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from  that  of  Gaussian.  It  may  be  noted  that  this  characteristic 
of pseudo-error  detectors  was  predicted  by G ~ o d i n g ( ~ )  and 
may  now  be  regarded  as  being  confirmed.’ 

Scrutiny of Figures 8, 9 and  10  indicates  that  the  achieved 
stability of the  multiplication  factor is sufficient  to  estimate 
BER  from  the  pseudo-error  rate  with  an  accuracy  of  about a 
factor of 10  in  BER. In addition,  the  estimate  is  performed  on 
in service data in a  very  modest  period  of  time.  For  example, 
the  time  required  to  accumulate  100  pseudo  errors  (more  than 
adequate  to  obtain a high  degree  of  confidence  in  the  result) 
of  a  1.544  Mbit/s  transmission  system  operating a t  lo-* BER 
when  the  pseudo  error  monitor  has a lo5 multiplication  factor 
at  that  BER is: 

Ne 
to = 

B - BER - G 
= loo/(  1.544 X lo6  X 10-8 X IO5) 

= 60 ms 

This  expression  was  obtained  from  equations (1) and (7) with 
Ne = 100, B = 1.544. lo6 bits/s,  BER=  and  pseudo-error 
detection gain G = lo5.  The  results of the  testing  on  burst 
type  interference  show  that a  very  high  ‘probability  of  burst 
detection  can  be  achieved if the  length  of  the  phenomena 
causing  the  burst  in  the  1.544  Mbit/s  data is greater  than 
40 ,us. This  immediately  suggests  that  in  a  system  with  two 
transmission  channels  available  and  a  switch to select  the 

superior  that a combination  of  pseudo-error  detectors  and  data 
buffers  in  each  channel  can  be  used to avoid  errors.  Note  that 
some  degree of error  avoidance  would  be  achieved  even if the  
perturbation i s  less than  40 p s  in  duration. 

In  conclusion,  it  may  be  stated  that  the  experimental  testing 
carried out  has  confirmed  the  utility of the  pseudo-error  tech- 
nique  predicted  in  earlier  theoretical  papers. 
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Optimal  Multistage Switching Networks 

F. R. K. CHUNG 

Abstmct-We  consider the problem  of  determining the multistage 
network  with the fewest  crosspoints for given  sizes  of input and output 
terminal sets, traffic load,  number  of  stages  and  blocking  probability, 
In thk paper, we present a solution for this problem  when the sizes of 
the  input and output terminal sets are  greater than a certain  value. 

I. INTRODUCTION 

We consider  a  t-stage  switching  network  with  the  set  of 
input  terminals 1 and  the  set of output  terminals a. We assume 
all  switches  in  the  same  stage have the  same  number of inlet 
lines  and  the  same  number of outlet  lines. To be  specific,  we 
assume,  that  stage i consists  of si switches  of  size ni X mi, 
‘1 < i < t .  ,For  an  input  terminal u and  an  output  terminal u ,  
we  define  the channel  graph of u and u,  denoted  by C(u,  u )  t o  
be  the  union of  all paths  connecting u and u. (A  channel  graph 
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is also  called  a  linear  graph [ 101 .) A  switching  network  is  said 
to   be  balanced if all  channel.  graphs G ( u ,  u ) ,  u E I, u E !2, are 
isomorphic.  A  channel  graph  is  said to be regular if either  it is 
a  series combination of smaller  regular  channel  graphs  or  it is  a 
parallel combination of identical  copies  of  a  smaller  regular 
channel  graph.  A  balanced  network is said t o  be  a regular 
n e t w o r k  if its  unique  channel  graph  (up  to  isomorphism) is 
regular. 

We will assume  that  the  traffic  offered  to  each  input  terminal 
is pure  chance  traffic so that  the  traffic  load  of  each  input 
terminal is independent of the  number of busy  input  terminals 
(see [2], [ 111  for  references). We will also  use Lee’s blocking 
probability  model [ 101 together  with  his  independence  assump- 
tion  that  the  probabilities of being  busy  for  links  in  successive 
stages  are  independent. 

In a  regular  network  with  pure  chance  traffic,  the  (Lee) 
blocking  probability  for  the  unique  channel  graph  can  be  taken 
as  the  blocking  probability  ‘of  the  switching  network.  In  this 
paper we  shall  restrict  ourselves t o  regular  networks.  Almost 
all networks  in  current  use  are  either  regular  or  can  be  decom- 
posed  into a  small  number  of  regular  networks. 

We consider  the  following  problem: 

For given blocking  probability  and  traffic  loads,  number  of 
stages,  and  sizes  of  input  and  output  terminals,  what  is  the 
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structure  of  the  optimal  switching  network  (is.,  the  switching 
network  with  the  least  number  of  crosspoints)? 

We will give solutions  to  this  problem  for  certain  ranges  of 
the given parameters.  The  remaining  part  of  the  problem will 
be  taken  care  of  in  a  subsequent  paper.  It  turns  out  that  it is 
sometimes  impossible  to  construct  a  network  with  its  param- 
eters  having  certain  values  because  of  the  integer  constraints. 
In  that  case,  the  best we can do  is  to  present  a  few  nearly 
optimal  switching  networks  with given sizes of  input  and  output 
terminals,  traffic  load  and  number  of  stages  and  with  blocking 
probability  close to   the given blocking  probability. 

Two  regular  switching  networks  are  not  comparable  unless 
they  have  the  same sizes of input  and  output  terminals  and  the 
same  traffic  load.  In  this  case,  a  switching  network A is said to  
be be t t e r  than  another  switching  network B if either  (i) A and 
B have the  same  number of crosspoints  but  the  blocking 
probability  in A is  less than  the  blocking  probability  in B ;  or 
(ii) A and B have the  same  blocking  probability  but  the  number 
of crosspoints  in A is  less than  the  number  of  crosspoints  in B.  

11. CROSSPOINTS  PER  ERLANG 

We consider  a t-stage switching  network as shown  in  Fig.  1. 
Let  us  suppose  each  input  terminal  carries p 1  Erlangs of traffic. 
Let p i  denote  the  traffic  load  for  a  link  between  stage i-1 and 
stage i, i = 2, 3, -, t ,  and p t + l  denote  the  traffic  carried  by  an 
output  terminal.  Furthermore, we write I I I = N ,  1 !d I = M .  
Since  the  traffic  carried  by  inlet  lines  of  a  rectangular  switch 
must  be  equal  to  the  traffic  carried  by  outlet  lines of the  same 
switch, we have  the  following  equations: 

p . n .  I , = p .  l + l r n i ,  for 1 G i s t  ( 1 )  

NPl = M P t + l .  (2) 

From  (1)  and (2) we  obtain 

n 1 n 2  ... nt - m l m 2  ... m t  

N M 
- (3) 

The  total  number of crosspoints  in  the  switching  network  in 
Figure  1 is given by 

n l m l s l  + n 2 m 2 s 2  + ... + n t m t s t  

where si is the  number  of  switches  in  stage i. 
The  total  traffic  carried  by  this  network is N p l  Erlangs. 

Thus  the  crosspoints  per  Erlang  (denoted  by C.P.E.)  is equal  to 
the  quotient  of  the  total  number  of  crosspoints  divided  by 
N p l ,  i s . ,  

C.P.E. = - + - + ... + - . m l  m2 m t  

P 1  P2 Pt 
(4) 

Lotze [ 11  ]  first  introduced  the  C.P.E.  method  for  dealing 
with  switching  networks.  He  used  a  rough  measure,  called 
transparency, for  measuring  the  blocking  properties of the 
switching  networks.  Transparency is defined t o  be  the average 
number  of  paths  without  containing  blocked  lines  from  one 
fixed  input  terminal  to  any  output  terminal.  In  general,  trans- 
parency is not  a  very  accurate  measure  for  blocking  properties 
and  the  relation  between  transparency  and  the  actual  blocking 
probabilities  has  not  been  clearly  established.  In some cases, 
other  factors  have  to  be  considered  simultaneously  to  avoid 

l unexpected  blocking.  In [ 1 I ]  , Lotze  investigated  optimal 

N 

m a  
Figure 1. A t-stage  switching network. 
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switching  networks  with  respect  to  transparency.  Akimarn  and 
Iida [ 11 studied  optimal  network designs for  4, 6 ,  or 8 stage 
networks  with  respect  to Lee blocking  probability  in  a  special 
class of networks.  In [ 121,  Lotze  and  others  prepared  4, 5 and 
6 stage  minimum  crosspoint designs where  the  blocking  proba- 
bilities  are  approximated  by  simulation.  Ikeno [ 81 and  Pippenger 
[ 121  have studied  the  asymptotic  behavior of the  number of 
crosspoints  of  optimal  networks  with  square  switches  as  the 
:amount of traffic  becomes  very large and  as  the Lee blocking 
Probability  becomes  very  small.  However,  their  optimal  net- 
works  usually  require  a large number  of  stages  which  might 
heavily increase  the  cost of a  switching  system's  common 
control.  Feiner  and  Kappel  [4]  introduced  the  concept of 
control  cost  together  with  crosspoint  minimization  in deriving 
optimal  networks,  and  they  approximated  blocking  probability 
by  an  access  factor  related  to  transparency.  Takagi [ 14,  151 
considers  switching  networks of a  specified  type  and  finds 
optimal  ones. 

In  this  paper we minimize C.P.E. with  respect  to Lee blocking 
probability  and we describe  the  structure of the  optimal 
switching  networks  by  finding mi, ni and p i .  

111. THREE-STAGE SWITCHING NETWORKS 

Fontenot [ 51 has  derived  a  method  for  finding  the  optimal 
3-stage switching  networks.  In  this  section we present  a  simpler 
scheme  for  constructing  optimal  regular 3-stage networks 
subject  to  fixed sizes of  inlet  and  outlet  terminals, given blocking 
probability  and  traffic  load. 

A  channel  graph  of  a  regular 3-stage network  is  illustrated 
in  Fig. 2.  Since  the  network is regular,  the  parameters y l ,  y2,  
k must  satisfy  the  following  equations: (yi is the  number of 
links  between  a  switch  in  stage  i  to  a  switch  in  stage i + 1) 

Y l Y 2 k  = 
m l m 2 m 3 -  n l n 2 n 3  -- 

N 

The Lee blocking  probability P of this  network is equal to 

Thus 

log P = 
m 1 m 2 m 3  

log ( 1  - (1 - p 2 7 1 ) ( 1   - p 3 7 2 ) ) .  ( 6 )  
Y l Y 2 M  

Define  the  function f by 

P 1  P 2  €73 
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networks  usually  have  blocking  probabilities  less  than . l ;  see 
[ 51 , [ 1 11 .) Thus we may  restrict  ourselves t o  switching  net- 
works  with  blocking  probability P < .7027.  Furthermore, m l  
and n 3  have t o  satisfy  the  following: 

min (ml ,  n 3 )  2 k = 
m l m 2 m 3  

" 
i.e., 

k 
Figure 2. A channel graph of a regular  3-stage network. min (N, M) > 1.6604 

Thus, 

We consider  af/ayl. A straightforward  calculation  shows  that 
af/ayl > 0 for y1 > 0 and  for  fixed p 2 ,  p3  where 0 < P Z ,  
p 3  < 1.  Thus we may  assume y1 = 1  as  long  as  the  set of 
parameters  for  optimal  networks we obtain is  realizable.  Simi- 
larly, we may  also  assume 72 = 1. We then  set 

We may  assume N > M  without  loss of generality.  It  suffices 
t o  have 

We note  that  in  (9)-(12)  the  parameters m i ,  ni  are  not 
necessarily  integers.  In  fact,  a  set  of  parameters { I n l ,  m 2 ,  m3, 
n l ,   n 2 ,   n 3 ,  M ,  N }  is realizable  (i.e., there  exists  a  regular  net- 
work  with  this  set  of  parameters) if and  only if the  following 
hold : 

(a) N, M, ni, mi, 1 < i < 3,  are  integers;  (13) 

n l n 2 n 3  m l m 2 m 3  
(b) - - < min (ml, n 3 ) ,  - 

N M 

+-+- m2 m3 

Pz P 3  

f is  minimized  when 

By straightforward  calculation,  we  have m 2  = m3, p 2  = 
p 3  = p and 

1 - p + ( 2 - p ) 1 0 g ( 2 p - p ~ ) = 0 .  (8) 

The value  of p ,  p f 1, which  satisfies  (8) is p = .4547 -.. 
The sizes  of  switches  in  the  optimal  3-stage  network will be 

as  follows: 

m 2  = m3 = n 2  =.nl = 1.0882(M  log ( l / P ) / p ~ ) ' / ~   ( 9  ) 

M 

N 
ml = - n3 = 2.3931(M  log  (l/P))1/3p12/3 

C.P.E. = 7.1793(M  log ( l /P ) /~ l ) ' /~  (1 1)  

Since  the  switching  networks  we  considered  have  the  prop- 
erty  that  any  input  terminal  has access to  any  output  terminal, 
we then  have  mlm2m3/M = k > 1 ,  2.8339 M(- log P) 2 M ,  
i.e., P < .7027. 

From  a  practical  point of view, ,7027 is rather high for  a 
blocking  probability of a  switching  network.  (Practical  switching 

A set  of  parameters  satisfying  (1 3)-( 1  5) is called  a  realizable 
set  of  parameters.  In [6]  , methods  are given for  constructing  a 
regular  3-stage  switching  network  having  any given realizable 
set  of  parameters.  Thus,  in  order  to  find  the  optimal  switching 
network, we have to  choose  a  realizable  set of parameters  as 
close to  (9)-( 12) as  possible.  Sometimes,  we  can  arrive  at  more 
than  one  alternative.  The  following  example  illustrates  the 
design  scheme  of  a  nearly  optimal  network. 

A n  example 

Suppose we want t o  design  an  optimal  network  with N = 
128, M = 80, P = .OS, p 1  = .6. First, we know  that 

Thus,  by  (8)-(11) we have m 2  = m3 = n l  = n 2  = 8.01'2,  ml = 
10.574, n3 = 16.918, C.P.E. = 52.872.  Then we choose  a 
realizable  set of parameters  with  values  close to  the  above 
values as follows: m 2  = m 3  = n l  = n 2  = 8, m1 = 10, n 3  = 16. 

A switching  network  can  then  be  constructed  according  to 
this  set  of  parameters  as  shown  in  Fig. 3. We note  that  links 
between  the  second  and  third  stage  are  connected  cyclically. 
This  network  has C.P.E. = 50  and  with  blocking  probability 
P = .0803. If this  blocking  probability  is  too  high  to  be  accept- 
able, we could  use  the  following  alternative. n 1  = n 2  = m3 = 
8 ,  rn2 = 9,  m l  = 10, n 3  = 18. 

It  can  be  easily  checked  that  this  is  a  realizable  set of param- 
eters.  The  switching  network  with  this  set  of  parameters is 
illustrated  in  Fig.  4.  This  switching  network  has  blocking 
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8 x  (0 16x8  8 X  IO 8x9  18x8  

Figure 3. An example. 

probability  .0413  and  with  C.P.E. = 54.166.  The  choice 
between  the  networks  in Fig. 3 and  4  depends  on  practical 
considerations. 

90 
128 

Figure 4. An example. 

IV. MULTI-STAGE SWITCHING NETWORKS 

Unlike 3-stage channel  graphs,  there is a large set  of  non- 
isomorphic t-stage channel  graphs  for  t > 3.  Let et, k be  the 
set  of t-stage channel  graphs  which  are  the  unions of k  distinct 
paths.  In Qt, k ,  there  is  a  unique  channel  graph  called  a  k-spread 
channel as shown  in Fig. 5. Suppose A is a  regular  switching 
network  with  a  channel  graph  in Qt, k .  If the  channel  graph of 
A is not  the  k-spread  channel  graph,  the  linking  pattern of A 

and 

k =  
m l m 2  mt  - nlnZ nt 

M 
- 

N 

Now we consider  the  C.P.E. of this  network. We have 

=-+-+...+- m l  m2  mt  

P 1  P 2  P t  

80 

can  sometimes  be  changed  (when ml > k,  nt > k )  so that  the 
new  switching  network  has  the  same  number  of  crosspoints 
but  with  smaller  blocking  probability (see [ 31, [ 7 J ). 

In  order  to  simplify  the  analysis  of  optimal t-stage networks, 
we only  consider  k-spread  channel  graphs  and  with given m2 m3 mt 
parameters (size of  input  and  output  terminals,  traffic  loads, +-+-+.*.+-. 
blocking  probabilities)  satisfying  certain  constraints  which  we 

P2 P 3  P t  

will describe  specifically  later. 
We consider  a t-stage regular  network A with  a  k-spread The  minimum  value  of f is achieved  when af /ami  = 0 ,  

channel  graph.  Thus  the  blocking  probability P of  this  network a f / a p i  = 0 ,  2 d i d t .  Therefore,  by  setting af/ami = 0 ,  
is given by a f / a p i  = 0, 2 < i d t ,  we have  the  following: 

M log P 

p l m 2 m 3  e.. mt log (1 - (1 - p2) (1  - p 3 )  ... (1 - p t ) )  
- - 



1286 IEEE TRANSACTIONS ON COMMUNICATIONS,  VOL. COM-26, NO.  8 ,  AUGUST 1978 

k 
Figure 5 .  A k-spread channel graph. 

We then  have 

and 

We note  that  p = F t  approaches  .5  when  t  approaches  infinity. 

The sizes of the  switches  in  the  optimal  network will be  as 
In  Table  1, values  of jj, are  listed  for r < 10. 

follows: 

.(  -log (1 - (1 - )”‘ 
P 

The values  of ct are  listed  in  Table  1. If we approximate  p 
by  .5,  for t 2 10, then we  have  the  following: 

m2 = m3 = mt = nl = e..  - - nt = (M log  (l/P)/pl)l/t 

2(.25 - ( . 5 ) t + 1 ) 1 / f  ’. 

M 

N 
m l  = - nt = (M log  (1/P)/pl)1/t4p1(.25 - ( .5)f+1)l / t  

C.P.E. = t(M log  (1/p)/p1)1/f4p1(.25 - ( . 5 ) t + 1 ) 1 / t .  

.45471 1.0882 1.. 6604 

.48093 1.33669 3.2531~10~ 

.49128 1.47942 2.5223~10~ 

.Q9590 1.57010 7.5547~10~ 
8 .49795 1.63211. 8.6142~10 

.49921 1.67814 3 . 9 1 5 7 ~ 1 0 ~ ~  

.49922 1.71166 6.3394~10 16 

Since we assume P < .7027,  it is easy to  check  that 
(ml  ... mt)/M 2 1 from (1 7)-( 19).  Thus  any  input  terminal  has 
access t o  any  output  terminal.  Moreover, m l ,  nt have to  satisfy 
the  following: 

min (ml, n t )  2 k = 
m l m 2  .-. mt 

M 

log  (1/P) t-l 
min (N, M> 2 (T) ( -log (1 - P  (1 - py-1 )” 

= d t ( T )  

log  (1/P) t--l 

The values of d, are  listed  in  Table  1.  For t 2 10 d ,  is 
approximately (1 - (.5)t-1/(.5)f-2)t-1. 

The necessary  and  sufficient  conditions  for  a  set of param- 
eters of multi-stage  networks to be  realizable  are  not  completely 
understood.  Certain  special  cases  are  studied  in [ 51 , [ 61 . How- 
ever, the  optimal  network  with  parameters  in (1 7)-( 19) can  be 
constructed  by  the  following  method if the  integer  constraints 
are  satisfied.  First,  we will suppose  that  the values  of mi,  ni ,  
1 f i < n ,  in  (1  7),  (18)  are  integers. 

Let us consider  parameter  set { M ,  N ,  ml‘ ,  m2‘, ma‘, nl‘, 
n z ‘ ,  n3’) for  a 3-stage network,  where 

ml’  = ml,  nl‘ = n l ,  

m2’ = n2‘  = mt-2 ,  where m = mi, 2 < i d t 
m3 = m 3 ,  n3 = n g .  I I 

The necessary  and  sufficient  conditions  for  this  set  of  param- 
eters  to  be realizable  can  be  easily  checked.  This  set  of  param- 
eters  is  realizable if and  only if 

N Nml Nml _ - _ _ _  are all integers. m’ mt-l’ mt-2  n3 

The  switches of the  second  stage  in  this  network  are  replaced 
by  copies of a ( t  - 2)-stage network W t - 2  of  size mt-2 X mt-2 
which is constructed  as  shown  in  Fig. 6. The  resulting  t-stage 
network is the  optimal regular network we  want. If the  integer 
constraints  are  not  satisfied  (or m is not  an  integer),  we will 
then, as  before,  construct  nearly  optimal  networks  by  choosing 
integers  close to  the  optimal values. 
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m COPIES 
OF Wt-3 
mt-2 INPUTS 

Figure 6. 

V. SUMMARY 

For given  sizes of  input  and  output  terminal  sets, given 
traffic  load,  number of  stages  and  blocking  probability,  we 
have  described  the  structure  of  the  optimal  switching  network 
when  the sizes  of  input  and  output  terminal  sets  are  greater 
than a certain  value  (see (20) and  Table 1). The sizes of  the 
switches (mi, ni, 1 < i < t )  are given in (1 7), (1 8). The  linking 
patterns  are  described  in  Sec. 111 and  IV  for 3-stage and t-stages, 
t > 3 ,  respectively.  Since  realizable  parameters  must  all  be 
integers  and  some  basic  equalities  for  networks  (see ( I ) ,  (2), 
(3),  (21))  should  be  satisfied,  we  must, if necessary,  choose 
integer  values  of  parameters  satisfying ( I ) ,  (2), (3),  (21),  and 
as  close to  (1  7),  (1 8) as  possible. 

As pointed  out  by J. G .  Kappel [9] ,  the  optjmal  switch 
sizes  derived in (1 7) are  in  close  agreement  with  some  of  those 
currently  in  use (e.g. those of the 8-stage No. 1 ESS  trunk-to- 
trunk  network)  which,  however,  do  not  actually  satisfy  the 
constraints  in (20). In  general,  we  would  usually  have to con- 
sider  channel  graphs  of a more  general  type  which of course 
increases  tremendously  the  complexity  of  crosspoint  minimi- 
zation.  The  whole  problem of determining  optimal  networks 
in  full  generality is not  coqpletely  understood  at  present. 
Hopefully,  this  gap  in  our  knowledge  can  be  filled  by  further 
research. 
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A Subscriber Carrier System Based Upon Frame 
Addressing System 

TADAO  SAITO 

Abstruct-A new channel  assignment  scheme  called a frame  address- 
ing  system is proposed  in this paper to realize  an  efficient  telephone 
subscriber carrier system  by  means of PCM loop  having a simplified 
switching  capability at each  subscriber. In the frame  addressing  system, 
a speech  signal  time slot is assigned  by  sending a  bit  for each  subscriber 
at  the beginning  of  each  transmission  frame. This results in  an  improvG 
ment  of  efficiency by a TASI-like  effect  in  addition to efficiency  by 
switching.  The  principle  and an example of' a practical circuit are 
described.  Characteristics  of the system  are  analyzed  and a design 
example i s  described. 

I. INTRODUCTION 

In  communication  systems  like a subscriber  carrier  system 
or  a mobile  communication  system, a switching  circuit  for 
each  station  must  be a simple  one  to  economize  cost  per  sub- 
scriber.  Several  approaches  have  been  proposed  for  this  purpose. 
The  simplest  approach is the  fixed  channel  allocation.  The 
approach of the SLM (subscriber  loop  multiplexer)  system  in 
which  an  ordinary  switch is provided  for  each  subscriber  has 
also  been  proposed  and  commercially  used.(l)  In  this  system, 
switching is performed  for  each message; thus,  it  may  be called 
message  addressing. 

In digital telephone  communication  systems,  speech signals 
$re sampled  periodically  and  transmitted  occupying a time  slot 
in a frame.  Therefore,  by  providing  an  addressing signal in  each 
frame  to  allocate  the  time  slot  for  each  subscriber  in  the  frame, 

Paper  approved  by the Editor for Communication  Switching of the 
IEEE Communications  Society for publication  without  oral  presenta- 
tion. Manuscript  received  September  30, 1977; revised  March 24,  1978. 

The  author  is  with the Department of Electrical  Engineering,  Uni- 
versity  of  Tokyo,  Bunkyo-ku,  Tokyo, 113 Japan. 

0090-6778/78/0800-1287$00.75 0 1978  IEEE 


