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ABSTRACT

In solving the Fokker-Planck equation as applied
to the first-order phase-locked loop, a Fourier series, with
time varying coefficients, is used to represent the modulo-2T
phase error probability density function. Solutions for the
Fourier coefficients are found analytically for some special
cases. Yor these cases the modulo-27 phase error probability
density functions are given analytically. However, for the
general case, a new technique for computing the Fourier co-
efficients is developed. The method is based upon the obser-
vation that the Fourier coefficients can be interpreted as
the state variables in an appropriate RLC ladder network.
The Fourier cdoefficients are computed efficiently by an RLC
ladder network simulation on a digital computer. Results are
shown for cases involving various signal-to-noise ratios and
initial conditions. Also, with the aid of the RLC ladderx
approach, the steady state modulo-2Tm phase error probability
density function and the variance are given in closed forms.

This thesis also presents linearization methods
applicable to first and second-order phase-locked loops.
These have resulted in a systematic method of obtaining the
transient statistics of both loops without recourse to the
Fokker-Planck technique. Results for different values of
signal-to-noise ratios are shown and compared with those ob-

tained by the RLC ladder appreach.

(1)
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CHAPTER 1
INTRODUCTION

Successful transmission of information through a phase-
coherent communication system requires, by definition; a re-
ceiver capable of determining or estimating the phase and fre-
quency of the received signal with as little error as possible.

In this thesis, we study the noise analysis of a non-
linear device called the phase-locked loop. that can be used
for tracking the phase of the carrier componenﬁ of the received
signal; this device thus generates a signal suitable for syn-
chronous demodulation. Furthermore, this device can be used
for demodulation of angle modulated signals (PM and FM) in the

presence of strong noise.

1.1 Nature of Phase-lock

A phase-locked loop (PLL) is a nonlinear device which
automatically controls an oscillator or a periodic function
generator so as to operate at a constant phase angle relative
to a reference signal source. Fig, 1 shows the fundamental
hardware structure of the loop with the appropriate signals.
The three basic components of a phase-locked loop are:

a) a phase detector (PD),

b) a linear time invariant low pass filter,

and ¢) a voltage-controlled oscillator (VCO).
The PLL operation can be described as follows:

The phase detector (multiplier) compares the phase of



V2 A sme(ﬂ

X(t)
X

—cme

LINEAR
FILTER

VOLTAGE —
CONTROLLED

Y2 K, cos g't)

OSCILLATOR

et

e(t)

Figure 1. Fundamental Hardware Structure of the
Phase—Locked Loop

ﬁ_fz

= 2

IF

FLTER [

VOLTAGE —
CONTROLLED le-
f, | OSCILLATOR

l - LOW-PASS

X" FLTER

—

Figure 2. Phase —Locked Loop Model Involving IF Filtering



a periodic input signal against the phase of the VCO; the
output of the PD is a measure of the phase difference between
its tweo inputs. The difference voltage is then filtered by
the loop filter and applied to the VCO. The control voltage
on the VCO changes the frequency in a direction that reduces
the phase difference between the input signal and the local
oscillator. )

When the loop is "locked"”, the control voltage is such
that the frequency of the VCO is exactly equal to the average
frequency of the input signal.

A slightly different explanation may provide a better
understanding of the loop operation. Suppose that the incoming
signal carries information on its phase or frequency, this
signal is inevitably corrupted by additive noise. The task
of a phaselock receiver is to reéroduce the original signal
while removing as much of the noise as possible.

To reproduce the signal the receiver makes use of a
local oscillator whose frequency is very close to that expect-
ed in the signal. The local oscillator and the incoming sig-
nal waveforms are compared with one another by a phase detec-
tor whose error output indicates the instantaneous phase dif-
ference. To suppress noise, the error is averaged over some
length of time and the averaged error is then used to control
the frequency of the oscillator.

Two important characteristics of the filter are that

the bandwidth should be very small and the filter should auto-

-matically track the signal frequency. These features, auto-



matic tracking and narrow bandwidth, account for the major
uses. of phaselock receiver, The narrow bandwidth makes it

capable of rejecting large amounts of noise.

1.2 Phase~locked Loop Components and Mechanization

It is not our purpose in this work to engage in exten-
sive descriptions of the components and equipment which compose
the phase-~locked loop. However, since our treatment is neces-
sarily motivated by practical considerations it is necessary
to mention the characteristics of components which pertain to
their performance.

The VCO is essentially a frequency modulator, of which
there are numerous varieties depending on the frequency range
of interest. The only essential characteristic required of
a phase-locked loop VCO is that its frequency displacement
from the quiescent frequency be strictly a linear function of
the input voltage over the desired frequency range.

The loop filter, as it 1is considered here, consists of
lumped passive elements and amplifiers connected to form a
low-pass f£ilter. However, in practical receivers some filter-
ing is often performed at an intermediate frequency (IF) by
modeling the loop as shown in Fig. 2, particularly when the
VCO quiescent frequency is far removed from the received-
signal frequency. This loop can be reduced to the model of
Fig. 1 [3].

The most complicated device to realize in the phase-

locked loop is the multiplier (Phase-~detector) because one



requires a perfect electronic multiplier which does not satur-
ate over the amplitude and frequency range of interest. How-
ever, it is shown [3] that essentially identical performance

is achieved using practical "chopper" multipliers.

1.3 History and Application

One example of phaselock - of a sort - has been in
existence for many years. Electric utilities maintéin the
average frequency of their generators extremely close to 60
Hz, largely so that electric clocks will not gain or lose time.
Frequency is regulated by a kind of phaselock locp in which
the signal is the time of day, ultimately derived from the
Bureau of Standards. This reference time is campared against
the timé indicated by a clock driven by the utility's genera-
tor. The comparing device is a phase detector in fact, al-
though not in name, and the turbine and generator constitute
a VCO., Any phase (time) discrepancy information is used to
adjust the speed of the turbine in a direction that will re-
duce the discrepancy. Filtering comes in part from inertia
of the rotating machinery and electrical inertia of the system
load.

This example, in which phase comparison and frequency
adjustment are performed on an intermittent basis and with
disturbances coming from variations of the load rather than
noise on the input signal, is perhaps somewhat strained and
atypical. Nonetheless, if one were so inclined, the process

could be analyzed on a phaselock basis.



The first widespread use of phase-locked loops was in
the synchronization circui;s for color television [2,3].

The application of phaselock technique in space began
with the launching of the first American artificial satellites.
These vehicles carried low-power (10mW) CW transmitters; re-
ceived signals were correspondingly weak. Due to Doppler
shift and the drift of the transmitting oscillator, there was
considerable uncertainty about the exact frequency of the re-
ceived signal. At the 108-MHz frequency originally used the
Doppler shift could range over a +3-KHz interval. With an
ordinary, fixed-tuned receiver, bandwidth would therefore have
to be at least 6-KHz, if not more,. Howeve?, the signal itself
occupies a very narrow spectrum, and could be contained in
something like a 6-Hz bandwidth.

Noise power in a receiver is directly proportional to
bandwidth. Therefore, if conventional techniques were used,

a noise penalty of 30db would have to be accepted. (The
nunbers have become even mbre spectacular as technology has
progressed; transmission frequencies have moved up to S-band,
making the‘Doppler range some 75 KHz,whereas receiver band-
width as small as 3 Hz have been achieved. The penalty for
conventional techniques would thus be about 47 db). Such
penalties are intolerable and that is why narrow-band, phase-
locked, tracking receivers are used.

Noise can be rejected by a narrow-band filter, but if
the filter is fixed the signal will almost never fall in the

passband and thus for a narrow filter to be usable it must be



capable of tracking the signal. A phase-locked loop is capable
of providing both the narrow bandwidth and the tracking that
are needed.

For a Doppler signal the information needed to deter-
mine vehicle velocity is the Doppler frequency shift. A
phase-lock receiver is well adapted to Doppler recovery, for
it has no frequency error when locked.

There are many other applications of the PLL; we refer
to {31 - [10].

Having seen that PLL's are used widely in many applica-
tions in modern communications dealing with noise, the noise
analysis of the PLL is therefore very important.

The main objective of this thesis is the noise analysis
of the phase-locked loop. This is carried out with the aid
of the RLC ladder network approach. This approach facilitates
the solution of the stated problem. The ladder network re-
presentation of the problem is new, and to the best knowledge
of the author, it has not been previously treated in the lit-
erature,

The thesis consists of six chapters, including the
introduction. In Chapter II, derivations of the equation
describing the loop operation and the corresponding Fokker-
Planck equation are presented. It is also shown how the
Fokker-Planck technique can be used to obtain the phase error
probability density function (PDF) of the first-order PLL.

Modulo-27 phase error probability density function of

the first-order PLL is dealt with in Chapter III. In this



chapter the Fourier series expansion of the PDF is presented

as well as procedures for computing the Fourier coefficients.
Analytic solutions for two special cases (namely, Case 1:

B=0, Y=0 and Case 2: PB=0, v#0) are given. An approximate
closed form soclution, based on the successive approximation
method, is also given. The RLC ladder network approach which
is used to investigate the stability df the system and to solve
for the Fourier coefficients, is introduced., Steady state
analysis 1is also'given.

Chapter IV deals with the statistics of the linearized
first and second order PLL's without recourse to the Fokker-
Planck equation.

The results of the numerical solution are given, and
compared with other published results, in Chapter V. Also
in this chaptef the results of the linearized loop are plotted.

Chapter VI then outlines some concluding remarks.
Finally, nine appendices set out the mathematical proof of

some of the confronted equations.



CHAPTER II

PLL ANALYSIS BY USING THE FOKKER-PLANCK TECHNIQUE

2.1 Introduction

The applications of the PLL mentioned in Chapter I and
many others spurred great interest in the development of phase-
locking techniques. Due to the inherent nonlinearity of the
loop phase detector, early attempts to analyze phase-locked
loop behavior involved the use of graphical phase plane methods
which are summarized by Viterbi [3]. The initial use of
Fokker-Planck technique, which is described in the third part
of Ehis chapter, to determine the steady‘state probability
distribution of the first-order loop phase-error was accomp-
lished by Tikhonov [11,12]. Since then much work has been
done using the Fokker-Planck method of analysisﬁbut little has
been published dealing with the transient behavior of the
phase-error process.

Various techniques have been employed in attempting to
statistically describe the phase-error process of first order
phase-locked loops. Stationary phase-error distributions are
well documented by Viterbi [3] and Tikhonov [11]and[l2]. Trans-
ient solutions of the Fokker-Planck equatidn have been obtained
by Dominiak and Pickholtz [13], Grandoni and Mengali [153] and
by Ohlson and Rutherford [14]. Dominiak and Pickheltz [13]
arrived at a direct numerical solution to the Fokker-Planck
equation by subjecting it to the same numerical procedures as

applied to the one-dimensional heat-flow equation by Von Neumann
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R

and Richtmyer [16]. Grandoni and Mengali [15] have proposed
an approximate method for solving the Fokker-Planck equation
for the first-order PLL. The method consists of dimposing a
gaussian structure on the probability density function,. Théy
have obtained a set of ordinary, simultaneous differential
equations for the mean value and the variance of the phase
error distribution. These equations have been solved numeri-
cally. Ohlson and Rutherford {14) have solved the Fokker-
Planck equation, as applied to the first-order PLL, numeri-
cally. They expressed the solution in terms of the product
of two functions; one of which is independent of time. The
other function is evaluated numerically on a digital computer
for discrete values of time.

This study was started in the belief that_the various
work in the analysis of the transient behavior of the PLL
could be expanded and improved. Dominiak and Pickholtz [13]
create serious doubt as to the completeness and validity of
their technique in that their conclusion of insignificant

build up of probability mass at ¢ = *2kw conflicts greatly

with qualitative estimates of Viterbi [3] and [17] and Lindsey

[10], and with the numerical results obtained by Ohlson and
Rutherford [14]. Grandoni and Mengali's results {15] do not
agree with the exact probability density function, which can-
not be gaussian due to the loop nonlinearity, in particular
for small signal-to-noise ratio. Ohlson and Rutherford's [14]
computation technique 1s extremely time consuming on any com-
puter. In their approach up to 40,000 iterations [14]and[41] are required

for each case to obtain the giveh results.
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2.2 Fquation Describing the PLL Operation

The stochastic differential equation of the phase error
is obtained using the configuration of Fig, 1. The phase de-

tector output is

X(t) 2AKlsin8(t)cose'(t)

AKl[sin(B(t)—e'(t))+ sin(6(t)+0"'(t))] (2.1)

where 9(t) and 8'(t) are the input phase and the VCO output
phase respectively.

The linear time-invarient, low-pass filter filters out
the sum frequency component of its input, X(t), while passing
the filtered version of the difference-frequency component;

that is,
t

e(t) = eo(t) + AKi j sin[6(u)-8"(u) lh(t-u)du

0 t >0 (2.2)

‘where it is assumed that the input is'applied at t=o.

eo(t) is the zero-input response which depends only on the
initial conditions existing in the filter circuit at t=o.

In cases where we have control over these initial cqnditions
we generally set them equal to zero, so that eo(t) =0 .

The weighting function h(t) 1is known as the impulse response
of the filter.

The output frequency of the VCO is

—_—i——de('l £) = 4 K e(t) (2.3)
t 0 2 .
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where is the quiescent frequency of the VCO,
0

Assuming that the filter has zero initial conditions;
that 1is eo(t) = 0, equations (2.1), (2.2) and (2.3) combine

to give
t
t 0 12
0

Now if we define the phase error
¢(t) = 8(t) - 68'(¢t)

and the loop gain

we have
t

d¢ét) - deéi) - w - AK J h(t-u)sing (u)du . (2.4)

0

For a given input phase ©(t), the solution ¢(t) to the
integro-differential equation (2.4) describes exactly the
operation of the PLL,

In order to avoid repeating the constant w0 through-
out the analysis, one may define the input phase and the VCO

phase relative to the VCO center frequency as

8 (t) a(t) - w t
1 0

8 (t) p'(t) - p t .
2 0
- Then

o(e) = 0 (&) - 6 (t)
! 2

and (2.4) reduces to
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o
aelt) _ a1 g [ h(t-u)sind (u)du (2.5)
0

which can be modeled as shown in Fig.3.

Additive noise, n{(t), at the input is assumed to be
a . narrowband stacionary gaussian process with zero-mean and
two-sided spectral density %Q, centered about the signal frequency Wo
n(t) has the following narrow-band noise representation [8]

n{t) = 2-Ln1(t)sinw0t + n (t)coswot}
2

where nl(t) and nz(t) are independent gaussian processes
with zero-mean and identical spectral densities, which are
the same as the spectral density of n(t) but translated

downward in freqﬁency soc as to be centered about zero fre-

guency. A derivation similar to the derivation of (2.35) is

Aasradd
Lol S T

able in [3] znd [17) with the neoige having the form
n'(t) = -n (t)sinez(t) + n {(t)cosbB (t)
1 2 2

where n'(t) may be treated as a white gaussian random pro-
N

cess with spectral density —y This leads to the model of

the PLL in Fig, 4. The equation of operation of the PLL is

now given by

© 4o (t) t
d¢é§) = ét - K h{t-u) [Asind {u) +.n'(u)]du . (2.6)
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Figure 3- Phase—Locked Loop Modeled Without Noise
ln‘(f)

o) () LINEAR
AL A SIN( ) +——{>——-» FILTER

C
ey /

[-)

A

Figure 4. Phase—Locked Loop Modeled With Additive Noise

Figure 5. Continuous Markov Process



15

2.3 Fokker-Planck Eqﬁation

In this section the effect of stationary white gaussian
noise will be treated. Before proceeding one should define
a Markov process. A process is said to be Markov if the
transition-probability distributioﬁ {or density function) is
a function only of the present value of the process and not
of its past values. It should be noted that physical process-
es described by a differential equation with a white gaussian
driving function will generally be Markov, provided the equa-

tion is of the first-order.

2.3.1 Relations Governing PDF of Markov Processes

Let p(p,t) be the PDF of the phase error ¢(t) after
the initial application of thersignal. This quantity is, of
course, a function of the initial condition, namely the phase
error at time t=0 , which is denoted ¢0 . It is possible
that its initial PDF p(é,0) is given. This description in-
cludes the possibility of a deterministic initial condition,

in which case the initial density function becomes

P(¢30) = 6(¢_¢0)

where &( ) is the Dirac delta function,

Henceforth, the conditional probability density is denoted

by p(¢[¢0,t). The quantity p(¢|¢0,t)d¢ is the probability
that the value of the process lies in the infinitesimal inter-
val between ¢ and ¢+d¢ , given that t seconds ago its

value was ¢ . Consider the continuous Markov process of
0 :
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Fig. 5 [3), where t and At are arbitrary and the values of

the process at the three instants ¢t , ¢t and t are ¢ , z,
0 1 2 0

and ¢ respectively. Since the transition probability at

t1 depends only on =z, it follows that the probability dens-

ity at ¢t is independent of the value ¢ at t . Thus
2 - 0 0

p(¢|z,At;¢0,t+At) = p(d|z,At) . (2.7)
By the definition of a Markov process, the joint probability

density of the three samples of the process may be denoted

p(d,z,6 ) after omitting the relative times. Then
0’

p(¢,2,9 ) p(z,¢o)p(¢1z,¢0)

p(z,¢0)p(¢lz) . (2.8)

Integrating both sides of (2,8) with respect to =z
and dividing by p(¢0) , one obtains after inserting the

relative times,
<0

p(¢|¢0,t+At) = J p(zl¢0,t)p(¢|z,ﬁt)dz . (2.9)

Equation (2.9) is the fundamental relation on the
conditional density function of a Markov process. It is
called the Smoluchowski equation (or the Chapman-Kolmogorov
equation). From (2.9) a partial differential equation in
terms of p(¢,t) can be derived [3] and [19]. The derivation

is given in Appendix H.

BP(¢|¢ :t) -1 n an
= T S gim 2, (e e )] (2.10)

n>1



17

where w
>. 1 N i
D (¢) = Lim ET[ (Az) "p(hz|z)dAz
At=o
- OO
s N
= Lim E{([‘zé k3] (2.11)
At-o

Equation (2.10) is called fhe Fokker-Planck equation,

It is shown [20] that the Fokker-Planck equation (2.10)
applies equally to the more general conditional probabiiity
density p(¢|8($0),t) , Wwhere S(¢0) is the initial distribu-
tion of ¢ at t=0. This result follows from the fact that
the derivation of (2.10) from (2.9) [3] remains wvalid if ¢0
is replaced by S(¢D).

The initial conditicen for the Fokker-Planck equation
can be obtained as follows. When t=0 , p equals the given
initial probability density. Thus, in (2.10) when p(¢,t)
is an abbreviation for p(¢|S(¢D),t), the appropriate initial

condition is

p(¢,0) = S(d:o) . (2.12)

On the other hand, when p(¢,t) 1is an abbreviation for

p(¢|e »t) , the appropriate initial condition is
0
p(¢,0) = 6(¢—¢0) (2.13)

where 6(¢—¢0) is a Dirac delta function.

Hence, we may write (2.10) in the form

n

8p(g.t) _ oy 17 3

nel n! ogn

[P ()p(d, )] (2.14)
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keeping in mind the appropriate initial condition.

2.3.2 Fokker-Planck Equation for the First Order PLL

Consider the nonlinear model in the presence of noise
derived in Sec. 2.2, Fig. 3, where the loop filter has unity
transfer function and the VCO has a quiescent frequency wo
At the instant t=0 one applies a signal with an amplitude
A and frequency w which is close to the quiescent frequency
wo of the>oscillator. Additive noise, n(t) , at the front
end of the receiver is a zero-mean gaussian process whose
spectral density is essentially flat over the frequency range
of the receiver and may be assumed white with value

-0
- 2
The equation describing the operation from (2.6) is

éié_;z_)_ = (w-w ) - K[Asing(t) + n'(£)] . (2.15)

The noise n'(t) 1is a stationary gaussian process with zero-
mean and it is nearly white over the frequency range of inter-
est. Therefore, it is concluded that the soclution of (2.15)
is a Markov process [3] and [18]. Hence, the phase error
probability density function should satisfy equation (2.14)}.

From (2.15) one obtains

Ap(t) = ¢ (t+At) - ¢(t)

t+AL
[(w-w ) - AKsing(t)]at-K f n'(u)du . (2.16)
0
£

Introducing (2.16) into (2.11) yields,

Dl(¢) = (w—wo) - AKsing , (2.17)
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n
!
!
I

o~

fat)

;——\

(o e}

p—_

D2(¢’) '2 b 3

and

!
o

D_(9) n > 3 (2.19)

Equation (2.19) is valid for all processes which satis-
fy a first-order ordinary differential equation with a white
gaussian driving function, that is, a Markov process.

Substitution of(2,17) - (2.19) into (2.14) yields

| K*N  92p(¢,t)
9 (é;t) - %E-I(M—MO—AKSiné)P(¢st)] G : a¢2

(2.20)

It is convenient to express (2.20) in normalized form by

letting
BL = %E Loop-noise bandwidth
A2
a = X B Signal-to-noise ratio
oL in the loop bandwidth
w—w
Y = Z§~i Detuning factor
L
T = éBLt Normalized time
B = 1/a Nolse-to-signal ratio

in the loop bandwidth . (2.21)

Substituting (2.21) into (2.20) yields the normalized Fokker-

Planck equation

2
gﬂé%Lll = g% [(sin¢-y)p(d,T)] + Bg—gé%Lil . (2.22)
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Solution of (2.22) with the appropriate initial condition
yields a complete statistical description of the process

¢(t). However, an analytic solution of (2.22) has never

been found.



CHAPTER III
MODULO-2T PROBABILITY DENSITY FUNCTICN OF THE FIRST-ORDER PLL

3.1 Introduction

The result of greatest interest is P(®,Tt), where &
is taken modulo-2w; that is, if the actual phase is ¢ , we
consider instead a phase of @& = ¢—2nﬂ , where n 1s an in-
teger such that |&|<mw

The reason for this unusual definition of phase lies
in the unfortunate mathematical properties of the phase error
variance. . Because there is some finite, albelt very small,
ptobability of skipping cycles (phase-jumps) 1if any (gaussian)
noise is present, an infinite number of cycles will have been
skipped after an infinite time. Therefore, because the averag-
ing interval for determining mean-square phase error, in the
steady state, must be infinite to be mathematically correct,
the rigorous application of the conventional definition of
phase error leads to an infinite answer. The definition of
phase (modulo-2m) avoids this mathematical difficulty. Further-
more, most laboratory phase-meters have a range of only 2T
radians,

| It is shown [3] that the modulo-2T probability density
function, P(®,T) , where
0
P(d,T) = kZ oop(<1>+21rk,t) |o|<n (3.1)

satisfies the Fokker-Planck equation

21
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2
az%%*ll = %a [(sin®-y)P(®,T)] + B Q_RLEiLL . (3.2)
30

Also, P($,T) must be periodic in ¢ , with period 2m ,
since for any integer m

0

P(o+2mm,T) = )}  ple+2m(mtk),T]

= 00

0

¥ p (9+27n,T)

n=-«9

P(®,T)

Therefore, we may solve (3.2) over the interval of just

one period, |®|<m , with the normalizing condition
. :
f P(d,T)dd = 1 for all T (3.3)
-7

and with the appropriate initial condition that will be dis-

cussed in Sec.(3.2.1). The initial conditions to be consider-
ed are

P(2,0) = = || <m (3.4)
and

P(2,0) = 8(2-0 ) &< (3.5)
where ¢ } is the Dirac delta function and @0 is the

initial phase error.

A solution of (3.2) is sought and will lead to a stat-

istical description of the first-order PLL.
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3.2 Fourier Series Expansion of the Phase Error Probability

Density Function

Based on the fact that P{(&¢,t) is periodic, a Fourier
series with time varying coefficients can be used to represent

P(d,T) in the interval &[-w,m] . That is,

P(8,T) = = a (1) + § [a_(t)cosnd+b (T)sinn®] . (3.6)
2 0 n>1 o n
Hence, the phase error variance GE(T) defined as
T
03 (D) =J 2P (®,T)dod (3.7)
-7
will be
| 2 (-1)"a_(1)
ol(r) = 3— + 41 ] 2 . (3.8)
3 2
n>1 n

Determination of the Fourier series coefficients an(T),
bn(T) and a (T) 1leads to the solution of P(®,T) and
0
2
cé(r).
The coefficient a (T) can be determined directly by
0

applying the normalizing condition (3.3) which yields,
1 .
- = 3.
aO(T) m (3.9)

Introducing (3.6) intb the Fokker-Planck equation (3.2)

and omitting the time T for the moment yields,
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z (é cosnd+b sinnd) (sin®-v) E (-na sinn®+nb cosn?d)
31 n n o1 n n

+ cos@[ia + ) (a_cosnd+b_sinnd )]
270 5 @ n

B E (nzancosn®+n2b sinn®)
n>1l n

1l

Y —nansiné'sinn©+z nb_sin®.cosn¢d
n>1 n>1 I

+ v E na_sinnd-y Z nb_cosn®
n>1 " a1 "

+ a cosd+ )} a_cosd.cosnd
0 n>1 2

+ z b cos®'sinn®—82 n?a cosnd
n n
n>1 n>1

B ) n%b sinnd . (3.10)
n>1 n

Making use of the trigenometric identities,

sinx+* sinnx = %[cos(n—l)x—cos(n+l)x]
1

cosX*cosnx = E[cos(n—l)x+cos(n+l)x]

sinx*cosnx = %[sin(n+l)x—sin(n—l)x]

CosSX*sginnx = %[sin(n+l)x+sin(n—l)x]

and combining the similar terms in (3.10) yields,
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n+l

) (éncosn®+bnsinn®) -3 nglancos(n—l)®+ ) ancos(n+l)®

n>1 n>1 n>1

a
Y 2 nbncosn®+—%cos@—8 Y nzancosn@

n>1 n>1

n-1 . ntl ,
- E 5 bn51n(n—l)®+ 2 —E—bn51n(n+l)®

n>i n>1
+ v ) na_sinn®-8 § n?b_sinn® . (3.11)
n n
n>1 n>1

After appropriate redefinitions of the dummy index in certain

of the sums, (3.11) becomes

o0
. . -n n
E (ancosn®+bn51nn®) = ) —Ean+1cosn®+ z Ean_lcosn®
n>1 n=o n>2
a
-y ¥ nbncosn®—8 Y nzancosn®+51cos®
n>; n>1
o)
n n
- 2 +b sinnd+ 2 b sinn®
n=02 nt; nZZZ n-1
+ v ) nansinn@—B ) nzbnsinn® . (3.12)
. n21 n>1

Equating the coefficients of each harmonic in (3.12) yields,

e
]

n —gn2, - 1 -
> an_1 313 an 5 an+1 ann s

» — n 2
b =3 bn_l—Bn b - b_.,*tyna_ , n=1,2,3,...

n

s

and

a = % and b =0 " (3.13)
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Equations (3.13) constitute two coupled systems of
simultanecus differential equations of infinite dimension ;

their solution yields an(T) and bn(T).

3.3 Initial Conditions

In this study we consider two cases of initial conditions.

3.3,1 Deterministic Case

When the initial phase error at time 7T=0 1is known,

it will be denoted by & , hence
)
P(®,0) = 6(@—@0) . (3.14)

The corresponding initial conditions of the Fourier coéffi—
cients an(O) and bn(O) can be determined as follows,

Let qn(®—®0) be periodic pulse train of period 21
and duration 2h , where h<7/2. Consider only one period as

shown in Fig. 6.

q(®-¢ ) = 0 |®—®J>h ,
|¢—®0|5ﬁ (3.15)
= 1 -
a(e-2 ) = 5p | @ ®J<h
and
m
f q(®-2 )d?® = 1 . (3.16)

Since q 1s periodiec, a Fourier series can be used to repre-

sent q 1in the interval [-m,m] ; that is,
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Figure 6. Dirac Delta Function Representation
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where

and

1 .
(-0 ) = 3
1 T
a = = f q(d-¢ )do
[} T 0
-
) 1 ®0+h 1 o - 1
] 2h T
& -h
0
1 (T
an =T ‘ q(@—@o)cosn® dé
-
-® +h
s = L | o 1 :
an = o } o cosn® dd
® ~-h
0
_ 1 sin nh
= TTcosn@0 oh

I
3|

The Dirac delta function can be defined as

§(9-9 )
0

si

()
-

nn® sin nh
0 nh

Lim q(9-9 )
h=+o 0

i + E (ﬁncosn¢+gnsinn®)

28

(3.17)

(3.18)

(3.19)
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= %— + 1 Lim 2 (cosnd Ei&ggﬁcosn®+sinn@ EiEEEE sinn®)
T T nvo n>1 0 0 o 1
- L + L E {(cosn® cosn®+sinn® sinnd)
27 0 0
n>1
=1 41 Y cosn(®-90 ) . (3.20)
27 ™ 0
n>1
Hence
a (0) = L cosnd
n m i} ’
and
b (0) = % sinnd (3.21)
n - . . .

The Fourier series expansion of the Dirac delta function is

discussed in [10], [231, [24] and [311.

3.3.2 Arbitrary Initial Phase Distribution

If the initial phase error at time T=0 is complete-
ly unknown, it will be assumed to have a uniform distribution;

2

The corresponding initial conditions of the Fourier

coefficients, an(O) and bn(O) , will be

]
o

a_(0)

(3.23)

Il
o

b_(0)
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3.4 Computation of the Fourier Series Coefficients

To compute the Fourier series coefficients (an(T)
and bn(T)) the two coupled systems of infinite dimension
(3.13) have to be solved with the initial conditions discussed
in Sec. 3.3.

Unfortunately, a general closed form solution of (3.13)
cannot be obtained. However for some special cases an analy-
tic solution is obtained in Seé. 3.4.1. An analytic approx-
imate solution based on the successive approximation method
is given in Sec. 3.4.2.

It should be mentioned that the Fourier coefficients

satisfy the Bessel inequality [21]

2

a ™
L+ T (al(v) +bi(m) < E f P2 (0,7)dd (3.24)

>1
nZ ~

for all =T>0

However, since P(d,1) 1is a continuous, finite func-
tion of ¢ for T>0 , so is PZ(@,T) , aod thus, the inte-
gration in (3.24) exists and is finite. " Furthermore, the

Bessel inequality (3.24) implies that

Iim a (T) =0
n>® n
and
lim b (1) = 0 for fixed T . (3.25)
n->co n

Equations (3.25) together with the truncation justification dis-

cussed in Appendix I indicate that the infinite system of equations
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(3.13) can be truncated and hence, P(®,T) and Gé(T) R
from (3.6) and (3.8) respectively, can be calculated with
considerable accuracy by using only a few terms of the ex-
pansion. Therefore, a solution of the two coupled systems
(3.13) with finite dimension is sought. This is done by
simulation on a digital computer. The results are discussed
in Chapter V. A solution can also be obtained by implement-
ing any of the well established techniques used for the anal-
ysis of RLC ladder networks [33]-[401. The ladder network

representation of the problem is given in Sec. 3.5.

3.4.1 Analytic solutions for the Fourier Coefficients

(Special Cases)

Analytic solutions of the infinite systems (3.13) for
two specialrcases are presented. These cases correspond to
two different modes of operation of the PLL. It is assumed
in both cases that there is no additive noise with the incom-

ing signal; that is, B=0 .

3.4.1a Case of B=0 and y=0

This is the case when the frequency of the incoming
signal 1s known so that the VCO quiescent frequency can be
set accordingly; consequently the problem is merely one of
tracking the phase. The solution is sought for the case
where the initial phase error is completely unknown and is
therefore assﬁmed to have a uniform distribution; that is,
P(®,0) = %ﬁ? N |¢| X T and zero elsewhere. This is equivalent to

an(O) = bn(O) = 0,
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For this special case the infinite systems (3.13) be-

come
- = B o
an(T) T2 an—l(T) 2 an+1(T) ?
and
..B_ ._Il =
bn(T) =3 bn_l(T) > bn+1(T) n=1,2,3,.. (3.26)
with
1
aO =7 s b0 = 0 s
and
an(O) = bn(O) = 0 . (3.27)
Since b =0 and bn(O) = 0 4t is evident that
0
bn(T) = 0 for all T>0 . (3.28)

Y

To determine an(T) , a solution of the form
T (r)
T
a, (1) = Z g (1)K (3.29)

K(r)

i1s attempted. Where is defined as

KT = R(R-1)(K-2) .... (K-r+1)
T(R+1)
= T(K-r+1) ' (3.30)

Noticing that when K is a nonnegative integer the series
(3.29) will obviously terminate with X+1 terms or less, and
thus convergence questions then are not involved. If use is

made of the easily established relationship
kg (F) = g (5D g (0D (3.31)

(3.26) can be put in the form



33
K k() oo § g k() .y B gr+1K(r) (3.32)

after appropriate redefinitions of the dummy index in certain
of the sums. The requirement that the coefficients of all
relevant factorial powers of K vanish independently then

yields the conditions
g (1) = 0 ' (3.33)
in correspondence with 1r=0 , and the recurrence formula

ér(r) = -rgr(f) - EL%iil gr+1(T) r=1,2,3,.. . (3.34)

The initial condition, gr(O) , corresponding to an(O) can

be easily evaluated from (3.29). The result is
G
g .(0) = -7 . (3.35)

Equations (3.34) can be written in matrix form as

g = Bg (3.36)
where
= [ k&
g =1[g, 8 v 8. ..
and
-1 -1
-2 -3 0
B = -3 -6 : (3.37)
- —r(r+l)
* 2
0
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The matrix B 1is an upper triangular infinite matrix which
according to Cooke [26] has eigenvalues kn that lie on the

main diagonal. Hence
A= -n where n=1l,2,3,..... (3.38)
and therefore the solution of (3.36) can be put in the form

g(t) = ) dU.e (3.39)

where dn 's are constants to be determined from the initial

conditions and Un is the eigenvector corresponding to ln.

As shown in Appendix A the modal matrix; that is, the

matrix that has as its columns the eigenvectors, 1is

211 o1y

@ = {agy} g TaTo )

i-1
- 2 J"}.
=— (3010 - (3.40)
Hence
r-1 «©
_ 2 (n-1)! -nT
gr(T) T ort(r-1)t Z (n-xr)! dn € (3.41)
n=r
The constants dn , determined in Appendix B, are
- n 2
dn = (-1) p . (3.42)

By making use of the known relation [27]

= I'(r) (L+z)” %

n=o n!

lz] > 1 ; if r>0 |, Z# -1 (3.43)
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the result of introducing (3.42) into (3.41) is

(-1)* 2 r
g (1) = [ ] (3.44)
r Tr! eT+l
Hence,
1 . K 2
T
ae(t) =2 1 (-7 [ == (3.45)
r=o e +1
which is the Binomial series of L (1~ 2 )K
T T
e +1
Thus,
_1 K
aK(T) == [tanh T/2] . (3.46)

This result can also be obtained by another method mentioned
in Appendix C.

Having solved for the Fourier coefficients, the modulo-
271 probability density function and the variance of the phase
error can be obtained by introducing (3.28%) and (3.46) into

(3.6) and (3.8) respectively

P(d,7) = = + =~ ¥ [tanh T/2]%cosnd , (3.47)
2m i n~1
and
12 (-1)" n
o2(t) = — + 4 § [tanh T/2] . (3.48)
i} 3 2
n>i n

In Appendix D it is shown that the infinite sum in

(3.47) converges to

1
2n(cosh T - sinh Te+cosd)

P(d,T) . (3.49)
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3.4.1b Case of B=0 and Y#0

In this case the frequency of the incoming signal différs
from the quiescent frequency of the VCO; that ié, Y#0 . This
is a more practical situation. The frequency difference may
be due to an actual difference between the transmitter and re-
ceiver, or it may be due to a Doppler shift.

The initial phase error is assumed to have a uniform

distribution. For this case the infinite systems (3.13) become

bt = - —
S0 =2a (0 - Fa (1) - yab (D ,
= n _r =
b (1) = > bn—l(T) 2 bn+l(T) + Ynan(T) , n=1,2,3,...
and
1
a = — and b =0 . (3.50)
0 m 0

Based on the solution of the case where Yy=0 and a
knowledge of the stationary solution of (3.50), the complete

solution of (3.50) with the initial conditions
an(O) = bn(O) = 0 (3.51)

is assumed in the form

]

a (1) = 2 [g(1)1" cos(nf (1)) :

and (3.52)
b_ (1) [g(t) 1" sin(nf(T))

ER

where f£(t) and g(t) are functions of time T with inditial

values

g(0) = £(0) = 0 (3.53)
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corresponding to (3.51).
Introducing (3.52) into (3.50) and omitting the time
T for the moment yields,

. . 1 2
~gfsin(nf)+gcos(nf) = —cos((n—l)f)—g—cos((n+l)f)—Ygsin(nf)

2 2
(3.54)
. . 1 5i .
gfcos(nf)+gsin(nf) = 531n((n—1)f)—2 sin((n+l)£f)+ygcos(nf)
(3.55)
where
: _ af ;- 4z
£ = dt and & = 4t

Multiplication of (3.54) by cos{nf) and (3.55) by sin(nf)
and addition yield:  (after making use of the trigenometric

identity cos(x-y) = cosx*cosy + sinxe*siny) .

*

g = %(1‘82)C08f . (3.56)

Also multiplication of (3.54) by sin(nf) and (3.55) by

cos(nf) and subtracting yield (after making use of the trig-

enometric identity sin(x-y) = sinx*cosy - cosx*siny) R
. - 1+g?

Solutions of the nonlinear, simultaneous differential
equations (3.56) and (3.57) are given in Appendix E.

The results are:

i) For vy < 1

£(1) = arctan { —I— tanh(%/l—yﬂ} (3.58)
V1-y2 :
-
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and -
sinh (5V1—Y2)
g(t) = . (3.59)

/goshz(%/l-Yz)—Yz

ii) For vy > 1

T
£(t) = arctan { —Y— £an(zYY*-1) (3.60)
VYZ-1
and N
sin (Em)
g(t) = (3.61)
/y2-cos? (5V¥2-1)
iii} For vy =1
f(1) = arctan (Iz-) (3.62)
and
g(1) = ——
JiFiZ (3.63)

Introducing equations (3.58)-(3.63) into (3.52) yields
the corresponding Fourier coefficients which are to be substit-
uted into equations (3.6) to yield the modulo~27T probability
density functions of the phase error in the form of an infin-
ite series for each case. In Appendix F it is shown that these

infinite series, for different wvalues of vy , converge to

P(e,T) = 2= Loy
m cosh TI—YZ—Vl—Yz sinh Tl-cos®+y(l—cosh Tl)siné
(3.64)
where T, = V1-y > Y<1 ,
P(d,T) = = , (3.65)

g(12+2-2Tcosd-T2sind)

when vy =1
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and

¥2-1

Yz—cost-/Y2-l sinTzcos®+Y(l—cosT2)sin®

p(d,T) = (3.66)

1
2T

where T2 = Tvy2-1 . ¥>1

Hence for y<1 , P(®,7) will tend to its stationary
value P(®,*) = 6(@-@0) , @0 is the steady state value of

the phase error. It is shown in Sec. 3.6 that

@0 = arcsin Y . {(3.67)

For +v>1 it follows directly from (3.66) that P(d,T) 1is
periodic with respect to T and cannot tend to any limit
with increasing T . 1In this case the phase erro? is a period-
ic nonstafionary process.

Alternatively, if (w—wo) < AK the loop locks with a
steady state phase error @0 = arcsin y. If (w—wo) > AK the
loop never achieves lock; the phase error continues to increase

or decrease forever along a sinusiodal trajectory.

3.4.2 Approximate Solution in Closed Form

An approximate solution of (3.13) in closed form can
be obtained by the successive approximation method. Without
loss in generality, the case when +y=0 and P(®,0) = 6(9)

is considered. This is equivalent to solving the system

o
~
“
g

]

(Y1)

a _, (1) -n’Ba () - 3 a (D)

(3.68)

3=

. 21 _
with a = 7 and an(O) =
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Multiplying both sides of (3.68) by e T and re-

arranging some of the terms yields,

d n2BT

Eenst
dt

(e" Mla_(1)) = 3 (a,_ (¥) = a , (D) . (3.69)

By integration (3.69) becomes

-n2 -2 T 2
a (1) = LT BT, B TRUET f la,_ ()-a, (£)]e" Btae.

2
0 (3.70)
As an initial guess, choosing aéO)(T) = an(O) = % to
be substituted on the right-hand side of (3.70) to yield, as
a first approximation,
(1) _ 1 -n%BT
a_ {(t) T © (3.71)

Introducing (3.71) into the right-hand side of (3.70) yields,

as a second approximation,

-n2BT n ~(n%+1) 8T

aiZ)(T) = % e + )[(chosh€+sinh€)e

Bm(4n2-1

-n2BT

- 2ne ] (3.72)

where € = 2nBT .

As a third approximation one obtains

2
) le-nst n_ ze-(n +1) BT

(3)
a, (D * one hnZ-1

{(2ncoshe + sinheg)
-(n?+1)
be (n Bt

B(lmz_l)z(lmz_g)[2n(4nl’-9n2+4)cosh€+(4nl’-5n2+3)sinhe]
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e~(n2+4)BT
Y T AR (AnZ-9)

{2ncosh?e + 3sinh2g)

2
3ne n® 8t

i , | R
+ B(4n2-1)2(4n%-9) (4n"*-9n°+4)
— 2 - 2 _ )
- ﬁzgYE_ﬁi CneRT e BT } (3.73)
an"-1 7 2B(4n?-9) T hme-1 : ,

For more successive approximations it is more convenient to

rewrite (3.70) in the form

2SKFD) gy o L mnfBry n [T ®BCTe) (K)o (KD gy g,
' Ll 2 n-) ni

n

]
(3.74)

where the superccript K denotes the gth approximation.
The form of higher order approximation is not given

because it is extremely lengthy.

3.5 RLC Ladder Network Representation

More insight intothe system of equations (3.13), and
hence to the analysis of the PLL, can be obtained from a network
theory point of view.

Equations (3.13) may be considered és the state equa-
tions of RLC ladder networks that have the Fourier coefficients
as state variables.

This network representation of the problem provides a
number of advantages, some are listed here:

a) Solution for the Fourier coefficients can be obtalned
vwith the aid of a ladder network.

It is mentioned in the preceding section that the



b)

c)
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infinite system (3.13) can be truncated, hence a solu-
tion can be obtained by applying one of the many tech-
niques available in the literature for the analysis of
a finite RLC ladder network [33]-[40].

By the virtue of this development the analysis of
ladder networks is directly applicable to the analysis
of the PLL,.

Stability study of the solution, for both finite and
infinite systems, can be done via network theory.
Stability of the finite system is discussed in Sec.
3.5.2a and that of the infinite system in Sec. 3.5.2b.
A study and interpretation of the transient process

of the PLL, for different initial conditions and SNR,

can be made in a laboratory using an RLC ladder network

simulation.

Realization of the RLC Ladder Networks

This section gives the realization of the RLC ladder

networks that have the Fourier coefficients, an(T) and bn(T),

as. state variables.

Consider the two infinite, coupled RLC ladder networks

shown in Fig. 7 with state equations given by

a3

R

: 1 1 1 E

= oem - — — ——— b + -
4 T % "% L 7L

1 1 1 1
. G g
a = .1'___ a - 2 a - .1;._ a - 2 b
2 c 1 c 2 c 3 c 2
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R T
; = - —3 1 _ 3
s L%, L 2, L2 L b3
3 3 3 3
R G r
: = fo(or 1 _n, _n, L 1 o, Bn
a =1 (or )an_1 . (or Ya = 7—(or T )an+1 (ot )b .
n n n n n n n
R r
" 1
b =_.._L _ = ___1_
1 L bl L % "1 a,
1 1 1
. G g
b =-1—b __2...b _l__b +_g_a
2 c 1 c 2 c 3 c 2
2 2 2 2
R r
. _l—— ~_.3_ __1—- 4
ba L bz L ba L bq + L as
3 3 3 3
R ¢ .
b= 1 (or = _on, ’ny. 1 . 1 Tn, &n
b, =1 (or b - (or 7 Yo - 7—(or )b+ 7 (or TD)ay
n n n n n
where b = b(T) and a = a(t). (3.75)

For the two systems (3.13) and (3.75) to be identical, the

elements of the ladder networks should have the values

Rn {or Gn) = 28n ’
= 2

Ln {or cn) =0 s

r~(or 8,) = 2 5

(3.76)

]
I
==
=]
il
‘_J
[y
-
(U]
]

and
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The two infinite ladder networks of Fig. 7 can be combined
intc one network with the appropriate choice for the coupling.
It is found that the coupling elements can be ideal gyrators
which are passive nonreciprocal two ports. The resulting

network is shown in Fig. 8.

3.5.2 Stability Study

3.5.2a Stability of the Finite RLC Ladder RNetwork

Since in the general case equations (3.13) have not been
solved in closed form, it is expedient to resort toc a numeri-
cal solution. In this case a finite number of sections of the
RLC ladder network is used. Hence, a sta”ility study of the
finite system is necessafy. This is carried out by applying
the Liapunov method of stability to the ladder network of n
sections in Fig. 8.

For zero input, the state equations can be rewritten
as

AZ = - HZ (3.77)

wvhere —~— —

)
2

b 2n




11k

and

A the symmetric part of

R,

A the skew symmetric part of H

.

1/2

28

1/3
1/2n
1
1/2
1/3
1/2n
= H = H + H
22 118 11k ?
11
1 o —_
2
3
0 2n

11
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H = "+, = I . .
) 27y (3.78)

2n

where n 1is the number of ladder sectiomns.

Now let us pick the function

v(z) Az zThz > 0 ¥z £ 0 (3.79)

as a tentative Liapunov function for the system (3.77). Then

'V(Z) along any trajectory is obtained as

% 3Thz + 12Tz

V(Z) >

1]

i T TA—lT

= - = Z°H Az - %ZTAA-IHZ

[y*]

[

= -+ 2T w2

HooN

-2 HSZ (3.80)

where HS is the symmetric part of H given by

118,

11s




49

%3]

2n | (3,81)

Introducing (3.81) into (3.80) yields, for finite values of

8 ,

V(z) < 0 ¥z 4 0 , (3.82)

Hence, the assumed function V(Z) is a Liapunov function and
the origin of the system (3.77) is asymptotically stable in

the large [227].

3.5.2b Stability Study of the Infinite Ladder

The stability of the infinite RLC ladder network of
Fig. 8 can be studied by a comparison method. This method
consists of comparing the ladder network of Fig. 8 to another
one that has the same topology but different element values.

The method is demonstrated here on the case when 7Y=0
and & =0. 1In this case bn(T)=0 and hence, the network of
Fig. 8 will have the configuration of Fig. 9a. Consider the
ladder network of Fig, 9b with state variables, Cn(T) , sat-

isfying the recurrence relation

c = D - - =
Cn(r) = 2Cn_l(T) nBCn(T) 20n+1(1) R n=1,2,3,.. (3.83)
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The resistances and conductances of the ladder network
of Fig., 9a, except for the first resistance, are greater than
those of Fig. 9b. Hence, the former ladder has more damping
than the latter one. Assuming both networks have the same
initial conditions and the same input source, thmlfrmnphy§u31

considerations (see Appendix I) it seems reasonable to assume that

an(T) < Cn(T) for all T . (3.84)

Solutions of (3.83), for both initial conditions dis-

cussed in Sec. 3.3, are given in Appen&ix C. The results are
_ 1 T T a% B n
c (t) = = {/1+f2 tanh [=V1+B2%2 + arctanh (——)] - B}
n pil 2 W
for ¢C_(0) a_(0) 0
and
1 b - *- . . *
_ 1 cosh T +a sinh T n
Cn(T) ToT {a a cosh T°+b sinh T~ Bl (3.86)
for C (0) = a (0) = 1
n n m
where

o)
1
o
q
™
o

b=8+1 3

*
T = 5 /1482 .

From (3.84), (3.85) and (3.86) one can surmise that the in-

finite ladder of Fig. %9a is stable.
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3.6 Steady State Analysis

The steady state modulo-2% probability density func-
tion and the v;riance of the phase error can also be obtain-
ed with the aid of the RLC ladder networks.

Since in the steady state (T*®) all the series in-
ductors become short-circuited and all the shunt capacitors
become open-circuited, the ladder network of Fig. 8 will
have the configuration shown in Fig. 10.

Applying Kirchhoff's current and voltage laws yield,

a -2nf a + a - 2Ybn

n+, n n-j

1]

b

. -2n8 bn + bn—1 + 2Yan n=1,2,3,.. (3.87)

In the case of no coupling (y=0), it is evident that
bn = 0 because there is no input source,

Hence, (3.87) becomes

an+1 = -ZnBan + an_1 (3.88)

and the corresponding network is shown in Fig. 11,
The recurrence formula (3.88) is identical to that of

the modified Bessel function [28)] which is

1 L :
In+1 () = -2nB Intg) + In—l(B) (3.89)

=

Hence, a solution of (3.88) can have the form

_ 1 ;
a (B = C(BYI (F) (3.90)
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where C(B) is a function of B (NSR) and can be determined

as follows.

The input resistance of the infinite resistive network

of Fig. 11 is expressed by using the continued fraction

_ 1 ‘ . (3.91)
Rin(B) = 2B * g4 T .

68 +
88 + L

Using the series representation of the modified

Bessel function of order n [28], that is,

- (;_ 2k
Ly o (Lynm ___2B°
I = &GP kz ARNCTSY (3.92)
(g
and by expressing the division 1 in a continued frac-
I (3)
tion yields, 1B
1
I (g) 1
2 = 2B + T . (3.93)
1 48 +
1@ 68 + ———
88 +

It is apparent from (3.91) and (3.93) that

H
FanY
™j
A —

(3.94)

Rin(B) -

—
P
™l
o

Hence
1
L%
1 ]
in TL (F)
and * 1 0B
c (B = —— ' (3.95)

1
mI ) ('é')

Introducing (3.95) into (3.90) yields,
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(3 :
a = —— (3.96)
S S S C-))
0

Having a, and bn the modulo-2T probability density

function and the variance of the phase error can be determin-

ed from (3.6) and (3.8) as

1
I (%)
P(O) = L, y _n B° cosnd
2m n>; TI (%
e 0
1 1
= —= (I (3) + 2 1
oI (_1_ o B n>1In(B)°°sn®]
o B -
1
=cos®
- ———1——1—- eP (3.97)
2L (5) -
0o B
and
1
2 (-1
of = 1;._ + 4 3 " B (3.98)
n>, nzlo(g)

The steady state modulo-2m phase error probability
density function for the case when B=0 and 7Y<1l «can be
determined directly from the analytic solution given in Sec.

4.3.1.b. From (3.58) and (3.59) one obtains

£(®) = arctan —X— = arcsiny (3.99)
V1-vy?
g(o) =1 (3.100)

Introducing (3.99) and (3.100) into {(3.52) yields,

an(w) = % cos[n(arcsiny)] s
and
bn(w) = % sin[n{arcsiny) ] . (3.101)
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lience, from {3.6)} and (3.101}

o]

) U SN , gy —
P(®) = T 4 o nzlcosn[drc51ny 91 . (3.102)

Comparing (3.102)} and (3.20), then
P(®) = §(d~arcsiny) . (3.103)

Hence, the steady state phase error

@0 = arcsiny . (3.104)

It should be noticed that the steady state modulo-27 phase error
probability density function and the variance , from equations (3.97) and

(3.98) , respectively, are consistent with those obtained by Viterbi [3]



CHAPTER IV

TRANSIENT STATISTICS OF THEY PLL WITHOUT

RECOURSE TO THE FOKKER~PLANCK TECHUNIQUE

4.1 Iintroduction

To obtain the phase error probability density function
for a PLL driven by a sinusoidal signal and a narrowband
stationary noise process, the Fokker-Planck technique is usual-
ly used.

Here another treatment is presented which deals direct-
ly with the linearized stochastic differential equation of the
loop phase error It is shown [7],[8] and [29] that the solu-

tion of a linear stochastic differential equation, driven by

i

[=9

& gaussian process, is a gaussian process with mean value an
variance satisffing certain ordinary differential equations
of the first-order.

Applications of this theory te the first and second-

order PLL's are given.

4.2 First-Order Phase-locked Loop

It has been shown in Chapter IT that the equation des-

cribes the first-order PLL operation, equation (2.15),

d

dtt) = (w-u ) - K[Asing(£)+n' ()] . (4.1)

Using the result of [30],a linear system equivalent to

(4.1) is found by determining a function n(a) , a function

58
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of the loop signal-to-nolse ratio, which minimizes the mean-

square value of €(®}) in the equation

49LE) & kan(a)d + e(9) = (w-w ) - Kn'(t) (4.2)

wvhere e(d) = AK[sin($)-n(a)¢] . (4.3)

The expected value of the mean-square of €(¢) is

E[(e?(¢)] = A%K? J [n(o)¢-sing1?p($)do (4.4)

-0

wvhere p(¢) is the steady state phase error PDF.

The value of 1 which minimizes the expression (4.4)

ie [ ¢singp(§)dé
n(ay = —

it

fm¢2p<¢)d¢

—co

%—%—“—Q (4.5)

88

where © is the steady state phase error variance.

=

[SR=]

Now the equivalent linear system is found by dropping

the term e(¢) in (4.2). After a change of variables (4.2)

becomes

ii%;- + KAn¢' = ~nKn' (4.6)
wvhere

¢' =né¢ - ¥ ’
and W=t

Y = :
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Since n' is a gaussian process, the solution of the
linear stochastic differential equatlon (4.6) is a gaussian
ﬁrocess with a mean value, m'(t) , and a variance, 0;,(t),
which satisfy the ordinary differential equations of the

first-order [29]

dm' (t)

—_4 = _ 1 ’ 4
it KAn m'({t) s (4.7)
and
do?,{t) . , . N
T —2&An0¢,(t) + nN°K T (4.8)
N
where Efl is the two-sided spectral density of n'
Solution of (4.7) and (4.8), for m'(t) and Oi'(t)
with the initial conditions m'(0) = n¢0w7 and Gé,(ﬁ) = 0,
yields,
-nKAt
m'(£) = (ng _-y) e " . (4.9)
and
N -2KANnt
o;,(t) = n?K*5E (1 - e 1. (4.10)
Hence, the mean value, m{t), and the variance, Gg(t),
cof ¢ will be
m(t) = L+ (¢ -5 & N° : (4.11)
7 0 n
and
2 1 ~-2NT
gs(t) = =— (1 - e 4.12
2(6) = o ) (4.12)
wvhere
T = AKt ,
and KN,
u = .
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Now the value of n{g) can be determined as follows.
Since one is usually interested in ¢ for the range (-7,7),

a straightforward adjustment of (4.5) results in an equation

that is appropriate for |®| < ™ . The result is
gl
®sindP (¢)d?
J
-
n(a) = (4.13)
¢
$2P(0)do
‘—'iT

where @& is taken modulo-2m and P(9) is the steady state

modulo-27 phase error PDF.

In the case ¥=0 , P(®) and Oé will have the
ss
values given in (3.97) and (3.98), respectively. Introducing

these values into (4.13) and integrating yields, upon letting

B = a ’
S (@) - e
n(a) = 2 (-1)T_ (a) (4.14)
3 I (@) +4 ] 2
0 n>, n?

This series converges so rapidly that (4.14) can be calculated
with considerable accuracy by using only a few terms of the
expansion [28].

Hence, the modulo-2T phase error PDF of the linearized

first-order PLL is -nt
an(d-¢ e )2

- T 2(l-e-2NT
P(g,r) = /{;_?; (1-e~ 2T e 2(1-e ) >

le| < 7 . (4.15)




62

4.3 Second-order Phase-locked Loop

In order to analvze the second-order PLL, it should be
realized that the main difference from the first-order PLL
is the loop filter transfer function. In this case the loop
filter transfer function is in the form

1+T s
_ G(s) _ 1
Fls) = ¥4y ~ 1+7 s ’ (4.16)

The loop filter of greatest interest is

F(s) = i'sii (4.17)

which requires a single integrator with gain a.

The equation that describes the operation of the
second-order PLL, whose filter transfer function is given by
(4.17), is, from (2.6),

i%%El = (w—wn) - K[Asin¢(t) + n'(t)]

t
- ak j [Asind(u) + n'(u)]du . (4.18)
0

Equation (4.18) cannot be differentiated further, since this
would result in an equation involving the derivative of white
noise. |

It is clear from (4.18) that the process generated by
driving a second-order PLL with white gaussian noise is not
a Markov process, however the output of the second-order PLL
driven by white gaussian noise can be decomposed into two
first-order equations in the process and its first derivative
to constitute a two-dimensional vector Markov process [3].

Now if the substitution
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p(t) = Xz(t) + axl(t) s (4.19)
dx (t)
where Xz(t) = ——ﬁ;—— , 1is made in (4.18) one obtains

[3] the two first-order differential equations

x (t) = x (t) ,
1 2
and
}'cz(t) = -Kasinfax (t) + x (£)] - Ka'(e) . (4.20)
The second equation of (4.20) can be linearized by
letting sin¢ ~ ¢ , and hence, (4.20) can be written in the
form
dx _ '
Fr Bx + e (4.21)
where
X . 0 1 0
X = t s B = and e = .
x2 -KAa -KA -Kn'
(4.20)

Since n'(t) dis a stationary gaussian process, it seems
reasonable to model the loop operation by the following lin-

ear stochastic differential equation [29]
dx = Bxdt + dv (4.23)

where v(t) 1is a two-dimensional Weiner process with variance

N K?
0

parameter 2

0
By applying the theory of Astrdm [29], the solution of
(4.23) is a gaussian process with mean value, m{t) , and
variance, V(t) , satisfying the following ordinary differ-

ential equations of the first-order
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d m(t)

1t = B m(t) s (4.24)
and
dv(e) _ T
Tt BV + VB~ + Rl (4.25)
where
m (t) v (t) vV (t)
m(t) = ! ,  V(t) = ! 2 ,
m (t) v (&) v (t)
2 2 3
0 0
and . R = . (4.26)
1 0 N k2
0
2

Solution of (4.24) and (4.25), with the appropriate

initial conditions, is given in Appendix G; the results are

N 242 .2 s
-A Q 20
vo(r) = —% [1-e ARF(re AR SRR 4 oAk 218385, 4.27)
1 4A%a
Nk -AKt sin’Qt
V () = +— e —— . (4.28)
2 4 Q
v o(t) = NoKz[l_ -AKE A%k? sin®Qt _ AK sinZQt)] (4.29)
3 T T4A e 2 Q2 20 » y
n (t) = e'AKt/Z[i—ig—@E x (0) + (cosQt + %5 ii%ﬁi)x (01,
1 2 1
(4.30)
and
o (1) = e MKtz g0 - L Ei%QE)x (0) - (AKa Sigﬂt)x (0)]
2 2 1
.31
where (4.31)

AZKR?Z
4 -

Q2 AXa -
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Now, since ¢ 1is related linearly to =x and x , as
1 2

$ = ax + x , the conditional probability density function
1 2

p(¢|¢0,t) will be gaussian. One obtains from (4.27)-(4.31)

for the average value and the variance, the expressions:

-AKt/g[(a_ ég) sinfit

> ) + cosfit]

$ = x (0)e
2

.AKa sinfit

> 0 ] (4.32)

+ xi(O)e—AKt/Z[a cosflit -

and

-AKt A%K? sin®Qt
e )]

——— N
— a
(p-¢)% = 4—% {K + K)[1 - 5 a2

e—AKt 0 sin2Qt
4 2Q

(K -

ak?N YN
F—t e ARt 533795 i (4.33)

Since the average value and the variance are now known
the gaussian process is completely characterized.

Because of the cycle skipping phenomena (due to the
nonlinearity and the gaussian noise), the phase error variance
in the steady state is infinite. However, in the linearized
model the steady state phase error variance has a finite

value. By letting t+ in (4.33) yields,

=

0} = D = 7p G0 : (4.34)



CHAPTER V

NUMERICAL RESULTS

This chapter contains the results of the simulation
of the finite RLC ladder networks shown in Fig. 7. Also, in
part two of this chapter, the results of the linearization
technique, used in Sec. 4.2 and the approximation sin ¢ ¥ @

are presented.

5.1 Truncated Ladder Technique

The simulation of a finite number of sections (20)
of the RLC ladder networks, shown in Fig. 7, was carried ocut
on an IBM-360 computer using the Continuous System Modeling
Program fCSMPSéO).

Tables I and II indicate the various cases which

were studied for initial conditions P(®,0) = 6(@—@0) and
P(9,0) = %E , respectively. The specific values were chosen

so as to provide comparison with previcusly published work
[3],[10],113],{14] and [15].

It is found that the state variables, an(T) and bn(T)’ decrease
rapidly as n increase, for fixed . On this bases, for the calculation of
P(¢,7) a finite number of variables 2n where n{20 is taken. This n is chosen
such thst the value of the (2ntl) state variable is of the order of 10-6 of
the first state variable.This is shown together with the corresponding n in

the last and second columns (of both tables) , respectively . It is
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interesting to note that the number of sections increases
as the signal-to-noise ratio (o) dincreases,.

The transitional modulo-27 density is depicted in
Figs. 12-17 and in Figs. 19-21 for the cases shown in Tables
I and TI, respectively.

Figs. 18 and 22 are plots of the phase error variance
}or the two initial conditions P(®,0) = 8§(&) and P(®,0) =
%F , respectively.

Figs. 13 and 16 are essentially identical to the
curves obtained by Ohlson and Rutherford [l4] in their numer-
ical technique. However, the computation time required to
produce Figs. 13 and 16 is much smaller than the time.required
by the algorithm in [14].

Fig. 17 shows the modulo-27m density for various
time, T . This data agrees with that obtained by La Frieda
[10].

The steady state modulo-27 PDF determined numerical-
1y in this analysis agrees, for vy = 0 , with the analytical
results found by the method in Sec. 3.6 and with Viterbi’s
results [3]. The results obtained for a detuned loop as shown
in Figs. 16 and 20 agree with that obtained by Viterbi [3].
As is expected, these plots demonstrate that the detuned
loop exhibits a definite tendency to slip in the direction
of the steady state phase shift caused by detuning.

The set of conditions in Fig. 14 are the same as

one of those selected by Dominiak and Pickholtz [13] in their

numerical analysis of the first-order PLL. The values of
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P(d,T) s for small 1 , in Fig. 14 are different from those
in [13]. This is expected because the technique used in [13]
is not capable of accurately determining the time reference.
Thus, the times appearing in their curves are different from
the actual times and therefore, their plot does not truly
represent the dependence of P(&,T) on time.

The phase error ;ariance is shown in Figs. 18 and
22 as a function of time for different values of SNR
(=2.2,2.8,3.5 and 5.0). The set of conditions of Fig. 13
are the same as those selected by Grandoni and Mengali [15]
in their analysis. Their curves, identified by asterisks,
together with those obtained by ﬁhis study are shown in Fig.
18. The difference in the results, especially for small o ,
is due to the fact that they assumed a gaussian form for the
PDF. However, this difference in the results, as it is seen
in Fig. 18, diminishes as ¢ increases,.

Figs. 18 and 22 also illustrate that the transient
time decreases as ¢ increases. This can be easily explain-
ed by noting that a large o implies less damping in the RLC

structure and therefore, the transient time is smaller.

5.2 Linearization Methods

In this section the results of the linearization
technique mentioned in Sec. 4.2 are presented. Also, the
results of the approximate solution, in which sin & * ¢ ,

are plotted.
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In Figs. 23-26 the PDF of the linearized loop (curves
labeled 1 # 1) is compared with the PDF obtained by the
truncated RLC ladder technique (curves labeled exact), for
various cases.

In Figs. 27-29 the results of the approximation
sin @ ¥ & (curves labeled n = 1) are compared with those of
the linearization technique and the exact solution obtained
by the truncated RLC ladder method.

It can be seen that, for small values of o , the
linearization method works better than the approximation

sin & ¥ & 4if |o| < 7w .
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TABLE I
P(O,0) = (-0 )
0
The (2n+l) state
n ®0 Y T variable
0.06 1.45 x 10 ¢
2 0 0 0.15 1.12 x 10°
o 8.27 x 10"
0.06 5.79 10 ¢
0.24 6.27 x 10 7
—-14
0.51 5.36 x 10
0 0.8 1.51 107"
1.0 1.05 10" 2"
6 0 o 5.05 10 3
0.06 4,93 108
0.51 3.38 10 ¥°
sin % 1.0 2.9 107"
w 1.68 107 1°
0.06 1.96 x 10 °®
0.50 2.47 10 17
9 % 0 1.0 1.37 x 10 '8
5.0 1.18 10 ¢
0.15 1.32 x 10 °©
10 0 0 1.0 2.4 10”12
o 6.04 10”13




TABLE II

P(8,0) = o=
The (2n+l) state
n y T variable
0 0
0.15 6.77 = 10’
0 0.51 4 x 10 °°
1.0 1.96 x 10 *°
o 5.05 x 10 °°
6
0 0
0.15 3.32 x 10 '°
sin % 0.51 3.51 x 10 °
1.0 1.7 x 10°'°
o 1.69 x 10 °
0 0
0.15 2.19 x 10 *°
10 0 0.51 5.91 x 10 '°
1.0 2.64 x 10°°°
3.55 6.04 x 10 '°
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CHAPTER VI

CONCLUSION

This study has resulted in a method of finding
transient and steady state solutions for the Fokker-Planck
equation as applied to the first-order phase-locked loop.

The method provides analytic expressions for the modulé—Zﬂ
phase error probability density function for special cases.
For the general case, the thesis develops a technique (namely,
the RLC ladder appreach) which is used to find the transient
and steady state modulo-27 phase error PDF numerically ané
analytically, respectively. Verification of this technique

is demonstrated by comparison of the results obtained with
those previously published. Unlike existing methods, the
present technique provides a computationally efficient method
for the determination of the transient statistics of the first-
order phase-locked loop. Although a specific numerical tech-
nique (CSMP) was used to solve the truncated RLC ladder net-
work, it is an advantage of this formulation that any of the
well known network analysis methods could be used to obtain
an analytical solution for the corresponding modulo-27 phase
error PDF.

It is hoped that the RLC ladder approach presented
in this thesis, may open up a new vista for future develop-
ment of the analysis of the nonlinear phase-locked loop

through the analysis of linear RLC ladder networks. In add-
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ition, it may also provide more insight to the transient
behaviour of the phase-locked loop.

The fact that the solutions for the special cases
can be interpreted as solutions for infinite RLC ladder net-
works with special element values should also be of general

interest.

The thesis also presents linearization a;thods which
have resulted in a systematic procedure of obtaining the
phase error transitional densities of first and second-order

phase-locked loops without recourse to the Fokker-Planck

technique.
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APPENDIX A

DETERMINATION OF THE MODAL MATRIX

Q IN EQUATION (3.40)

Let Un be the eigenvectof corresponding to the eigen-

value A of B ,
n

Un = [unl un2 un3 LI ] ung’ L ] ] s (A-l)
then Un must satisfy the equation
BU = A_ U . (A.2)

Introducing (3.36) and (3.38) into (A.2) yields,

_ 2(n-2)

Yn,0+1  2(2+1) Ya,2 (A.3)

By letting the first entry of each eigenvector be unity;

that is, unl =1 for n=1,2,3, +.. , then from (A.3)
T
v =91 0 0. 0 ...0 ... 1] » W g = o, &1
1 1
T
v =02 1 0 O ...0 ... 1] » U g = 0, 2 |,
2 2
vo=9[1 2 2 0 ...0...1% , u,=0,23 ,
3 3 32,
v =1 3 2 = T
y 3 0 .. 0 .. 1] s uqz =0 , £>4 . (A.4&)

U = [1 u u ces U 0, &>n ,

nz ns3 nf v

[l
I

and 01 )
_ 2 (n-1)!
“ng T TT(RSD) ! (n-2) ] | (4.5




By definition

Q = [U U U
1 2 3
Hence,
Q = {ag) = {uy)
and
2 7 -1

g T 11 (1-1)1(G-1)1

(A.6)

(A.7)
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APPENDIX B
EVALUATING THE CONSTANT (dn) OF EQUATION (3.42)

From (3.35) and (3.41) one obtaims, for T=0,

oo r

[ EBre - peER . o
n=r

By letting n-r = m , (B.l) becomes

m=0 ) 2

But from (3.43), for Z =1,

co m '
z (-1) £$m+r) _ F(;) . (B.3)
m=o0 ) 2

Introducing (B.3) into (B.2) and comparing the result with

(B.1) yields,

d - % (_1)m+r

or

d_ = (-1)" % . (B.4)
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APPENDIX C

SOLUTION OF THE SYSTEM OF EQUATIONS

n
3 c (t) . (3.83)

p Ins
Cn(T) =7 Cn—1(T> - nBCn(T) - .

Attempt a solution in the form

c (1) = ¢ g7(m) (c.1)
where C 1is a constant to be determined from
-1
cC=0¢ = = , (C.2)

0

Introducing (C.1) and (C.2) into (3.83) and dividing
both sides of the resulting equation by CnEn“1 yields,

g2 (C.3)

pof

‘_L_' _
E =2 - B8

Consider the initial condition Cn(O) = 0 , hence

(i)
E(0) =0 (C.4)

Integrating (C.3) keeping in mind the initial condition {(C.4)

yields, from [32],

JTTET tanh {L/iFBZ + arctanh (—E—)} - B . (C.5)
2 Y1+B?2

E(t) =

Introducing (C.5) and (C.2) into (C.1l) yields,

c (1) = 1 {/1F8% tanh (5V/I+B? + arctanh (“:§::)] - 8"
n T 2 /1+R2
(C.6)
1
=T hence

(ii) Consider the initial condition Cn(O)
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£E(0) =1 . (C.7)

Integrating (C.3) with the initial condition (C.7) and

introducing the result into (C.1) yields,

* #
_ 1 b cosh T + a sinh T n
Cn(T) T la 2 cosh T® + b sinh T% B (C.8)
where
a = VR2+1 s
b =8 + 1 ,
and
*
T = TVRZ+1
For B =0 , equations (C:6) and (C.8) becomes, respec-
tively,
c (t) = L {tanh im (C.9)
n T 2 '
¢ (1) = = (C.10)
n TT L] -
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" APPENDIX D
DERIVATION OF EQUATION (3.49)

From [27] one obtains

cosd - rcos(8-9) el <1 . (D.1)

foe]
n
HZO r cos(n®+8) = 7T 570050 + 12

For 8§ =0 , 1t = tanh % and T <-® (D.l) becomes
o T.n 1 - tanh %°cos®
z [tanh E] cosnd® = T S (D.2)
n=o0 1 - 2tanh E.COS® + tanh? 5
Hence,
[se]
2 [tanh %]ncosn® = E [tanh %]ncoan -1
tanh I--cos<1> - tanh? I
- 2 - L —— . (D.3)
1 - 2cosdP+tanh 7 + tanh? El

Introducing (D.3) into (3.47) yields, after some manipulation,

1 sech? %
P(2,T) = 21 T T
1 - 2cosdrtanh 5 + tanh? >
which can be written as
P(3,7) = =— 1 : (D.4)

27 cosh T -~ sinh T-+cos?d
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APPENDIX E

SOLUTION OF THE NONLINEAR, FIRST-ORDER, SIMULTANEOQUS

DIFFERENTIAL EQUATIONS (3.56) AND (3.57) .

Here the solution of equatiomns (3.56) and (3.57);

that is,

. 1 »

g =3 (1-g°) cosf (E.1)
and

. 2

Fo=y - 28 ginr (E.2)

2g
r . 4df = - dg ;

where £ = it and g at are given.

From (E.1) and (E.2) one cbtains

%{l—gz) cosf

dg _ g (E.3)
. 7 .
df f Y - li&—sinf
2g
(E.3) can be written in the form
M(f,g) df + N(f,g) dg = O (E.4)
where
M(£,8) = 5 (g%-1) cosf ,
and
2
N(f,g) =Y - %%5— sinf . (E.5)
It is noted that (E.4) is not an exact differential
. , oM N . .
equation since §§ # 5F However, it can be rewritten as

an exact differential equation as

uMdf + uNdg = O (E.6)



where U 1s an appropriate iIintegration factor so that

3 - 2
55 (W0 = 5F (o) . (E.7)

It is found that U which satisfies (E.7) is

U = ?—;&I;? . (E.8)
g2~

Hence, a solution of the exact equation (E.6) can be

found in the form

Yy{(f,g) = constant (E.9)
Y S
where Se uN and Y uM . (E.10)

From (E.5) and (E.10) one obtains
3V _ e
Y 5 (g°-1) cosf

and hence,

v = 5 (82-1) sinf + £(g)
= m%_—l) sinf + E(g) . (E.11)

Differentiating ¢ in (E.11) with respect to g and using

(E.5), (E.8) and (E.10) yields,

dele) _ __ye : (E.12)

dg (g2-1)° )

Integrating (E.12) and introducing the result into (E.l1)

yields,
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g

constant

From (3.53) and (E.1l3) one obtains

___%__~ ; R S
2(et-1y °f T IGTD
hence,

g = sinf

= XL
2

Introducing (E.1l4) into (E.2) yields,

or

Integrating both sides of (E.16)

and

for

and

for

= (Yz—sinzf)

f(t)

g(t)

H

df 1 "
- sin®f 2Y

arctan { J_"
vy2-1

sin(% Yy2-1)

tan (% Vy2-1)}

/Qz-cosz(% Y2-1)
arctan (%) s
T
Vi+T2
s and
Y

arctan {
/IvZ

tanh (% Y1-v2)}

Yv(£(0),g(0)

[25] vields,

105

(E.13)

(E.1l4)

(E.15)

(E.16)

(E.17)

(E.18)

(E.19)

(E.20)

(E.21)
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and
sinh (%\/I—YZ)
g(t) = (E.22)
‘/cosh2 (%x/l-—yz) - v
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APPENDIX F

DERIVATIONS OF EQUATIONS

(3.64), (3.65) and (3.66)

The result of introducing (3.9) and (3.52) into (3.6)

is
N S
P(2,1) = 27 * ﬂnzl[g(T)]n{cosnf(T)cosn® + sinnf(T)sinnd}
- %F + %;Zl[g(T)]n cosn(®-£(1)) . (F.1)

"From [27] one obtains,

rcos (8§+X) - r?cosd Iri <1 (F.2)

1 - 2rcosX + r* ’

¥ rcos(nXx + §) =
nil

Letting 6 =0 , X =9¢ - (1) and 1t = g(T) (F.2)

becomes, for T < ® ,

n _ ___g(m)cos(d-£(1)) - g*(T)
ngiﬁg(T)] cosn(®-£(1)) = 1 - 2g(T)cos(®—f(T)) + gZ(T) (F.3)

Introducing (F.3) into (F.l) yields,

1 1 - g?(1) |
2% 1 - 2g(t)cos(d-£(T)) + g8°(T) (F.4)

CP(®,T) =

For v < 1.

Introducing (3.58) and (3.59) into (F.4) and making use of

the trigenometric identity cos(®-f) = cosffcosd + tanf.sind]

yields,
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P(o,T) = 37 °
l—yz
T e T T T T
coshziL -y%-2/1-y2sinh ELcosh EL{cos®+( Y __tanh El)sin®+sinhzil
YiI-v7
-1 1-y®

cosh Tl - y? - Y1-¥Z sinh Tl'cos® + Y(l-cosh Tl)sin®

where T =T 1-v% , T < . (F.5)

for vy > 1.

Introducing (3.60) and (3.61) into (F.4) and following

the same manipulations which produced (F.5) we obtain

P(D,T) = 3= °
L . (F.6)
y? - cost - /&2—1 sinT cosd + Y(l—costz) sind
where T2 = T/Y?:I s T < @
for y =1

Introducing (3.62) and (3.63) into (F.4) and making use

of cos(®-£f) = cosfecosd + sinfesin® yields,

P(D,T) = 1 , T < . (F.7)

T (12 + 2 - 2Tcosd - T25ind)
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APPENDIX G

DERIVATIONS OF EQUATIONS (4.25) - (4.29)

From (4.20), (4.22) and (4.24) one obtains

dml

I = m2 (G.L1)
and

dm

el —KAam1 - KAm2 (G.2)

with the initial conditions

m (0) = x (0) and m (0) = x (0) . (G.3)
1 0 2 1 7

Differentiating (G.2) with respect to t and using (G.1l)

yields,
d*m dm
E?fi + KA dtz + KAam = 0 . (G.4)

(G.4) is a linear, second-order, ordinary differential equa-
tion. The solution of (G.4) which satisfies the initial

condition (G.3) can easily be obtained

m (t) = e__AKt/Z[X (0)(COSQC - él(_ _S_jil&g‘) - x (O)AKa Sinﬂt]
2 1 2 Q 0 Q

2p42 (G.5)
where & = KAa - K4

4

Integrating (G.5) and using (G.3) yields,

n (6) = e MFE/2(BI00E & (0) + (cosle + 55 sinflty  (0)] .

(G.6)
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From (4.20), (4.23) and (4.24) one obtains

. av,

Vi 2= —-——dt = 2V2 (G-?)

. dv

Vv = —2 = -KAaV - KAV + V (G.8)
2 dt 1 2 3

. dv N

v = —3 = -—2KAaV - 2KAV + =% K? . (G.9)
3 dt 2 3 2

Differenfiating (G.8) once w.r.t. t and using (G.7) and

(G.9) yields,
N K?

0 __ _ 4KAaV - KAV - V
2 5 2 2

v, © 2KA

(G.10)

Differentiating (G.8) twice w.r.t t and using (¢.7), (G.9)

and (G.10) yields,

d3v2 azv v, s
—g5 + 3KA _EF% + 2KA(RA+2a) gy + 4K*A%av =0
(G.11)
Solution of (G.l1ll) with the initial conditions
. . N K?
v (0) =V (0) =0 and ¥ (0) = — (G.12)
2 2 2 4
yields,
N k? .2
9 -AKt sin®fit
Vz(t) =4 e o7 . (G.13)

Using (G.13) in (G.7) and considering the initial condition

VI(O) =0 (G.14)
yields,
N - 212 + 2 .
v o(t) = —0 [1-e AKE(p 4+ AKX 51829t +AK 53%%95)] . (6.15)
1 4A%a 2
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Introducing (G.13) and (G.15) into (G.9) then integrat-

ing and using Va(O) = 0 yields,

N K 2,2 f 2 :
_a __~AKt A’K” sin®Qt  AX sin2Qt
v () = oy {1-e [1 + =5 B 5 g 11

(G.16)
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APPENDIX H

DERIVATION OF THE FOKKER-PLANCK EQUATION [3]

Consider

= ap(ole .t
- | R a (8.1)

- OO

where R(¢) is an arbitrary analytic function whose deriva-

tives should satisfy certain conditions, to be stated below.

® p(d|d ,t+rt) - p(olo ,t)
I = 1lim R($)dd o 2 . (H.2)
At+ro - At

Introducing (2.9) into (H.2) yields,

I = lim %; [ f R{($)d¢ I p(z|d ,t)p(dlz,At)dz
At+o W - 0
- { R(z)p(zl¢ﬁ,t)dz] . (H.3)

Interchanging the order of integration and expanding the

analytic function R(¢) in a Taylor series about =z yields,

I= nglﬁT J R (2)p_(2)p(ald ,0)dz (E.4)
where
n
R(n)(z) d an)
dz
and
. 1 et n
D (z) = 1 — f - ,At)d = 1,2,3,...
n'? Ati‘;‘ it (b-z Y 'p($|z,AE)dd n

el (H.5)
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Assume that R(z) and 1ts derivatives decrease sufficiently

rapidly as z * tx» | go that

il
o

R (2) b (2) ezl ,E) \

e OO

R(n—z)(z) %E [Dn(Z)p(Zcho,t)} . =0

8I‘l."-l oo
[D_(2)plz]¢ ,t)] \ =0
]

R(z)
an-

Integrating the nth term of the sum (H.4) by parts n times,

and after subtracting (H.4) from (H.1l) and replacing the

variable of integration . in (H.4) with ¢ , one obtains
® 3p(¢|9 »t) .0 .m
[Rres (1 —p=1 - 1 G2 o rnele, 0 1) = 0
e n> ' ¢ 0
(H.6)

Since R(¢) was an arbitrary function except for the
above conditions on its derivatives, in order for the integ-

ral to vanish, the quantity in brackets must also vanish.

Hence,
ap(ole »t) ()" 3P
e = nzl KUY (D _(6)p(plo ,t)] (H.7)
where -
D (¢) = lim %{ I (42z)"p(rz|2)daz
At+o ‘-
. gy, ELG2)E] s
im At . .

At=>0
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APPENDIN T

JUSTIFICATION OF TRUNCATION OF THE INFINITE
SYSTEM (3.13)

The approximation of the infinite system (3.13),for y=0, by a
Finite system of order N can be justificed by using a bound on A (for
a suitably chosen N) to show that the errovs due to truncation are
negligible . We proceed as f?llows ¢ Suppose i1 is known , then all the
variables an(T) (1<n<N) can be determined by solving the finite system

of equations i
a(ty = - B a; - 1 a, +
1 1 272 2

s - 0 3
aZ(T) a; B a, aq

LY 0 -r e

P e LAY L

it

s N 2 N ,
A =g Ay N8 Ayt g A .1

which are the state equation for the ladder network consisting of the
first N sections shown Iin Fig.30.

System (I.1) can be written in matrix form as

a=Aa++ BlUl + B2U2 (1.2)
where
=[a. a, a e
a 1 2 3 ay :
Bln{l 0 0 P 011 )
B.=[0 O 0 ... 117 o
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) AR Bt } Ranaaier”
S _
0
1 ~4f -1
3 3
0 3 -0 -5
pﬂ. =
3
0
N 2
5 -N B
o -l .
1 21 and U2 = -3 Ay

Since the network is linear the responses a (1<n<N) are the sum of
the individual responses due to E, the initial conditions and J
Let A be the response due to E and the initial conditions and a the

response due to J. Therefore ,

a=3a+ a (1.3)

We now use a bound on J to obtain a bound on ||a - §||§|I5l|2.
Furthermore, by an appropriate choice of N this bound can be made
negligibly small. Thus 4 can be made a good approximation to the desire
values a ; that is, 4 is obtained by solving the finite system by simply
letting J = aN+l=0 .

To obtain a b&und on ag. . we proceed as follow :
The solutions of (3.13) for $=0, which corresponds to an LC ladder ,
are well behaved and the eigenvalues are all negative integers,(ln=~n) .
Also the solutions of the special RLC ladder of Fig.9.b are well behaved
and the eigenvalues ( see the second part of this Appendix Y are all real

and negative and to the left of the corresponding ones of the LC case ,

2 1 .
for every n ( An =-n(f + 1 )6). On this basis one can reasonably assume



117

that the RLC ladder of Fig.9.a is well behaved and the eigenvalues of the
system (3.13) will be to the left of the corresponding ones in the special
RLC case since the damping is greater. Thus the response will be monotonic

and also

a (1) < € (D) . (1.3)
Hence,

J(D) = ag, (0 < Gy (D . (I1.4)

To find the response due to J we use the well-known result for a finite
1

linear system [22] :

a

. th ALTE)

y B2 aN+l(t) de . - (1.5)

By taking the Buclidean norm of both sides of (I.5) one obtains

~ 3 A(T~1)
1132 < J; e {|2cN+l(c) ac L (1.6)

Since the system is asymptotically stable , there exist positive

ki and k2 such that [42]

where k; can be taken as

u
-1 L max
ki = [PUHP ”2 = ”ﬁalin (I.8)

where P is the modal matrix of A and and y_ are the maximum and
max min
the minimum singular values of P which are equal to the square root of

T
the maximum and minimum eigenvalues of P P, respectively [43] . Thus

max [Ai(?TP)]
Ky =t} | (1.9)
min [x; P'P)]
i

where ?1 is the complex conjugate tfanspose of P .
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When the eigenvalues are distinct, as is the case here, ks is defined as

the smallest (in magnitude) real part of the eigenvalues of A ; that is,

ky = minI-Re Ai (A)] . (L.10)
i )

A lower bound for ks has been given by Martens [44,equation (16)] in
terms of the element values a network. For the network of Fig.30 this

bound is 8 . Thus ,
ky 2 B . (1.11)

Now for the case an(0)=0 s aN+1(T) is bounded by the steady state

value ,since it is monotonic ; that is ,

I,.,,01/8)
S S s o
aN+1(T) < aNH(m) =5 1. (1/8) M, (1.12)

et

For the case when an(O) = Cn(O) = (1) is bounded by

T ANl

a1 (T S 0 (0 < Gy (Te) =M, (T 27 20) (1.13)

Introducing (I.9),(¢I.11),(I.12) and (I.13) into (X.p) yields
after integrating ,

max [Ai(ﬁTP)] y

a )<ty L , (1.148)
min [A, (P P)]
i 0t
(for an(O) = Cn(O) = O)- and

m?X’[Ai(fTP)] M

I P ) (2. 140)
a’ < P = + M T.14b
2= min (AR P 3

i 1
(for a (0) = G (0) = 1) , where.

M3 - e"B(To_t) CN+l(t) at



Numerical Example

1- Consider the case of an(O) =0, f = 1.0 and N= 20

27

a

5], < 2.54 % 107
2- Consider the case of an(G) = Cn(O) - 2 B8 = 1.0 and N =20

To Iall, =
0.06 - 1.43 x 1073
0.5 2.28 x 107>
1.0 7.39 x 1078

EVALUATION OF THE EIGENVALUES

OF THE SYSTEM (3.28)

From (C.6) one can write

_ 1 ) _
CI(T) == { b, tanh [Tbl + axctanh b, ] bb, } (1.15)
2 1 B
where by ={f +1}* and b2 = i
g +1}~

By letting O= arctanh bZ s Cl(T) cén be written as

-(b l'H—ZO)
bl l - e
C,(1) == { -~ b, }
1 m ~ (b, T+20) 2
I+ e




Cl('r) =

(

But

Hence,

Cl(T)

b : (b, T+20) (b, T+20)
A { ~b2 + (1 - e 1 J(1 - e 1
-n(b,T+20)
- e LA ) }
2b -nb,T -2n0
% (1by) ety ente B
i T ni}
~2n arctanh——;ﬁ*—g

o200 _ 851" g2 411 -g12

Lipraay s g+ 2(241}% 5 1P {p2+1} 7 -p)?

n>1

+ e

n

n
[

But the general solution Of the system can be written as

Gqf

where

A

Comparin

T) =

C is the steady state solution ,

1ss

nl are constant to be determined from the

are the eigenvalues , and

n

U
n

g (I.

the corresponding eigenvalues

18) with (1.19) yields ,

A = —nl{p?+1}?
. 1

—2(b1T+29)~

(1.16)

(.17

1
173

—n1{R%+1}

(1.18)

(1.19)

(1.20)

initial conditions

120

3



