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Abstract–In this paper, a theory of optimaf nonlinear estimation
from sampIed data signals where the a posterion probability densities
are approximated by Gaussian sums is adapted for application to phase
and frequency estimation in high noise. The nonlinear estimators (de-
modulators) require parallel processing of the received signsf. In the
limit as the number of parallel processors becomes infinite the FM
demodulators become optimum in a minimum mean square error sense
and the PM demodulators become optimum in some well defined sense.
For the clearly suboptimaf case of one processor, the demodulators can
be readily simplified to the familiar phase-locked loop. On the other
hand, for the intermediate case, significant extension of the phase-
Iocked loop threshold is ac tieved where (say) six parallel processors are
involved.

1. INTRODUCTION

DURING the past decade, the tools of stochastic estimation

theory have been applied to the synthesis of phase and

frequency estimators (angle demodulators), see for example
[1-1 6]. This paper represents a further contribution in this di-

rection.
In nonlinear estimation [10-24] , an attempt is usually

made to calculate the relevant a posteriori probability density
functions–or at least sufficient statistics of these functions.
For the case of interest to us here where the state vector X(tk )
is a first order Markov process, knowledge of the signal model
t3qUatiOnS, the a posteriori density function p [x(t~) I tk] at
time tk, and the new measurement at time th +1, is suf-

ficient for an update of the a posteriori density function to
p [X(tk+l) I tk+l ] ,With knowledge of the a posteriori density

function p [X(th) I tk] at each time instant tk,either a MAP
(maximum a posteriori) or MMSE (minimum mean square

error) estimate or other type of estimate can be calculated.
With the assumption that the low order moments of the

posteriori density function are a set of sufficient statistics
[ 18], optimal (or near optimal) estimators for a limited class

of problems can be derived. The assumptions are good ones
when the estimation error is small or equivalently in situations

characterized by low noise, good prior information, and

polynomial type nonlinearities. The extended Kalman filter
[18] is the most common form of such a nonlinear estimator.

It is possible to apply extended Kalman filter theory to
yield quasi-optimum (in the mean square error sense) angle

demodulators [3,4] When simplified, the continuous time
extended Kalman filter for angle demodulation is nothing
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other than the familiar phase-locked loop. The approximation
inherent in the derivations of the extended Kalman filter for
angle demodulation is that the error covariance Pe of the

phase estimate be less than a threshold value (typically we
require Pe <0.25 radz [3-5] ). When this constraint is violated

as it most surely is in a high noise environment, the extended
Kalman filter is no longer optimal (or near optimal) and there
is in fact a severe degradation of performance as the noise
level increases beyond a threshold level determined by the
threshold constraint on PO .

Similar applications of nonlinear estimation theory for
discrete measurements result in digital phase-locked loops
and quasi-optimum sampled-data angle demodulators [5-8]
On the one hand, simulations show that these sampled-data
demodulators have virtually the same threshold as the coun-

terpart analog schemes. On the other hand, because of recent
advances in large-scale integrated semiconductor technology

for digital circuits, in some applications the digital demodula-
tors are more attractive; certainly they are easier to simulate
on general purpose computers when developing new ap-
proaches to demodulation, as in this investigation. Because

of the recent advances in technology it appears very reasonable
to consider more sophisticated digital circuits than those in

[5-8] to improve the performance of angle demodulators in
high noise environments.

In this paper the nonlinear Bayesian estimation algorithms

using a Gaussian sum approximations for the a posteriori den-

sities [19, 23] are the starting point for the development of
novel angle demodulators. In the Gaussian sum approach [19,
23] the key idea is to approximate the a posteriori density as a
sum of Gaussian densities where the covariance of each Gaus-
sian density is sufficiently small for the time evolution of its
mean and covariance to be calculated accurately using the
extended Kalman filter algorithm. The nonlinear estimator of
[23] consists of a bank of extended Kalman filters where the

signal estimate is a weighted sum of the outputs of the filters.

The weighings are calculated from the residuals of the ex-

tended Kalman filters. In the examples of [23], the noise is suf-
ficiently low for such an estimator to be near optimal. For
high noise situations, [23] broadly outlines procedures which
appear to be unnecessarily complicated when applied to FM
demodulation–they involve checking the statistics of the
estirr,ator measurement residuals for consistency with their
theoretical properties as a means for detecting divergence,
and a re-initialization of the algorithm to incorporate more

filters.

Here attention is focused on the question of how and
when to re-initialize the Gaussian sum nonlinear filtering

algorithm of [23] in a high noise environment–at least for the
FM demodulation case. In particular, to achieve near optimal
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performance we study a periodic re-initialization of the

algorithm in such a way that the conditional phase error

covariance Pei associated with each Gaussian density satisfies a
constraint–t ypically Pe i < 0.l?5 raciz. Relaxing this constraint

enables a tradeoff between performance and algorithm com-
plexity. Other ideas are also studied which dramatically reduce

algorithm complexity with very small loss in performance.

Other optimal phase and frequency estimation schemes are
reported in [9-15] In [9] , the conditional probability distri-

butions of the state vector are approximated by a sum of
point mass probabilities in such a way that the Bayesian
recursion rules can be readily applied. In the limit as the num-

ber of point masses becomes infinite, the estimation algorithm
is optimal. However, when the number of terms in the sum-

mation is small the approximation does not appear to be as
good as that when a Gaussian sum is employed. In [14] , the

optimal estimate is obtained via a Fourier series representation

of the state probability densities. The Fourier coefficients can

be updated recursively using a set of infinite dimensional equa-
tions. Several techniques to obtain suitable finite dimensional

approximations of these equations are discussed in [11, 15].
However, except for a few simple cases, these ‘truncation’
procedures are rather involved.

We also have to mention that in the interesting case when

there is only phase drift or frequency shift but rro additive
measurement noise, the optimal phase or frequency estimator

consists of a nonlinear preprocessor, a Kalman-Bucy filter and
a nonlinear postprocessor. The reader is referred to [ 12] for
a more detailed description of such an estimation,

In Section 2, the state-variable representation of the angle
modulated signal [3-1 6] is reviewed as is a sampling technique
of [8] to reduce the signal to a baseband process. Section 3
contains the derivation of our parallel processing demodulator
for the model of Section 2, using as a starting point the Gaus-
sian sum approach of [23] Section 4 studies very useful

simplifications to the algorithms, In Sections 5-7, simulation
results for a phase tracking example and an FM demodulation

example are discussed and and conclusions concerning the
results of the paper drawn.

2. STATE-VARIABLE MODEL AND A SAMPLING
TECHNIQUE

In order to apply the tools of stochastic estimation theory
to the phase and frequency estimation problems, the first
step is to set up a model in terms of a finite-dimensional

nonlinear stochastic system, For simplicity, we assume that
the received angle-modulated signal process is a scalar process

contaminated by additive white Gaussian noise, and that the
message to be estimated is a sample function from a zero-mean
Gaussian random Markov process. An appropriate state-variable
model which can be used for a variety of problems is phase
tracking, phase demodulation and frequency demodulation,
is as follows [3-16] :

x(t) = F(t)x(r) + G(t)u(t) (2.1)

o(t) = C’x(r), C’=[o 0“””0 1] (2.2)

z(t) = @u Cos [2rrf~t + e(t)] + u(f) (2.3)

where Z(O) is the received noisy process, x(t) an rr-column
vector, (@) the carrier amplitude andf”o the carrier frequency;

u(”), v(. ) are independent white Gaussian processes and X(to)
is a random vector independent of U(O) and v(”); X(to) and
U(O) can include the effects of such uncertainties as unknown

Doppler shifts.
The various statistical parameters (assumed known) are

E{x(to)} = X(), E{x(to)x’(fo)} = PO

E{ U(t)} = o, E{u(r)u ‘(~)} = Q(t)6(f – 7), Q(t) ~ o

E{ u(f)} = o, ~{ ~r)~~)} = ~(f)~(~ - T), r(t) >0

E{u(t)u(T)} = o. (~.4)

Using the in-phase and quadrature-phase sampling technique
as described in [8] , the scalar noisy FM process described by
(2.3) can be represented by the following equivalent 2-vector
sampled data process:

$(t~) = h [X(tk)] + W(f), k=o, 1,2, ””” (2.5)

where

h [X(fk)] = @a[1COSO(tk)
‘sin 8(tk)

Here h [X(tk)] is the signal sample vector free of noise and
W(tk) is the corresponding noise vector for the measurement.

Assuming perfect sampling preceded by an ideal bandpass
filter, w(”) is a white Gaussian noise sequence with statistical
properties readily determined from those of (2.4) using
techniques described in [25] . Specifically, if the measurement
noise covariance r(t) can be considered constant during
adjacent samples and tk = kT, we have .E{w(tk)} = O,

l?{w(tk )W’(tl) = f?(tk )ti~ ~ where

[1?k O
R(tk) =

r(tk)

Ork’
rk ‘—

T’

3. BAYESIAN ESTIMATION USING GAUSSIAN SUM
APPROXIMATIONS

In nonlinear filtering via Gaussian sum techniques [23] , the

a posteriori density p [x(tk )/tk] is approximated by a sum of
M Gaussian terms. The weighting coefficients, the means, and

the covariances of all the terms are updated via a bank of M
conditional extended Kalman filters; thereby the entire a
posteriori density is updated as time evolves and as more
measurements become available. For the Gaussian sum filter to
be near optimal, the Gaussian sum approximations have to be
good ones and also the covariance of each Gaussian term has
to be small.

In this section, this Bayesian Estimation technique of
[23 ] is adapted to yield a solution to our problem of phase

and frequency estimation in high noise.
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Relaxation of Error Covariance Requirements

It is well known [3-5] that in applying extended Kalman

filters for FM demodulation, the usual requirements for
extended Kalman filters to be near optimal can be relaxed

somewhat. Instead of requiring that the state error covariance

be small as is usually the case, since the only linearization is

that about the last entry of the state vector which is the
signal model phase, than only the phase error variance need be

small. That is, Pe must be small. In practice PO must satisfy
P@ < 0.25 radz (typically) in order that the filter be near

optimal. Actually the value of 0.25 is just an arbitrary value
in the vicinity of a knee in a relationship between filter
performance and optimum performance. For PO below 0.25
radz the conditional extended Kalman filter performance is

near optimum, but above 0.25 radz the filter performance
rapidly falls away from the optimum performance.

As a consequence of the above results concerning extended

Kalman filters for FM demodulators, there is an immediate

relaxation of the error covariance requirements for the Gaussian

sum algorithm to be near optimal. In particular, instead of
requiring that the entire error covariance of the i-th conditional
extended Kalman filter be small we require only that its phase
estimation error covariance Pe i = E’{[O(tk) – Oi] 2} be small
for i = 1, 2, “, M. Usually POi <0.25 rad (typically) for
near optimum performance of the Gaussian sum estimators
when applied to FM demodulation. More explicit derivations

of these requirements are studied in [26] .

Re-Initialization of the Algorithm

In high noise situations, the conditional error covariances
of the individual extended Kalman filters of a Gaussian
sum estimation will grow with time, so that eventually the
assumptions required for the extended Kalman filters to be
near optimum will no longer be valid. That is, Pei will be
greater than 0.25 radz. To overcome this, at each time instant,
we check that the conditional error covariances (or in our case

the Pei’s) remain small. If Pe i exceeds a certain constraint, the
whole state probability density is re-constructed using

approximations as another sum of Gaussian densities in such a
way that the Pe i’s of the new conditional densities are within

the constraint. It might be thought that to achieve this the
number of terms in the Gaussian sum to allow a reasonable
approximation will increase, but as discussed in more detail
later, it is appropriate to consider Gaussian densities folded
around a unit circle, in which case six or so such terms are
usually adequate.

In summary, our adaption of the Gaussian sum algorithm of
[23] is as follows.

Gaussian Sum A lgonthm for PM and FM demodulation

{1} = Approximate p[x(tk)/tk-l ] with a sum of M
Gaussian densities satisfying the constraint PO~< u=2.
{2} = Apply measurement update equations (see [23]).
{3} = Apply time update equations (see [23]).
{4}= Setk+l=k.
{5} = Check that P@.< UC2.If the constraint is satisfied, go

(to {2}; if not, go to 1}.
Note: In [23] , the step {5} is simplified as, {5}’ = go to

{2}. Clearly the above algorithm is a minor variation on that
of [23] but the variation is absolutely vital for the following
theorem and subsequent applications.

A result which is rigorously proved in [26] and heuristically

established in [23] is
Convergence Theorem: In the limit as M + ~ and UC2 + O,

the Gaussian sum algorithm gives the exact evolution of the

a posteriori density function of p [x(tk)/th ]

Remark: Earlier comments suggest that reasonable values
for UC2 and~ are UC2= 0.25 rad2 and~ = 6, for then a phase
probability density around a unit circle can be reasonably
approximated by a Gaussian sum with each Gaussian density
satisfying the constraint PO~< 0.25 rad2. With this constraint
satisfied the conditional extended Kalman filters are near
optimal. Only simulations can verify just how reasonable these
values are. We now move to consider a practical implementation

and simulations of a demodulator employing the Gaussian
sums idea,

4. PRACTICAL IMPLEMENTATION OF THE PARALLEL
PROCESSING DEMODULATOR

In this section, we present a simple way of ‘reconstructing’
p [X(tk)/tk_l].We start with four useful simplifications.

1. The measurement update equations can be simplified
if we start with all the densities in the Gaussian sum having the
same covariance. The simplification is quite dramatic in the

case of interest here when the error covariance equations
are decoupled from the filter state equations. As noted in
[ 16-29], upon application of extended Kalman filter algorithms

to quadrature-phase and in-phase sampled FM (or PM) signals,
the resulting state estimate update equations and the error
covariance update equations are decoupled. Hence, if we
re-initialize the covariance update equations with the same
value of covariance for each of the M Gaussian densities in the
Gaussian sum, the updated covariances would also be of the

same value.
2. If the Gaussian sum algorithm is used only in the high

noise base, then high noise assumptions lead to the simplifica-
tion that the error variance need not be updated in step {2}.
Also in the high noise case, the conditional innovations

covariance can be approximated by the noise variance, thus
simplifying the Kalman gain calculations and the Gaussian
density weighting coefficient calculation.

3. With the simplifying assumption that the conditional
probability distribution for each specified phase is Gaussian,
the grid of~i taken in the phase-frequency space collaspes to a
one dimensional grid. A considerable reduction in the number

of grid points and as a consequence a dramatic reduction in
computational effort is thereby achieved. Based on the

experimental results for the examples studied later, it appears
that the assumption here is a reasonable one. Observe that
there is no possibility of achieving any simplifications using
this Gaussian assumption when applying the point mass
approximations of [9] .

4. We note that the conditional innovations associated with

the individual extended Kalman filters depend on the phase
error modulo 2rr rather than on the actual phase error.
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Therefore, in approximating p [x(tk)/tk_l ] by a Gaussian sum

with covariance constraints, it usually suffices to consider only
the folded densi~y function o~tained by wrapping the density
around a circle 0 – rr < 0<8 + rT [9-15] The advantages of

considering this folded density on a circle rather than the

unfolded density on the whole real line should be clear. A

finite grid of, say, six points evenly spaced around the circle,

would be sufficient to ensure that the new Gaussian sum is a

good approximation of the given density,

Employing the above simplifications, we present the
following simple procedure for ‘reconstructing’ a given density.
Suppose the given density p(x) is in the form of a Gaussian
sum ofk.f terms

.!’1

P(X) = P(X, 0) = ~ ~iN[X - Xi, P] (4,1)
izl

with

(4.2)

0, 0,, pO are scalars and A, Ai are (n – 1) vectors; and we wish
to approximate p(x) with another Gaussian sum of~ terms as

(4.3)

such that PO < UC2 for some UC.Assuming p(x) has mean

[1ib
and covariance

we begin with setting up a grid space as an arc on the circle,

chosen to cover the significant part (say ~ * 2@3 ) of the

folded density. The grid space is divided into M equal intervals
and a grid point ~i is placed in the center of each such interval.
The phase covariance PO of each term in the new density is

simply taken as a fraction of the interval width. We propose
that ‘reconstruction’ of p(x) is necessary when the parameter
PO >max (~0,0.25).

When PO > max (~., 0.25), the other parameters &i, xi, ~,

I!?are then calculated as follows

\
fii = c p(~, F,) dl, c is a normalizing constant

E=o.

Here p(h, ;i) is treated as the folded density ofp(x) around
a circle and all integrations are performed from ~i – (rr/2) to
~i +(Tr/2), It can be seen that the calculations are designed

such that each interval is approximated by a Gaussian density

of appropriate mean, covariance and weighting coefficient. For

example, the calculated xi is roughly the conditional mean of
k given 0 = 0,. (The correction term in sq~are brackets,
usually very small, is to ensure that Z~ 1 ~i~i = k.)

The integrations for calculating &i and xi can be further
simplified to weighted sums of Gaussian densities around
a circle. Thus, we have the following algorithm for ‘recon-
structing’ p(x) or more precisely its parameters d,, ~i, Z

Algorithm (4. 1)

{1} = Set up a grid space [) - A, ~ +A), and let ~0 =

A/(jM) where

,4 = min {r, ~@3}

~ = design factor (a number between 1.4 and 3, say)
g = design factor (say 1.1)

{2} = If P. < max (;6 , 0.25), set tii = ~i~i = xi and ~= P.
EXIT.

{3} = Select equally spaced grid points {~i}

;i=~+(2i-fk-l)j.

{4} = For eac~j, s~ft the individual @i’saround in steps of
2n until Oj – ~ < Oi < Oj + k for all i = 1, “, M. Then calculate

aj = $J~i~[;j ‘Oi, ‘fl]
i=l

bj =L $$ aiN[~j - Oi,P@]
Uj i= 1 (’i-%+

{5} = Calculate

‘1=5 ‘f, ‘z=5b,Hl i=1

{6} = Set&i= ai/$l,~i = bl/sl - ‘Z/’~ + ~

b = PI – ~ 6,(X – Xi)(i – X,)’, E=o.
i=1

{7} = Calculate E Xi, &i from (4.1). EXIT.
Remark: For M <6, step 1 effectively sets UC2to be greater

than the normally accepted .25 radz. The exact value of the
designed UC depends on both the design factors .f and g.

Simulation results show that for small M (2 or 3), we can
only allow about .5~0 change in .f or g without affecting
significantly the filter performance. For larger M (4, 5 or 6),

the filter sensitivity to for g is much reduced.
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5. PHASE TRACKING EXAMPLE 2

1
We consider a phase tracking problem that is essentially

the same as that considered in [9, 15] . The phase signal is
Jmodeled as integrated zero mean, unit variance white Gaussian

noise (i.e,, as Brownian motion). This phase signal modulates a

carrier signal sin 2nfot. The transmitted signal is corrupted by
1,5

additive white Gaussian noise of two-sided spectral magnitude
r. The received signal is translated to a baseband discrete-time
process via in-phase and quadrature-phase sampling, where
the sampling error is assumed negligible.

The appropriate equations for such a lmodel are
1

@(t) = u(f)

[1

Cos e(t~)
s(r~)= + W(tk) k=o, l) 2,””’ (5.1)

sin d(tk)

.3

where th = kT, (l(to) = O;u(”) and W(O)are independent zero
mean white Gaussian noise processes with E{u(t)u(7)} =
b(t - ~) and

[1

;0

~{w(tk)w’(t~)}= 6~~ (1 ,, 1,;— 1.5

0: Figure 1. Phase error variance results for phase tracking.
T

We wish to estimate the modular phase, [0(”) mod 2iT].
Following [9, 15] , we choose the estimate to minmize the
expected value of the loss function [1 – cos ~] where ~
denotes the estimation error. This loss function has the nice
properties that it is equivalent to the mean-square error when
the error is small but has the appropriate modular 27rperiodicity
when the error is large. For such a loss function, the optimal

estimate d(t) of [O(t) mod 2rT] given measurements up to and
including th is given by ~(t) = tan–l(~/c) [9, 15] where ~ =

~{Sh O(t) [ tk} and ~ = ~{cos e(f) I fk}, If the a pOSkriOri

density p [e(t) I tk ] is expressed as a sum of Gaussian densities

then f and ~ can be readily calculated as [ 15]

~ = ~–(Pe/2)

5
@i COS 0~,

i=l

; = ~-,pO/2) ~ a, sin 6’.
1

i=l

Our phase estimator consists of a bank of extended Kalman

filters operating in parallel as described in algorithm 3,1 and
4.1. The phase estimate is obtained as a nonlinear combination
of the outputs of the extended Kalman filters, as described

above.
The quantity &in our model represents the idealized

steady-state phase error variance of the standard phase-locked

loop for (5.1) if the linear assumption holds throughout. It is
common practice [4, 9, 15] to take it as the variable to be
varied in obtaining performance results.

We apply digital computer simulations to evaluate the

performance of our estimator. Following [9] , each of our
simulation results is obtained through 40 different runs, each
of 500 time steps, with each’ time-step equal to one-tenth of

the time-constant of the standard phase-locked loop for (5.1)

(i.e., T= O.lfi.
A popular performance measure is of course the mean-square

error. In Figure 1, we present plots of $0 versus ~where ~e is
the evaluated mean-square phase error, calculated as the average
:ver 40 sample paths of the quantity 1/500 ~~~~ [f3(tk) –
~(tk)] 2. M represents the number of extended Kalman filters
in the filter bank. The curve M = 1 consists of the results of

digital phase-locked loop simulations. This is found to be very
close to the analytic performance prediction for the phase-

locked loop (PLL) computed froql the exact error density
[4] . In fact, the two curves are nearly identical. The simulated

results of the PLL thus indicate the validity of the overall
simulation.

Another performance measure, suggested by our choice of
the cost function 1 – cos ~ is the average over 40 Asample
paths of the quantity 1/500 ~~~~ { 1 – cos [O(tk) – e(tk)]}.

Table 1 contains some such results.
To compare our results with those of [9, 15] , we first

repioduce in Table 2 some relevant results of the Fourier
Coefficient Filter (FCF) from [15] for comparison of the
results in Table 1. It can be seen that while the results for M =

2 are about the same as the FCF, the results for M = 6 are
better than the FCF.
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TABLE 1
SIMULATION RESULTS FOR PHASE TRACKING USING

GAUSSIAN SUM E{l – cos e}

lu.provemmt over
& n-l M-2 M-6 correspmdin~ results for M - 1

M-2 H-6

1.0 0,547 0,508 0.490 7.48X 10. 75%

0.7 0.433 0.395 0.375 8,77% 13.39%

0.3 0.226 0.209 0.204 S,25% 9.73%

TABLE 2
SIMULATION RESULTS FROM [15] JY{l - cos e}

& PLL FCF
Improvement of FCF over

correspcmding results for PLL

1.0 0.5312 0.5002 5.84%

0.7 0,4098 0.3687 10. O3Z

O.& 0.2447 0.2253 7.93X

TABLE 3
COMPARISON OF SIMULATION RESULTS FOR ~= 1.0

MEAN-SQUARE ERROR

Improvement overean-~quare error radz
PLL (or M- 1)

results PLL 1.614
from [9] aye?. ian Estimato~ 1.395 I 13.57%

results PLL 1.575
frm [15] FCF I 1.446 I 8.19X I

reaultm
M-1

using 1.586

Gaussian
M-2 1,434 9. 58%

estimator
H-6 1.374 13.372

As a further comparison, we present in Table 3 the

percentage improvement of the evaluated mean-square error

over the simulated phase-locked loop (PLL) for the three
different types of nonlinear phase estimators reported here
and in [9, 15] for ~= 1. It can be seen that results foriM =
2 are about the same as the FCF of [15] , while results forlf =
6 are about the same as the Bayesian estimator of [9] . Note
that our estimator for M = 6 requires fewer computations than
the estimator of [9] , where the simulation results are obtained
using 100 discrete mass points (or 100 filters in the filter bank).

6. FM DEMODULATION EXAMPLE

As an example in FM demodulation, we consider a single-
pole message model corresponding to the first-order
Butterworth message spectrum. The state x(t) of the FM
model is a 2dimensional vector composed of the message k(t)
and the phase O(t). The transmitted signal is @cos [2rrfot +
O(t)] and is corrupted by additive white Gaussian noise of
two-sided spectral magnitude r. The received signal is translated
to a baseband process via in-phase and quadrature sampling.

Sampling error and oscillator instability are assumed negligible.
The appropriate equations for such a model are

‘(’)=[:1=[-: :lKl+[u~l

[1COS()(tk)
S(tk)=~ +W(tk ) k=o, 1,2, ”’”

–sin @(tk)

where tk = kT; A(to) is a random variable with probability

density function N(O, 1); O(to) is uniformly distributed in

[–rr, n); U(O) and w(*) are independent zero mean white
Gaussian noise processes with

E{2f(t)u(T)} = q8(t – 7) and fi{w(tk)w’(t~)}

[1

:0
—— tik,

0;

respectively, a is the 3 -dB frequency of the message process
in radians/second.

Our demodulator is a bank of extended Kalman filters
which operate according to algorithms (3.1) and (4.1). The
state estimate is taken to be the conditional mean, calculated

as a weighted sum (3.3) of the outputs of the filters.

In our digital computer simulations, we set c = 1, q = 2

so that lim -E{k2(t)} = 1, the root-mean-square bandwidth of

the FM baseband spectrum = 1 rad, and the bandwidth

expansion ratio P = l/cI. We select T = 2rr/16 s to permit
adequately fast sampling of the FM baseband process.

A commonly used steady-state performance display

consists of plots of ~A–l, the inverse of the ‘evaluated’
mean-square message error, versus CNR = 2/(ra), the carrier-
to-noise ratio in the message bandwidth. For our curves, ~~ is
evaluated as the average over J sample paths of the quantity

~~=1 [k(fk) - ~(t, I tk)] 2 where J = 40, K = 2000.
A set of such steady-state performance curves for a = 0.01

is presented in Figure 2. The curve M = 1 corresponds to the
performance of the existing quasi-optimum demodulator as
presented in [3-8] . In the region of high CNR, the performance
of the demodulators are the same for all M. However, in the
region of low CNR, the performance of larger M is improved

over that of smaller M. In such a region, ~k–l for ~ = 2 is
roughly 1 dB better than that forlf = 1, while forkl = 6, the
improvement is about 3 dB.

Another set of steady-state performance curves consists of

plots of &e–l V.S.CNR, where go is the mean-square error of

the one step ahead predicted phase estimate, evaluated as the
average over J sample paths of the quantity ~~= 1 [@(tk ) –
O(tk Itk–~)]2. Figure 3 shows such a set of performance

curves for J = 10, K = 600. Again, it is clear from these
curves that improved phase estimates can be obtained using
M>l.

Finally, our demodulators can also be used to improve on
the existing transient performance of FM demodulation, even

in the region of high CNR, as is illustrated in Figure 4.

7. CONCLUDING REMARKS

(1) Certainly we have demonstrated that significant
threshold extension for FM and PM demodulators can be
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using suitable adaptations of the Gaussian sum

nonlinear estimators. The cost associated with increase in
filter complexity is however quite considerable and would
certainly make one think twice before upgrading the simple
phase-locked loop.

(2) It is of theoretical significance that optimal demodula-
tion in high noise can be achieved in the limit as the number of
filters in our filter bank becomes infinite.

(3) The ideas of the present paper constitute an extension
of the Gaussian sum nonlinear filtering theory and thus extend
in their application to other nonlinear filtering problems. For
example, the ideas of this paper have application to the analog
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demodulation of FM and PM signals–for such demodulators a

bank of continuous time filters is required with states

periodically reset in the same manner as for the digital filters.
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