An Optimum Linear Receiver for Multiple Channel
Digital Transmission Systems
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Abstract—An optimum linear receiver for multiple channel digital
transmission systems is developed for the minimum P, and for the
zero-forcing criterion. A multidimensional Nyquist criterion is de-
fined together with a theorem on the optimality of a finite lenght
multiple tapped delay line. Furthermore an algorithm is given to
calculate the tap setiings of this muitiple tapped delay line. This
algorithm simplifies in those cases where the noise is so small that
it can be neglected. Finally as an example the transmission of binary
data over a cable, consisting of four identical wires, symmetrically
situated inside a cylindrical shield, is considered.

1. INTRODUCTION

In this paper we shall investigate the transmission of digital sig-
nals over a multiple channel system, where each channel is used to
transmit & data sequence. This configuration is included in the more
general structure considered by Kaye and George [1]. We, however,
use a technique that leads to an optimum structure for both the
zero-forcing and minimum error probability criterion, instead of the
minimum mean-square error criterion Kaye and George used.

Besides the intersymbol interference (ISI), interchannel interfer-
ence (ICI) can be one of the major problems in such a multiple
channel digital transmission system. ISI is disturbance of an output
signal by symbols that originate from the corresponding input but
that are shifted in time with respect to the symbol of interest. ICI is
disturbance of an output signal by symbols that do not originate
from the corresponding input but from input symbols that belong
to neighboring channels. We introduce the name multidimensional
interference (MDI) for the combined effect of IST and ICI. Because
the equalization of ISI also changes the ICI at the output, and the
other way round, only a simultaneous treatment of these two phe-
nomensa can be successful in combating the overall degradation. In
the following we generalize for MDI some techniques known from
the ISI literature. As examples of systems where these methods can
be applied, we mention multiwire cables and multichannel radio
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systems that make use of perpendicular polarized waves in a common
frequency band.

II. THE MULTIPLE CHANNEL COMMUNICATION
MODEL

The multiple channel transmission system, to be treated in this
paper, has M inputs and M outputs, where to each input j & data
sequence Y, a;%8(1 — IT) is applied which we want to detect at
output j. The symbols a;* are elements of the alphabet {0,1,---,
L — 1} and are chosen equiprobable and independent of each other.
In our investigations a linear, dispersive, and time-invariant channel
model is assumed (Fig. 1); this means that a linear relation exists
between each input and each output signal and that the output
signal due to the excitation of more than one input is the sum of the
individual responses to the several inputs. The relation between
input j and output 7 is denoted by the impulse respopse r;; (). It is
assumed that the output signals are disturbed by MDI and that
zero-mean white Gaussian noise is added to them. Each output is
corrupted by a different noise signal n;(t).

III. THE OPTIMUM LINEAR RECEIVER

By means of an optimum linear receiver and bit by bit detection
on each channel output we make an estimate of the several input
sequences. The receiving filter is assumed to be linear in the sense
described in the preceding section. The linear relation between input
< and output n of this filter is denoted by the impulse response i (¢)
(see Fig. 2). The following method yields;an optimum solution for
the linear multiple channel receiving filter for both the zero-forcing
(zero MDI) and minimum bit error probability criterion. Assuming
that the several noise sample functions n;{{) are independent of
each other, then the noise variance at output n of the receiving
filter can be written as follows:
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where NV, is the density of the noise spectrum of n:(2). Investigating
the optimum structure of the linear receiving filter a technique is
used that is presented in [4] and [5]. This means that all signal
values that contribute to the possible sample values of the signal at
output n are fixed. Then the noise variance ¢.2 is minimized subjeet
to these constraints. Defining the input vector

[

ol - 2)

the constraints are found by congidering the sample values of the
signals at output n due to the LM possible input vectors x*. The
latter sample values are found in the following way.

Assuming that at time ¢ = 0 the vector x* is applied to the inputs
of the channel, then the response at output n of the receiving filter
is given by

M M @
s*(E) = 2 at D hni (7)1 (t — 7) dr. (3)

=1 ] [}

At the instant ¢, 4- IT, this response has the value

M M
8kt +1IT) = 2 af Y

=1 =1

hai ()il + 1T — vy dr. ()
]

In the minimization process these values for all k and | must be
kept constant, therefore we have to minimize the functional

M w M M
In= 2 Ni| b2 dr 2% T am 3 ap

=1 0 k=1 i=1

M '«
2| M T — D) dr. (5)

i=1 Jg
Applying the calculus of variations to expression (5) yields
1 § 2 Al
hai(t) = = 30 3" Amt 2 ajtry (4, + 1T — ¢). (6)
N: kel f=1

For the sake of simplicity we take N i = N for all <. This assumption
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and the assumption that the noise functions n;(f) are uncorrelated
are not a restriction of the generality, as is shown in Appendix II.
With
1
it = = 2 0 haut @
N =

(6) reduces to

M
hai(®) = 20 2 cajiris(ts + 1T ~ 1), 8)
=1 1
The structure of the entire receiving filter follows from this equation.
Each hn;(t) consists of & bank of matched filters, the outputs of
which are added and the output signals of all h,;(f), which belong
to the same receiving filter output =, are added again. Assuming
that ¢, is larger than the largest duration of all s.*(¢), then & reduc-
tion of the receiving filter is possible and Fig. 3 depicts the result
for M = 3, for instance. For ease of notation the time axis is shifted
such that ¢, = 0. At each filter input 7 we see an array of filters
matched to the particular responses at channel output ¢ due to the
individual excitation of the several inputs. Then all the outputs of
the filters matched to the responses due to the same input are
summed {o form the primed outputs 1’-2’-3’, This part of the filter
we call the multiple matched filter (MMF) (inputs 1-2-3 and out-
puts 1-2'-3")., Each primed output is followed by a delay line with
elements D giving a delay 7. The rest of the receiving filter consists
of M summing circuits and from each delayed primed output there
is a weighted connection (with weighting coefficient ca;1) to each
adder. This part of the filter we call the multiple tapped delay line
(MTDL) (inputs 1'-2'-3' and outputs 17-2"-3"). The weighting
coefficients c.;; have to be chosen such as to meet the optimization
criterion. In the case of the minimum P, criterion it is impossible to
find an analytical solution for the set {c,;:}. By means of & steepest
descent method one can find an approximation. Zero MDI offers
the possibility to calculate the tap coefficients in a rather easy way
as will be shown in Section V and to check the practical realization
by means of the eye pattern, while the error probability P, is of the
same order of magnitude as when the minimum P, criterion is used
especially for large signai-to-noise ratios.
Considering the cascade connection of the channel, the MMF and
the MTDL, the impulse responses of this overall system evaluated
at the discrete instants IT are denoted by

SulT)  f(IT) c o fie(IT)
MQT)  falT) - « fue(IT)
IIAY . . . (9)
w(T)  fin(QT)  + « fun(T)

with f.;(t) the response at output n of this system as result of a
delta excitation on input j.

Further we define
F(D) & 2 F.D? (10)
1
where D is the delay operator.
A messure for MDI is now defined as follows:
M
2 X [ fuQT) [ = | fan(0) |
=t
& (11)

[ Fan(0) |

which is the worst case distortion due to MDI on output n. The
overall worst case MDI distortion is given by

Iy = max (I,). (12)
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Fig. 3.

The terms “zero MDI” and “‘zero-forcing’’ are used here if I, = 0.
By means of (10) and (12) we formulate a multidimensional Nyquist
criterion which fits Shnidman's generalized Nyquist criterion [2].

Theorem 1: A multiple channel transmission system deseribed by
(10) satisfies the multidimensional Nyquist criterion if

FD) =1 (13)
where [ is the M X M identity matrix.

It will be clear from the foregoing that for a system satisfying the
multidimensional Nyquist criterion the MDI will he zero.

Now consider the channel in cascade with the MMYF' as a multiple
channel system with M inputs and M outputs. The impulse response
from input 7 to output m of this system is called vm;(t) and can be
written as

M
Vi () = 2 7ij(E) * Pim (—1)

(14)
{=1
where * means convolution. Define
w(T)  0QT) -« - oa(T)
m(T)  ve(T) « o~ o (IT)
Via - . - (15)
o (IT)  vas(IT) =+ vane (IT)
and
(168)

V(D) L 2 V.D.
1

The MTDL is also a multiple linear filter. For this system we define

au  Qu e M
| e Com ¢ Gt
C e . . . (17
CMu Cyat * °* CMMI

structure of the multiple linear receiving fllter.

and
(D) & 2. D (18)
t
From the definitions (10), (16), and (18) it follows
F(D) = C(D)-V(D). (19)

In Section V we shall give a procedure to calculate the tap coeffi-
cients described by C(D).

IV. THE ERROR PROBABILITY OF THE EQUALIZED
SYSTEM

If in a multiple channel transmission system it is possible to satisfy
the multidimensional Nyquist criterion and the system has an opti-
mum constraint receiver as described in the foregoing, the mean
error probability of channel n of such a system is denoted by

L-1 d

20, (20)

where the well-known Q(+) function is defined in [6, p. 82] and d
is the smallest difference between two output levels. As the smallest
difference between two elements of the input alphabet is taken
unity and because of (13), d equals one. The noise variance at
output n is calculated from (1) and (8)

M M M Y
L EEDIDIDD ) pa Ncm'mcnkl/ ra(T ~ #)ry(mT — =) dr.

m 1 =l el k=1 -

(21)

For the equalized system the impulse response from input j to out-
put n, evaluated at the instant mT, can be written as

M M
fai(mT) = 22 3 2 cant

1 i=l k=l

-/ ra(IT — )rg(mT — 1) dr = 8mdn;  (22)
as is derived in [2]. Substituting (22) reduces (21) to the simple
form
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an’ = Ncrmﬂ (23)

which, if substituted in (20), gives for the error probability of
channel n

L-1
Py =2
e

1
2 (Newno) ”’) ’ (24)

V. THE OPTIMUM REALIZABLE MTDL N

The index ! of the C(D) sequence runs from minus infinite to
plus infinite and as a consequence the MTDL becomes infinitely
long. In practice we have to make it of finite length and in this case
(13) cannot be satisfied exactly. If the MTDL is of length 2 K the
optimum tap settings are given by the following theorem.

Theorem 2: If Vo = I and 2.,'|| Vi || < 1, then an upper bound
of the MDI distortion I, is minimal for those tap setting matrices
which cause Fi = 0, [ 1]:< K, I  0; where the primed summation
excludes the term with ! = 0 and the infinite norm is taken (which
is the maximum over all rows of the sum of the absolute values of
the components of the rows).

This theorem will be proven in Appendix I. In the special case
that 2/ || Fy || represents the worst, case MDI I, this distor-
tion itself is minimized. Under these constraints this theorem
is a generalization of a theorem derived by Lucky for ISI [3, p.
138]. Jf Vo = I we can force V, to equal the identity matrix by
placing between the MMF and the MTDL s multiple channel
system with matrix D-transform Vy'. To "apply the theorem
all V; matrices must then be replaced by V,"1V,. In the case that '
2.4 || Vi || represents the worst case MDI at, the MMF outputs, a
sufficient condition to satisfy the requirement 3 /|| V]| <1 is
that at none of the MMF outputs, the eye pattern is closed if
ait € {+1,—1}. "

The tap settings as stated in Theorem 2 are calculated as follows.
Define the composite matrices - :

Crx
C_ka
C é * ’ ’ (25)
Cr
[ Ve Vi © Var ]
Va Vo Vica
ValkVe Vo Ve + Vg (26)
| Voax Vg Ve |
and
07
0
0
Ea|I @7)
0
0
L0

L
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where 0 is the all zero matrix. To satisfy Theorem 2 we have the
relation

CTV = ET. (28)

This equation is further simplified if we look at (14), (15), and (26).
It is easy to see that L

VT =V (29)

so that

VC = E. (30)

The solution of this equation decomposes into M times the solution
of a set of linear equations, one time for each column of C as wanted
vector and the corresponding column of E as known vector.

‘In systems where the noise does not play an important role, MDI
distortion correction can directly be applied to the channel response.
In this situation (29) is not true in general, but it is sometimes pos-
sible to choose ¢, < T giving a simplification of the expression for
Ci. It is easy to see that the matrix sequence C; starts now at l = 0
and runs to plus infinite. Analogous to (15) and (16) we define

™ (ZT) [t (ZT) R 41 (lT>
ma(IT) ra(T) ran (IT)
R4 . . .. . (31)
ri(IT)  raeT) o ra(IT)
and
R(D) & i R,Dt. (32)
1=0

By applying Theorem 1 to this system it follows that the tap coeffi-
cients are determined by the recurrence relation

Co = Ry

1=t
Ci=-RM Y R.C: 121 (33)
[,
It will be clear that Theorem 2 is also valid now with the restriction
that [ has only positive values and the length of the MTDL is K.
In this case the MTDL is also realizable as M shift registers with
resistance matrices at the sending end. One can derive that, in doing
so, the expression (33) for the C; matrices stay unchanged.
Decision feedback is another possibility to eliminate MDI [7].
Then the MMF is followed by a “forward” MTDL and a “feed-

back” MTDL.

- ‘ .

VL. AN EXAMPLE A

As an example we implemented the transmission of binary
data over a multiwire cable, consisting of four identical wires which
are symmetrically situated within a cylindrical shield (see Fig. 4).
The cable has a length of 1 km and the bit rate is taken 5 Mbit/s.
In this example the length of the cable, the bit rate and the sending
pulses are such that the noise can be neglected, thus the relations
(33) are used for calculating the tap coefficients. We have measured
the following matrices:

1 024 024 0.13

024 1 0.13 0.24
Ry =
024 013 1 0.24
013 024 024 1
R, = 0.261, R; = 0.111, By = 0.07], Ry = 0.041. (34)
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Fig. 4.

One can verify that 3., || RiRo™ || < 1, thus Theorem 2 can be
applied. The calculated C; matrices are

1 —0.21 -0.21 —0.03]
-021 1 —-0.03 -0.21
Co=
-021' —0.03 1 —0.21
| ~-0.03 -021 —-021 1 |
(—031 012 012 —0.017]
012 -031 —001 012
C = (35)
012 ~001 -031 012
| —001 012 012 -0.31|

Because of the several kinds of symmetry in both the R; and C;
matrices, 2./’ || RiR¢™! || represents the worst case MDI before the
MTDL. Moreover, the output matrices F; show the same symmetry
and thus )’ || F: || represents the worst case MDI at the output,
8o that Theorem 2 is valid in its full consequence.

At the realisation of the C; matrices, tap coefficients equal or
smaller than 3 percent are omitted because these values do not give
a substantial improvement of the eye opening. All components of
C,, C,, eto., are smaller than 3 percent, that is why they are not
given at (35). Only Co and C, are realized and at these matrices the
connections between a certain wire and the diagonal opposed one
are omitted too. This MTDL is implemented as 4 shift registers at
the sending end which are connected to the cable by means of re-
sistance matrices forming the tap coefficients. Fig. 5 shows the eye
pattern at the receiving end of the cable if all wires are excited and
it is seen that the unequalized system has a fully closed eye as is
calculated from (34). Fig. 6 shows the eye pattern of the system
characterized by K (D)R,™ which means that a multiple channel
system with matrix D-transform R, is placed between the trans-
mitter and the sending end of the cable. The eye pattern of this
system is not closed, which shows that 2’ || RiR¢™ || < 1. Finally
Fig. 7 shows the eye pattern of the equalized system and it appears
that the multidimensional Nyquist criterion is satisfied rather well.

VII. CONCLUSIONS

It is shown that for a multiple channel transmission system both
the optimum linear receiver (minimum P,) and the optimum linear
constraint receiver (minimum P, under zero-forcing condition) have
the same structure as the optimum linear receiver found by Kaye
and George applying the minimum mean-square error criterion.
Moreover it appears that by means of the multidimensional Nyquist
criterion and the generalization for MDI of a theorem by Lucky for
ISI it is rather easy to find the optimum tap settings for a finite
length MTDL. The algorithm to calculate the tap settings is further
simplified in the case that the noise is unimportant and the sampling
instant is smaller than the bit time.
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Cross section of the 4-wire cable within cylindrical shield.

Fig. 6. Eye pattern of the system R(D)R."!.

By means of the methods developed in this paper it is shown that
MDI is the generalization of ISI. .

APPENDIX I

PROOF OF THEOREM 2

Let {V:){_. be given with V, = I and let

My= 2 || Vi] <1 (36)
Let
) N .
A= X CiVasll (37)
n— i.—_N
under the constraint
N
2 OV, =1 (38)
j=—N

We shall prove that a minimum for 4 exists and that this minimum
oceurs if

N .
Z CiVn-i = (, n=—N,---,—11,-+«N. (39)
i-—N
Proof: Due to (38), (37) can be written as follows:
© N
A=3 || X Ci(Vasy = ViVa) + Vall. (40)

pe——

=N
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Fig. 7. Eye pattern of the equalized system.
CCGN WUGN

fo———ro P(s) }p——>oy

®pols)=Q(-s) Q'(s) ®yyls)=1

Fig. 8. Multiple noise whitening filter.

CCGN WUGN
n Y
4  R(s) Q%9 b— => oo—d R 07'(s)
Dn(s)=Q(-51Q'(s) Dy (s)=1

Fig. 9. S8ystem R(s) disturbed by COGN is replaced by the system Q-1(s)R(s) disturbed by WUGN,

CCGN

Al
— R® | as) far-s)| Ri-g)  f—e

[@'wts)]”

Fig. 10, Multiple channel system disturbed by OCGN in cascade with
the multiple whitening matched filter.

Let A be minimal in (C_y*-++,Cx*) and let its value there be A*. This is possible because the inverse of (I — V_.V.) exists and
Consider 4 in the point (C_y*-++,C3* + Ey,»++,Cx*) and let its besides that

value there be 4. Now we must have 1
ar< A ) W= Vvl S T s
From (40) it follows By means of (44), (42) becomes
) N » -— —_____....____1 -—
A= 300 L CF Voo = Vi) + Vot BulVa = Vv || A~ ATSIEY ”[ Yoy e vl
SAY - || | 4 f’;‘ H Vo il-l] Befl + Mo -Vl Il Ve i} +1—5]
n=—onFk
) Sl E )|
Vall-ll Bell-l| V —_————— -
+n_~§ﬁ‘k|| Hell Bellsli Vs il STTUVa vl Mo~ || Vel + Mol Vil
+ | He* + B — V2V || (42) —UVell-NVall =+ Vall- 1 V(12
h 3 )| Ha* i) _ )
where . S ST TN CMe—-1A+ VD] (46)
e o ,__Z_:” Ci*Vam. (43) From (46) it follows that
Choose | Hy*{| = 0, (47)

Ey= —=sH*(I ~ V. V) 0<s<l. (44)  because otherwise there is a contradiction with (41).
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APPENDIX II

In this Appendix we prove that the assumptions that the noise
functions n;(¢) are white and uncorrelated are not a restriction of
the generality; i.e., a system not satisfying these assumptions can
be transformed into a system that meets these requirements. The
proof starts with the remark that the spectral matrix (which is the
Laplace transform of the correlation matrix) of the input noise can
be factored, according to [8], in the following way:

@nn(s) = Q(—9)QT(s)

where 3 is the bilateral Laplace variable. Assume that we have a
system with transfer matrix P(s) such that the spectral matrix of
the output noise is the identity matrix if the input spectral matrix
is given by (48). Then the spectral matrix of the output y of P{s)
is written as follows {8]:

(48)

By (s) = P(—8)Q(—s)Q7(s)PT(s) (49)
(see Fig. 8). From this it follows that
P(s) = Q7 (s) (50)

gatisfies the requirement of white, uncorrelated output noise. A pro-
cedure for finding a @(s) such that both Q(s) and Q~1(s) are stable
is also given in [8]. Now we shall further investigate the MMF for
colored, correlated Gaussian noise (CCGN). The several impulse
responses 7i;(t) of the multiple channel system are writter in a
matrix R(f). From (50) it follows that the multiple channel trans-
mission system with transfer matrix R(s) disturbed by CCGN with
spectral matrix ®pn(s) can be replaced by a multiple channel trans-
mission system with transfer matrix @1 (s) R (s) disturbed by white,
uncorrelated, Gaussian noise (WUGN) (see Fig. 9). The MMF for
this latier system is given by

[Q ' (—8)R(—8) ] = RT(=9)[QT(—s) T (51)
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Note that the MMF for the system with impulse response matrix
R(t) disturbed by WUGN is given by BT ().
So that the MMT for the original system can be written as

RT(—s)[QT(—8)T'Q7!(s) = RT(—s)[EanT(s) T  (52)

(see Fig. 10). This MMF we call multiple whitening matched filter
(MWMF). '
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