Maximum Likelihood Receiver for Multiple Channel
Transmission Systems

W. VAN ETTEN

Abstract—A  maximum likelihood (ML) estimator for digital
sequences disturbed by Gaussian noise, intersymbol interference (ISI)
and interchannel interference (ICI) is derived. It is shown that the sam-
pled outputs of the multiple matched filter (MMF) form a set of suffi-
cient statistics for estimating the input vector sequence. Two ML vec-
tor sequence estimation algorithms are presented. One makes use of
the sampled output data of the multiple whitened matched filter and
is called the vector Viterbi algorithm. The other one is a modification
of the vector Viterbi algorithm and uses directly the sampled output
of the MMF. It appears that, under a certain condition, the error per-
formance is asymptoticaily as good as if both ISI and ICI were absent.

1. INTRODUCTION

It has first been pointed out by Shnidman [1] that inter-
symbol interference (ISI) and crosstalk between multiplexed
signals are essentially identical phenomena. Kaye and George
have worked out this idea by investigating the transmission of
multiplexed signals over multiple channel and diversity sys-
tems [2]. The author of the underlying concise paper has
presented a unified theory for treating intersymbol inter-
ference and interchannel interference (ICI) as one type of dis-
turbance [3]. We will call the combined effect of these dis-
turbances multidimensional interference (MDI). In the
following the essentials of [3] are summarized.

The generalized Nyquist criterion formulated by Shnidman
is restated in matrix notation. Furthermore an optimal linear
receiver is derived, consisting of a multiple matched filter
(MMF) followed by a multiple tapped delay line (MTDL). As
optimization criterion is used minimum error probability and
it appears that this optimum linear receiver has the same
structure as the receiver derived by Kaye and George under the
minimum mean-square error criterion. For a suboptimum
criterion (minimum Pr (e¢) under the constraint that the muiti-
dimensional Nyquist criterion is satisfied) a theorem is given
to calculate the tap coefficients for this case.

Up to this point is appears that several concepts known
from ISI literature can be generalized for MDI. Recently maxi-
mum likelihood (ML) sequence estimation of data distrubed
by noise and ISI received considerable attention [4]-[6]. Now
the question arises whether these concepts can also be
generalized for sequences transmitted over multiple channel
systems where the output data are disturbed by noise and
MDI. This concise paper gives a positive answer to this
question.

II. THE MULTIPLE CHANNEL COMMUNICATION MODEL

The transmission system, to be considered in this concise
paper, has M inputs and M outputs. To each input j a data
sequence Z; a; ;6(¢ — IT) is applied which we want to estimate
at the receiving end of the communication system. The sym-
bols @, ; are elements of the alphabet {0,1,---, L — 1}. Symbols
that are applied to the several inputs of the system at the same
instant [T are ordered systematically in the input vector
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With the input vector sequence we associate the vector D
transform

x(D) &) x,D! @)
14

where D is the delay operator. In our investigations a linear,
dispersive, and time-invariant multiple channel model is
assumed (Fig. 1). This means that a linear relation exists
between each input and each output signal and that the out-
put signal due to the excitation of more than one input is the
sum of the individual responses to the inputs in question. The
relation between input j and output i is denoted by the
impulse response c¢;;(¢). All these responses are assumed to be
square-integrable and of finite duration. Further we assume
that the output signals are disturbed by MDI and additive,
zero-mean, white Gaussian noise. Each output i is corrupted
by a different noise signal n;(¢), but it is assumed that these
noise signals are uncorrelated and all have the same-.double-
sided spectral density Ng. These assumptions are not a restric-
tion of the generality as is shown in [3].

III. THE STATISTICAL SUFFICIENCY OF THE
MMF OUTPUT

In this section we shall show that if the MMF, as defined in
[3], is used as multiple linear receiving filter, then the sampled
outputs of this MMF form a set of sufficient statistics for esti-
mating the vector input sequence x(D).

The impulse response c¢;;(¢) is considered as an element of a
matrix

1) e12(D) cam(®)
cp1(2) c92(t) cam(?)
cwé
_em1(2) CMM(f)_j

3

which defines the behavior of the multiple channel system. If
the MMF is described in an analog way, it will be clear this its
response is denoted by CT(—t). Assume that the multiple
channel system is excited by an arbitrary, single-input vector
x. Defining in this case the signal at output i of the multiple
channel system by s,(z), we can write the total system output
as a vector as follows:

] S1(t).l
52(8)
s(t) é 4

[ 5w (@)

called the vector output signal. The noise is also given as a
vector
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Fig. 1. Multiple channel communication model.

[ 71(1)
na(t)
n(t) & . &)

| Ny (2)

called the vector noise.

In the following we shall use several times the inner product
of matrices, the components of which consist of time func-
tions. Such a product is denoted as (4(z),B(r)) and defined by

A1), Bty & Z / a,-,.(t)bf,,-(t) dr. (6)

The sampled output of the MMF, in the absence of noise, is
given by the signal vector

s =(CT(1),5(t) ' 7

whereas the inverse transformation from signal vector to out-
put vector signal is

s(t) = [CT(1)]1TGs = C(£)Gs 8)

where G is a matrix to be determined. Substituting (8) in (7)
gives

G = [CT (@), Cap) L. (%)

So the systems to be treated must have the property that the
matrix G exists. This requirement, however, is quite trivial,
because at systems not possessing this property it is impossible
to recover even a single-input vector from the sampled MMF
outputs. The sampled output noise, if the signal is absent, can
be written as

n = {CT(2), n(r)). (10)
According to (10) the relevant vector noise, being that part
of the input vector noise that is left after projection of n(r) at
the signal space, is denoted by

n(t) = [CT()1TGn = C(z)Gn. a1
By means of the definition

ves+n (12)
The equivalent received vector signal is written as

¥(t) = C(1)Gv (13)

which menas that for the sampled output there is no dif-
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ference whether the true received vector signal 5(z) + n(¢) or
the vector signal »(¢) is supplied to the input of the MMF.
Writing out (13) yields

¥(t) = C(1)Gv = C(t)Gs + C(t)Gn = s(t) + n.(t). (14)
Thus C(¢) is a basis for the signal space spanned by both s(z)
and m,(r) {7, ch. 4], which proves that the sampled MMF out-
put is a sufficient statistic for estimation of a single input
vector x. Now the following theorem can be stated.

Theorem 1: If at each instant IT a vector X is transmitted,
then the vector output sequence

»D) &) nD! (15)
1

forms a set of sufficient statistics for estimating the vector
input sequence x(D) (see [4] and [7]).

IV. THE MULTIPLE WHITENED MATCHED FILTER

Now consider the system consisting of the channel in cas-
cade with the MMF as a multiple channel system with M in-
puts and M outputs. The impulse response from input j to
output n of this system is called vp;(2) and can be written as

M M o0
vpj(t) = Zl Cin(—t) *¢y(t) = Zl / Cin(T = t)ey(1) dr

(16)
where * means convolution. Define
[v110T)  »120D) vim(T)|
vo1(T)  vea(T) vopu (IT)
v, 8 an
v 1(T)  vp20T) v m(IT)]
and
V(D) £ %D (18)
1

By means of (16) it is easy to see that (18) is equivalent to

V(D) =T 1), C(D, 1), (19)
where C(D,?) is a matrix with components consisting of the
chip D transforms {4] of the components of C(¢). The cross-
correlation of the output noise signals at outputs n and m is
given by

Sam(p) = No/ Cin(—t)Cipn(—t — p)dt

=1 A

Mk

I
-ME

No/ Cin(B)eim(t — p) dt. (20)
1 ' 00

Sampling this function we define its. D transform as follows:
Snm (D) 2D Gum(TID. Q1)
13

If ail ¢,,,(D) are collected in a matrix we get the spectral
matrix
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&(D) = NolCT(D,1), C(D~1,1). (22)
Relation (22) can easily be verified by means of (20). In [8]
and [9] it is shown that a matrix H(D—1) can be found such
that .

(D) = NoH(D)HT (D™ 1) (23)
with both #(D~1) and H—1(D71) stable and nonanticipatory.
Comparing (19) and (22) it is obvious that

V(D) = HWD—L)HT(D). (24)

Now we conclude that the sampled output of the MMF can be
written as

(D) = HD~YHT(Dx(D) + H(D—1n(D) (25)
where n(D) is the sampled input noise vector sequence. The
output noise

n'(D) = H(D~1)yn(D) (26)

is colored Gaussian with spectral matrix ®(D). This follows
from

E[HDMO—H{HD~)n(D)|T]
= E[HD(D~HnT(DIHT(D—1)] = NoH(DYHT(D™1).
27

From (25) it is seen that the output noise is whitened by the
following operation:

2(D) RH—1(D~1)»(D)

= HT(D)x(D) + n(D) = y(D) + n(D) (28)
which means physically that an MTDL [3] with transfer
H-Y(p 1) is placed after the MMF. It has been mentioned in
the foregoing that H—1(D—1) is stable and nonanticipatory
and thus realizable. The MMF followed by the MTDL is called
multiple whitened matched filter and is characterized by its
chip D transform )

W(D,t) SH— 1D~ 1)CT(D™1,1). 29
If the impulse response from input n to output m is denoted
by W n(f), the set of functions wp,,(t — kT) is orthonormal
in both the time and space dimension as is seen from

®,, (D)= (WD 1,1), WT(D,1))
= H-Y(DXCTW,1), cD Y, O~ 1(D—1)}T
=H- YD)V~ OHT(D—1))—1

= H-Y(D)H(D)HT (D~ ){HT (D1 W"1=r (30)
In the foregoing section we concluded that ¥(D) forms a set of
sufficient statistics for estimation x(D), but z(D) is found by
the reversible linear transformation #~1(D—1) on »(D). Thus
2(D} forms a set of sufficient statistics for estimating x(D)
also. This section is resumed in the following theorem.
Theorem 2: Let C(r) be the matrix of impulse responses of

the muitiple channel transmission system and H(D—1)HT(D) a
factorization of
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V(D) ={CT(D™1,1), C(D,t) (31)
such that both H(D™1) and H—1(D—1) are stable and non-
'fmticipatory. Then the multiple filter whose chip D transform
is

WD,t) = H-1(D~1H)CcT(D,t) (32)
is realizable and is called a mﬁltiple whitened matched filter
and its sampled outputs give a vector sequence ’

z(D) = HT(D)x(D) + n(D) (33)

in which n(D) is a white Gaussian noise vector sequence, and
which is a set of sufficient statistics for estimation of the
vector input sequence x(D) where n(D) white Gaussian is to
be interpreted in both the discrete time and space dimension.
The multiple whitened matched filter found in this section
is a generalized version of the whitened matched filter derived
in [4]. This generalized filter is capable of optimizing the
signal-to-noise ratio of the outputs of a muitiple channel trans-
mission system in which both ISI and ICI together with noise
contribute to the disturbance, under the constraint that the
output noise must be white in the two-dimensional sense.

V. THE VECTOR VITERBI ALGORITHM

In the preceding sections we have derived a structure giving
a set of sufficient statistics for estimating the input vector
sequence of a multiple channel transmission system from the
observations of the output. This output is disturbed by MDI
and noise. The noisy part of the multiple whitened matched
filter output samples are shown to be uncorrelated and thus
independent, since we have assumed that the noise is Gaussian.
From this it follows that the Viterbi algorithm is a powerful
tool to perform ML estimation of the input vector sequence
x(D). The vector Viterbi algorithm is a vector version of the
algorithm used to make ML estimations on digital sequences
and which is extensively described in [4] and [5]. The vector
sequence y(D) may be considered to be generated by a
multiple finite state machine, driven by an input vector se-
quence x(D) (see Fig. 2). As the state of this finite state
machine we define :

st 2{x)—1,%1-2, =, X1—p} G4
where NV is the degree of the matrix polynomial HT(D). The
state 5; can take on LV¥ different values. We can depict the
successive states of the multiple finite state machine, together
with all allowable transitions, in a trellis diagram. Each transi-
tion Ty in this trellis diagram is associated with an input vector
Xp; and a certain value of the output signal ;. Given the
observation z;, the log likelihood of transition T} is given by

In p(z; - yp1) = —In (/27N WM

1 M
= 2. @i Ye)?
2N, ::i B TRL

(35)

where z;; and yy;; are the ith components of, respectively,
Z; and Y4, In ML sequence estimation the first term of the
right member of (35), being independent of /, can be omitted
and the same holds for the factor 1/2Ng in the second term.
The squared distance of an observation at instant IT to a cer-
tain allowable transition T, characterized by y,,, is defined
by
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Fig. 2. Model of a multiple finite state machine.
M mate ¥(D) for x(D) that vector sequence which maximizes
Dy? QZ (i —rrd)? (36)

-

The updating of the metrics, belonging to the several states,
together with the updating of the corresponding path-registers
proceeds as follows.

1) The metrics of all the states that belong to transitions,
terminating in the same state, are increased with the corre-
sponding squared distance Dy 2.

2) Select the smallest increased metric as survivor-metric
for the new state. The path-register of this new state is to be
filled with the content of the path-register of the old state of
the selected transition. This new path-register content is then
updated with the elements of the input’alphabet that belong
to the selected transition.

The vector Viterbi algorithm does not differ fundamentally
from the scalar version; the only differences, which are in fact
generalizations, are as follows.

1) The operation “squared distance computation” is a
computation in the vector semse defined by the Euclidean
squared distance (36).

2) Each element of the path-register consists of M com-
ponents and must be shifted and updated parallel in the path-
register.

At this point the vector Viterbi algorithm is in fact reduced
to the scalar version and we refer to [4] and [5) for further
details. It will be clear that in a multiple channel transmission
system the number of states is growing exponentially with the
number of channels.

VL. THE VECTOR UNGERBOECK ALGORITHM

Ungerboeck has given an alternative recursive algorithm for
making ML sequence estimations on data that are disturbed by
ISI and white Gaussian noise {6]. Using this algorithm, the
tapped delay line is omitted and the sampled output of the
matched filter is directly used as input for the algorithm. In
the following we shall generalize the Ungerboeck algorithm
for ML vector sequence estimation of data that are disturbed
by MDI and white Gaussian noise.

If a vector sequence x(D) is transmitted the corresponding
received vector signal is defined as follows: ’

u() £ €~ IT)x, + n(t). (37)
]

Among all possible input sequences ¥(D) we choose as esti-

In plu(t) | E(D)], which means minimizing over all allowable
D) .

J=

2
u(t) =Y. Ct— I ”
1} 2

T
=<[u(t) - —Im) z,} ,
1

. [u(t) = Ce—kDE, ]> (38)
k
Writing out (38) the expression for J becomes
J=wT (@) ut)) — <uT(t), Z C(t—kT) 5k>
. . /
(&G —IT),u(t>
1 .
+<E ETCT(—1T), Y C(t—kr)z,>. (39)
] % /
Define '
v €Tt —IT), u(t). (40)

This vector is interpreted as the sampled output of the MMF,
By means of definition (40) J is written as

T =T, u) .
—2 E L +Z Z 7V &
1 1 &

The first term of (41) is independent of §; and th\fs may be
ignored during the minimization process. The metric J(E(D))
can be calculated in a recursive manner. C

(41)

JiC, B g, B =T (-, 1)+ F(op; E4—p, - ED)

(42)
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with

Fvy, G-y,

. N
=§7 [2”1— &2 Z Ve fz-k]
k=1

where V is determined by the length of the V(D) matrix
sequence, according to

&)

(43)

N
vioy= ). VDL

I=—N

(44)

Here the survivor-metric :f, is introduced, which is defined as
follows:

Tis) 2T 81w, - &)
2 min i, E—n, Enig o D) (45)
v &y

The sequence (-, §;—x), which results in a minimum of (45)
is called the path—tustory of the survivor-state

5 é(£l+1—N_x =, &) (46)

It is easy to see that there are again LNM different survivor-
states. One can imagine that these survivor-states correspond
to the states of a finite state machine. From this point of view
the principles of the Ungerboeck algorithm coincide from
now on those of the Viterbi algorithm. For further details
see [6].

Expression (43) is now to be used for the calculation of the
squared distance of an observation to an allowable transition,
and the finite state machine has as much different states as the
finite state machine of the Viterbi algorithm,

Although at first glance the metric calculation of the Unger-
boeck algorithm seems more complicated than that of the
Viterbi algorithm, a second inspection of (43) shows that the
metric up-dating is a rather simple operation from a pro-
gramming point of view. Namely the quantity

N
kT [Vo E+2 E Vi 'Et——k]

k=1

only depends on the channel response, which is assumed to be
fixed, and on the transitions to be considered. So this value
can be stored in a memory and need not be calculated in
real time.

VIII. THE ERROR PERFORMANCE OF THE
ML RECEIVER

The investigations, given in this section, are closely related
to the methods given in [4} and [6]. Remember that x(D)
represents the transmitted vector sequence and that the vector
sequence estimated by the ML receiver is denoted by X(D).
Then

e(D) 2%(D) —x(D) (47)
defines the error vector sequence. Assuming stationarity, the
starting point of an error event € can be associated with r = 0:
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e:e(D)=eq +eD+ - +eyD?

with || e; Hz = 50, (48)
where 6, denotes the minimum nonzero value of the Euclidean
norm of the error vector e;. This value equals the minimum

distance

60 = min {l az;
i#j

—a; l}. (49)

From [6] we know that the error event probability is written
as
Pr (G) =Pr (61) Pr (62 I 61)

<Pr(ey) Pr(ey | €1) (50)

where the subevents €;, €5, and 62' are defined as follows.

€y x(D) is such that x(D) + e(D) is an allowable data
vector sequence;

€2  noise vector sequence is such that X(D) + e(D) has
ML (within the observation interval); and

€2’ noise vector sequence is such that x(D) + e(D) has
greater likelihood than x(D), but not necessarily ML.

From the preceding section it is concluded that Pr (62 leq)is
the probability that

J(e(D)) > J(x(D) + e(D)). (s1)
It can be proven that inequality (51) is identical with
. H H
S2O &I Vo™ 2 3. D eTViwer
=0 k=0
H
<201 Vo 1, 3 eTn) (52)
=0

where n,’ are the sample values of the noise at the output of
the MMF. The quantity 8(¢) is called the distance of the error
event €. Consider the random variable « given by the right
member of (52). '

. H
af2l Vot Y e (53)

=0

This random variable is Gaussian distributed with zero-mean
and variance

Efa?] = 4Ny Il Vo1 || 2 62(e). (54)
From this it follows that .
Pr (€2’ | €1) =Pr (a>5§2(e)
5(e)
=0 <2\/1V§|| Vol Ilp1/2 ) (3)

where the well-known Q(+) function is defined in [7].
Let £ be the set of all possible error events €. Then the
probability that any error event occurs becomes

Pr(E)= D Pr(e).

€€E
Let A be the set of all possible §(¢) and £ the subset of error

(56)



310

toe,(t)=e,(t)
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)

2
1 e,(t)ze,, (1)
1 —
5 —]
) 1 2

Fig. 3.

events for which §(¢) = 8. Then from (50) the error event
probability is bounded by

’ 5 .
Pr(E)< .
T (E) Z Q (2 Al " “21/2)2 Pr (e4)

€A €€EE
(57)

Because of the exponential behavior of the () function for
large argument values, this expression will already at moderate
signal-to-noise ratios be dominated by the term involving the
minimum value 8,4, out of the set A. At moderate and large
signal-to-noise ratios €,’ implies €, with a probability almost
equal to one. For these SNR values Pr (E) is approximated by

Pr (E)‘zg( Preg). (58)

Smin ) z
2VNy Il Vo2 ligt/2 €€E5 0

Assuming the input symbols g; 4 to be independent of each
other and equiprobable, the probability of €; is written as

4 M H L—|e,]
Prien)=11 [I ——— (59)
i=11=0 L

with e; ; the ith component of e,.
In the Appendix it is shown that under the constraint

Vo=l 3 lImllz<i

(60)

not any error event has smaller distance than the single error
events with distance 84. With a single error event we mean an
error sequ¢nce that consists of one error vector (e(D) = &)
and from this vector only one component differs from zero.
In this situation the single error events with distance 8¢ domi-
nate the expression for the error event probability and the
error event probability equals the symbol error probability

Received signal set for the example.

L—1

——

86 )
2VNp Il Vo1 [|1/2 €Es, L

Since 892/l Eg~1 li is the total amount of energy that i

Pr (e)zg( (61)

" measured as the receiving ehd. at transmission of a single

symbol out of the set £ o the symbol error probability is not
increased by MDI.

VIII. AN EXAMPLE

As an example we take a multiple channel with M = 2. The
components of the transmission matrix C(t) are as given in
Fig. 3. We take T = 1 and for this system the V(D) matrix
polynomial is as follows:

37 12
V0=_’
144 112 37]
) B (62)
371 12
Vl = V_.l =
2 |12 37]

One can easily verify that this V(D) satisfies condition (60).
Decomposition of V(D) according to (24) yields

6 1

1 .
HT(D)= 1—2 (2+D). (63)

1 6

By means of this matrix sequence the given system is simu-
lated on a minicomputer. In Fig. 4 the error probability for a
binary alphabet {-H,—l} is plotted as function of the signal-
to-noise ratio, together with the Pr (e) for isolated pulses.
The two curves merge at a Pr (¢) of about 10—%. So, for error
probabilities smaller than 10~4%, the performance of the ML
receiver is as good as if MDI were absent. In the case of larger
error probabilities the difference between the two curves is
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Fig. 4. Symbol error probability versus signal-to-rioise ratio.
Curve 4 Single pulse;
Curve B monochdnnel with linear correction and bit-by-bit
detection;
Curve C  multiple channel with M = 2, linedr correction and bit-by-
. bit detection;
Curve D monochannel with ML sequence estimation; and
Curve £ multiple channel with M = 2 and ML vector sequence

estimation.

maximal 1.2_ dB. These results are compared with those of an
optimum constrained linear receiver [3]. The difference
between thé linear receiver and the single-pulse performance is
2.7 dB, showing the superiority of the vector ML receiver. We
also simulated a ML receiver for a monochiannel with impulse
response ¢y 1(t). Now the maximum difference with the single-
pulse performance appears to be 1 dB, whereas the two curves
also merge at a Pr (e) value of about 10—%. Linear correction
with bit-by-bit detection gives an increase of 2.2 dB in this
case. - .
N.B.: At the simulations the path-register length was 16 bits
in all cases. The number of transmissions was chosen such that
the real error probability lies, with a probability 0.9, within an
interval of 10 percent around the plotted value.

IX. SUMMARY AND CONCLUSIONS

It is shown that the MMF outputs form a set of sufficient
statistics for estimating the transmitted vector sequence over a
miultiple channel system. A multiple whitened matched filter
is derived, the output of which is used to perform ML vectot
sequence estimation by -means of the vector version of the
Viterbi algorithm. A modified algorithm, pointed out by
Ungerboeck; is also generalized to combat the noise and MDI.
If this algorithm is used MTDL is omitted and the sampled out-

put of the MMF is directly used as input data for the algorithm.
Finally, the error performance of the ML receiver for a mul-
tiple channel system disturbed by noise and MDI is calculated.
From the latter investigations it follows that, under a certain
constraint, for moderate and large SNR’s the error perfor-
mance is not substantially influenced by MDI, i.e., the symbol
error probability is approximated by the value found if a single
pulse is transmitted. It is concluded from this concise paper
that ICI plays the same role as ISI. If these two disturbances
are simultaneously considered, then MDI can, under the given
constraints, be treated as a generalization of ISl and the con-
cepts of ML sequence estimation on data disturbed by noise
and 18] are also generalized for noise and MDI.

APPENDIX
Let
lleglle 284 (64)
and let {V}}j=—_ be given and assume
Ve~ Uy X UVillp <t (65)

=0
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The matrix Vg equals {CT(¢),C(¢t) and it is easy to show that
this matrix is positive definite, under the condition derived in
Section III.

H H
82e)= Vo1 llp ek T Ve
2, &,
H
=1Vt llz D exTVoe,
#=0

H,& H
+i Vot Iz E kE e xTViey. (66)
I=—H k=0

Consider the first term of (66). Because Vg is positive definite
we have the 1nequahty“

€T Voelr 2 Anin(VolerTey 67

where Ap in(Vo) is the smallest eigenvalue of V. Moreover,

1
| Vot llg =—. (68)
° Amin(Vo)

From (67) and (68) it follows

H H
” Vo—l ”2 ; e;,TVoe,, = Z ekTek
=0 k=0

H
= z Il ex ll22. (69)
k=0

Consider now the second term of (66). Due to the Schwarz in-
equality and from what is given we have

H
Hvo=2lly 3

=—H k=

kT Vi€
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From (69) and (70) it follows

THE BEST OF THE BEST
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This last inequality holds if (65) is satisfied.
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