(P )

]

JP ,

(21)



which, further simplifying the term inside the square bracket

and using (19), yields

∇2C(z) = L

[

∇2C(P ) + 0.5 ∇(∇PL(P )⊙∇C(P ))

+∇(∇R(P ) ⊙∇C(P ))

]

×

(IN + 0.5 diag{∇PL(P )} + diag{∇R(P )})L.
(22)

From Lemma 4, please note that ∇PL(P )⊙∇C(P ) = F and

∇R(P )⊙∇C(P ) = M, which implies that

∇2C(z) = L(∇2C(P ) + 0.5 ∇F +∇M)

× (IN + 0.5 diag{∇PL(P )} + diag{∇R(P )})L.
(23)

Let the optimal solution of convex optimization problem (11)

be given as z∗ = [z⋆1 , . . . , z
⋆
N ]. The trivial solution is given by

z∗ ∈ β111N , where constant β ∈ R. The focus of our analysis is

on non-trivial case where solutions belong to the convex and

compact set Z ⊂ R
N \ β111N . For any z, ξ ∈ Z , it follows for

the strongly convex functions from [30] that,

C(z) = C(ξ) +∇TC(ξ)(z − ξ) +
1

2
(z − ξ)T∇2C(ẑ)(z − ξ),

(24)

where ẑ = ξ + η(z − ξ) with η ∈ [0, 1]. Replacing z, ξ by

z⋆, z, respectively, (24) becomes

C(z⋆) = C(z)+∇TC(z)(z⋆−z)+
1

2
(z⋆−z)T∇2C(z̃)(z∗−z),

(25)

where z̃ = z + η(z⋆ − z) with η ∈ [0, 1]. Rearranging (25) as

C(z)−C(z⋆) = ∇TC(z)(z−z⋆)−
1

2
(z⋆−z)T∇2C(z̃)(z⋆−z),

and using Assumption 2, it holds that

C(z)− C(z⋆) ≤ ∇TC(z)(z − z⋆). (26)

Let φ1, φ2, · · · , φN be the eigenvalues of Laplacian L such

that 0 = φ1 ≤ φ2 ≤ . . . ≤ φN with corresponding orthogonal

eigenvectors 111N , v2, . . . , vN , where ||vi||= 1, i = 2, . . . , N .

The vector z − z⋆ can be expressed as

z − z⋆ = κ1111N + κ2v2 + . . .+ κNvN , (27)

where κi, i = {1, . . . , N} are constants. Using (27), (26)

becomes

C(z)− C(z⋆) ≤ ∇TC(z)(κ1111N + v), (28)

where v = κ2v2+. . .+κNvn. Note that ||v||2= κ22+. . .+κ
2
N .

From (20) and (28), it follows that

C(z)− C(z⋆) ≤ −κ1 [(IN + diag{∇PL(P )})∇C(P )]
T L111N

+∇TC(z)v

= ∇TC(z)v ≤ ||∇TC(z)||||v||, (29)

as L = LT and L111N = 000N for an undirected and connected

graph. Now, substituting ξ = z⋆ in (24) and noting that

∇C(z⋆) = 000N , we have

C(z)− C(z⋆) = 0.5(z − z⋆)T∇2C(ẑ)(z − z⋆), (30)

which, upon substitution from (23), gives

C(z)− C(z∗) = 0.5(L(z − z⋆))T (∇2C(P ) + 0.5 ∇F +∇M)

× (IN + 0.5 diag{∇PL(P )} + diag{∇R(P )})(L(z − z⋆)).
(31)

According to Assumption 3, and Lemmas 3 and 4, it is clear

that 1 + 0.5 ∇PL(Pi) + ∇R(Pi) = 1 +
∑N

j=1,j 6=i BijPj +
2BiiPi + Bi0 ≥ (1 + Bi0) ≥ (1 + ρ) for each i, where

ρ = mini{Bi0}. This implies that the diagonal matrix

IN + 0.5 diag{∇PL(P )} + diag{∇R(P )} � (1 + ρ)IN .

Consequently, it holds from (31) that,

C(z)− C(z∗) ≥ 0.5(1 + ρ)(L(z − z⋆))T

× (∇2C(P ) + 0.5 ∇F +∇M)(L(z − z⋆))

= 0.5(1 + ρ)(L(z − z⋆))TQ(L(z − z⋆)),
(32)

where Q = ∇2C(P )+0.5∇F+∇M, according to Lemma 4.

Further, one can write using result (R4) from Lemma 4 that:

C(z)− C(z∗) ≥ 0.5(1 + ρ)(L(z − z⋆))TS(L(z − z⋆)),
(33)

where S is a symmetric matrix with eigenvalues τ1 ≤ τ2 ≤
· · · ≤ τN , as per Lemma 4. Using Courant-Fischer theorem

[[31], Chapter 4, pg. 236] for the symmetric matrix S, it holds

for z ∈ Z that

C(z)− C(z∗) ≥ 0.5(1 + ρ)τ1(L(z − z⋆))T (L(z − z⋆))

≥ 0.5(1 + ρ)τ1(κ2φ2v2 + κ3φ3v3 + · · ·+ κNφNvN )T

× (κ2φ2v2 + κ3φ3v3 + · · ·+ κNφNvN )

= 0.5(1 + ρ)τ1(κ2
2φ2

2 + κ3
2φ3

2 + · · ·+ κN
2φN

2)

≥ 0.5(1 + ρ)τ1φ
2
2||v||

2, (34)

using (27). Now, it follows from (29) and (34) that

||∇TC(z)||2||v||2 ≥ 0.5(1 + ρ)τ1φ
2
2||v||

2(C(z)− C(z⋆))

=⇒ ||∇TC(z)||2 ≥ 0.5(1 + ρ)τ1φ
2
2(C(z)− C(z∗)), (35)

as ||v||6= 0 for non-trivial optimal solution. It is worth noticing

that τi > 0, ∀i, under Assumption (A2). This follows from

the fact (R5) in Lemma 4 that τi ≥ (1 + Bi0)σ + b1δ ≥
(1 + ρ)σ + b1δ > 0 if δ > 0; and τi ≥ (1 + Bi0)σ + bNδ ≥
(1 + ρ)σ + bNδ > 0 if δ < 0, as per Assumption (A2).

Next, we consider the candidate Lyapunov function

V = 0.5(C(z)− C(z⋆))2, (36)

whose time derivative is

V̇ = (C(z)− C(z⋆))∇TC(z)ż. (37)

Using (6) and (18), it yields that

żi = −k1 sig





∂Ci

∂zi
+

N
∑

j=1,j 6=i

∂Ci

∂zi





µ

− k2 sig





∂Ci

∂zi
+

N
∑

j=1,j 6=i

∂Ci

∂zi





ν

= −k1 sig

(

∂C

∂zi

)µ

− k2 sig

(

∂C

∂zi

)ν

, ∀i. (38)



It can be rewritten in vector notations that

ż = −k1 sig (∇C(z))
µ − k2 sig (∇C(z))

ν ,

which on substitution in (37), yields

V̇ = (C(z)−C(z⋆))∇TC(z)(−k1 sig (∇C(z))
µ−k2 sig (∇C(z))

ν).

Note that [11]

∇TC(z) sig (∇C(z))µ =

N
∑

i=1

∣

∣

∣

∣

∂C

∂zi

∣

∣

∣

∣

(µ+1)

=

N
∑

i=1

(

∂C

∂zi

)2 (µ+1)
2

∇TC(z) sig (∇C(z))ν =

N
∑

i=1

∣

∣

∣

∣

∂C

∂zi

∣

∣

∣

∣

(ν+1)

=

N
∑

i=1

(

∂C

∂zi

)2 (ν+1)
2

.

Using these relations, we have

V̇ = (C(z)− C(z⋆))×
[

− k1

N
∑

i=1

(

∂C

∂zi

)2 (µ+1)
2

− k2

N
∑

i=1

(

∂C

∂zi

)2 (ν+1)
2
]

. (39)

From Lemma 2,

N
∑

i=1

(

∂C

∂zi

)2( 1+µ

2 )
≥

(

N
∑

i=1

(

∂C

∂zi

)2
)

1+µ

2

N
∑

i=1

(

∂C

∂zi

)2( 1+ν
2 )

≥ N
1−ν
2

(

N
∑

i=1

(

∂C

∂zi

)2
)

1+ν
2

,

implying that

V̇ ≤− k1(C(z)− C(z⋆))

(

N
∑

i=1

(

∂C

∂zi

)2
)

1+µ

2

− k2(C(z)− C(z∗))N
1−ν
2

(

N
∑

i=1

(

∂C

∂zi

)2
)

1+ν
2

≤− k1(C(z)− C(z∗))(||∇C(z)||2)
1+µ

2

− k2(C(z)− C(z∗))N
1−ν
2 (||∇C(z)||2)

1+ν
2 .

Using (35) and (36), we have

V̇ ≤ −k1(C(z)− C(z⋆))[0.5(1 + ρ)τ1φ
2
2(C(z)− C(z⋆))]

1+µ

2

− k2N
1−ν
2 (C(z)− C(z∗))[0.5(1 + ρ)τ1φ

2
2(C(z)− C(z⋆))]

1+ν
2

≤ −k1(0.5(1 + ρ)τ1φ
2
2)

1+µ

2 2
3+µ

4 (V )
3+µ

4

− k2N
1−ν
2 (0.5(1 + ρ)τ1φ

2
2)

1+ν
2 2

3+ν
4 (V )

3+ν
4

≤ −k1((1 + ρ)τ1φ
2
2)

1+µ

2 2
1−µ

4 (V )
3+µ

4

− k2N
1−ν
2 ((1 + ρ)τ1φ

2
2)

1+ν
2 2

1−ν
4 (V )

3+ν
4 .

Following Lemma 1, it can be concluded that V̇ ≤ −(αV p +

βV q) with k = 1, α = k1((1 + ρ)τ1φ
2
2)

1+µ

2 2
1−µ

4 , β =

k2N
1−ν
2 ((1 + ρ)τ1φ

2
2)

1+ν
2 2

1−ν
4 , and 0 < p = 3+µ

4 < 1, q =
3+ν
4 > 1, and hence, the settling time is bounded by

Ts ≤
4

k1((1 + ρ)τ1φ22)
1+µ

2 2
1−µ

4 (1 − µ)

+
4

k2N
1−ν
2 ((1 + ρ)τ1φ22)

1+ν
2 2

1−ν
4 (ν − 1)

. (40)

G1

G1

G2

G2

G3

G3

G4

G4

Global Network

Local Network

Load Network

Transmission Line

Fig. 1. Generator-load configuration with a two-layered interaction topology.
Global network is used for sharing the generated power, while the local
network for cost function and auxiliary variable in algorithm (6).

TABLE I
GENERATOR COST PARAMETERS.

Bus ai($/h) bi($/MWh) ci($/MW2h)

G1 53 1.21 0.094

G2 34 3.47 0.082

G3 45 2.24 0.086

G4 78 2.55 0.105

This implies that V → 0 as t → Ts, and hence it follows

from (30) and (36) that z = z⋆ as t ≥ Ts. This concludes the

proof.

Remark 3. Note that the right-side of the inequality (40) is

well-defined as τ1 > 0, under Assumption (A2). According to

Lemma 4, since τ1 depends upon the eigenvalues of matrix B,

coefficients Bi0, and the constants σ, δ associated with the cost

functions Ci, the settling time Ts shows a dependence on these

parameters, and network topology because of the occurrence

of φ2 (the second smallest eigenvalue of the Laplacian L
associated with the local network). In fact, the inequality (40)

provides an estimate of the upper bound for the convergence

time. Its value is robust to the changes in the initial conditions

and power transmission losses. The actual convergence time

may be much less than this estimated value.

IV. SIMULATION EXAMPLE

Consider a power system network of four generators com-

prising a two-layered interaction topology, as shown in Fig. 1.

The generators share power outputs globally and the other aux-

iliary variables in algorithm (6) are shared locally. The power

generation cost associated with each generator is characterized

by the quadratic function Ci(Pi) = ciP
2
i + biPi + ai, where

ai, bi, ci are the cost coefficients. The economic dispatch prob-

lem can be described as: Min C(P ) =
∑4

i=1 ciP
2
i +biPi+ai,

subject to
∑4

i=1 Pi = D + PL. The values of ai, bi, ci are

given in Table (I). Clearly, σ = 2mini{ci} = 0.164 and

δ = mini{bi} = 1.21. Let the total load demand be D = 600
MW. The initial power supplied by the generators are given

by P1(0) = 170 MW, P2(0) = 110 MW, P3(0) = 140 MW,
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Fig. 2. Evolution of generated power, transmission losses and total power during 0− 200 sec. Clearly, the power supplied by generator network is equal to
the sum of load demand and power transmission losses at each instant of time.

P4(0) = 180 MW. The power transmission losses (1) are

obtained by setting the B−loss coefficients as:

B =









0.1200 0.0286 0.0481 0.0321
0.0286 0.1341 0.0511 0.1251
0.0481 0.0511 0.1539 0.1463
0.0321 0.1251 0.1463 0.1612









× 10−3,

which is symmetric with all positive entries and B0 =
[2.0, 1.0, 2.5, 1.5]T × 10−3;B00 = 4. It can be easily verified

that the condition in Remark 2 holds for the given load demand

D = 600 MW, and the chosen B−coefficients.

• The algorithm (6) is simulated with control parameters

as k1 = k2 = 5, and µ = 0.5, ν = 2. The optimal power

supplied by the generators are obtained as P ∗
1 = 161.4

MW, P ∗
2 = 171.3 MW, P ∗

3 = 170.4 MW and P ∗
4 = 138.1

MW, as shown in Fig. 2 (a). The total power supplied is

PT = 641.2 MW, meeting the load demand D = 600
MW and the power transmission losses 41.2 MW at

the optimal solution (see Figs. 2(b) and 2(c)). One can

observe from Fig. 2 that the demand and transmission

losses are supplied by the generators at every instant

of time. The optimal cost is plotted in Fig. 3, and is

evaluated to be $11093.

• We verify the convergence time in these plots by evalu-

ating the settling time Ts in (40). For the given values

of σ, δ and B−coefficients, the matrix S in Lemma 4 is

obtained as (considering each entry with four significant

decimal places):

S =









0.1646 0.0000 0.0001 0.0000
0.0000 0.1645 0.0001 0.0002
0.0001 0.0001 0.1648 0.0002
0.0000 0.0002 0.0002 0.1646









.

The minimum eigenvalues of B and S are b1 =
−0.0161× 10−3 and τ1 = 0.1644, respectively. Further,

ρ = mini{Bi0} = 1.0 × 10−3 and the value of φ2 =
0.5858. It can be easily verified that (1 + ρ)σ + b1δ =
(1 + 1.0× 10−3)× 0.164+ (−0.0161× 10−3)× 1.21 =
0.1641 > 0, satisfying the Assumption (A2). Using the

above values, the settling time is obtained as Ts = 154.47
sec, which supports our simulation results in Figs. 2 and

3.
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Fig. 3. Evolution of
∑

N

i=1
Ci(Pi) during 0–200 s.

• Furthermore, we have observed through simulations that

the dynamics żi is robust to the additive bounded

disturbances with zero mean. That is, for any uni-

formly bounded zero-mean signal wi : R+ → R for

each i, żi = −k1 sig[
∑

j∈Ni
aij(Hjλj − Hiλi)]

µ −
k2 sig[

∑

j∈Ni
aij(Hjλj −Hiλi)]

ν +wi has no effect on

the solution of algorithm (6).

V. CONCLUSION

In this paper, we investigated the EDP with Kron’s modeled

power transmission losses, under a few assumptions on the

B−loss coefficients, network topology, and the convexity

of the cost functions associated with each generator. The

time-varying power transmission losses are incorporated in

the equality constraints of considered EDP. It is shown that

the proposed consensus-based (partially distributed) algorithm

solves the EDP in a finite time, which is upper bounded

by a term relying on the eigenvalues of the matrix B, local

Laplacian, and the constants describing the convexity of the

cost functions.

Although for the approximated power transmission losses,

the proposed algorithm can be implemented in a fully dis-

tributed manner (see Remark 1). However, it remains a chal-

lenging problem to come up which such an algorithm account-



ing for Kron’s modeled power transmission losses without

an approximation. Besides, there are several possibilities for

future work such as a) consideration of directed communica-

tion topology with time-delay in information sharing among

generators b) incorporation of fluctuation in load demand.
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APPENDIX

A. Proof of Lemma 4

Proof. The proof is provided sequentially for each step.

(R1) By definition, F ∈ R
N is a column vector (please notice

the use of Hadamard product ⊙) with ith entry Fi =
(∂PL/∂Pi)(∂C/∂Pi), where,

• ∂PL/∂Pi depends on both Pi and Pj , according to

Lemma 3,

• ∂C/∂Pi = (∂C/∂Ci)(∂Ci/∂Pi) = ∂Ci/∂Pi depends

only on Pi (as ∂C/∂Ci = 1, according to (3a)).

Therefore, ∇F is an N × N matrix, whose diagonal

entries can be obtained using chain rule as

[∇Fii] =
∂

∂Pi

[

∂PL

∂Pi

∂Ci

∂Pi

]

=
∂

∂Pi

[

∂PL

∂Pi

]

∂Ci

∂Pi

+
∂PL

∂Pi

∂2Ci

∂P 2
i

,

which using Lemma 3 can be written as

[∇Fii] = 2Bii

(

∂Ci(Pi)

∂Pi

+ Pi

∂2Ci(Pi)

∂P 2
i

)

+
∂2Ci(Pi)

∂P 2
i





N
∑

j=1,j 6=i

2BijPj



+ Bi0
∂2Ci(Pi)

∂P 2
i

= 2Bii

∂Ci(Pi)

∂Pi

+
∂2Ci(Pi)

∂P 2
i



Bi0 + 2Bi0Pi +
N
∑

j=1,j 6=i

2BijPj





≥ 2Bii

∂Ci(Pi)

∂Pi

+ Bi0
∂2Ci(Pi)

∂P 2
i

≥ 2Biiδ + Bi0σ,

under Assumptions 2 and 3 for Pi, Pj ≥ 0, ∀i, j. Simi-

larly, the off-diagonal entries are given by

[∇Fij ] =
∂

∂Pj

[

∂PL

∂Pi

∂Ci

∂Pi

]

=
∂Ci

∂Pi

∂

∂Pj

[

∂PL

∂Pi

]

= 2Bij

∂Ci(Pi)

∂Pi

≥ 2Bijδ.

(R2) Clearly, M ∈ R
N is a column vector with ith entry Mi =

[BiiPi+(Bi0/2)](∂Ci(Pi)/∂Pi), which depends only on

Pi for each i. As a result, ∇M is an N × N diagonal

matrix with diagonal entries

[∇Mii] = Bii

∂Ci(Pi)

∂Pi

+

[

BiiPi +
Bi0

2

]

∂2Ci(Pi)

∂P 2
i

≥

[

Biiδ +
Bi0

2
σ

]

,

for Pi ≥ 0, ∀i and following Assumptions 2 and 3.

(R3) The poof of this statement is straightforward and follows

the similar steps as above.

(R4) From Assumption 3, it is obvious that S is a symmetric

matrix. Further, using (R3) it trivially holds that S 4 Q.

(R5) Since S is a symmetric matrix, its eigenvalues are real and

can be arranged as τ1 ≤ τ2 · · · ≤ τN . By construction,

S can be written as the summation of two symmetric

matrices σdiag{(1 + Bi0)} and δB, where the constants

σ and δ are defined in Assumption 2. Notice that the

eigenvalues of σdiag{(1 + Bi0)} are [σ(1 + Bi0)]
N
i=1,

while for δB are b1δ ≤ b2δ ≤ · · · ≤ bNδ, if δ > 0;

and bNδ ≤ bN−1δ ≤ · · · ≤ b1δ, if δ < 0. Now,

the results immediately follows by applying the Weyl’s

theorem [[31], Chapter 4, pg. 239].
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