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Optimal  Sequence  Detection  and  Optimal  Symbol-by- 
Symbol  Detection:  Similar  Algorithms 

JEREMIAH  F.  HAYES, SENIOR MEMBER, IEEE, THOMAS  M. COVER, FELLOW,  IEEE, AND JUAN B .  RIERA, MEMBER.  IEEE 

Abstract-An algorithm is derived  which  performs  optimal  symbol- 
by-symbol  detection  of  a  pulse  amplitude  modulated  sequence.  The 
algorithm  is  similar  to  the  Viterhi  algorithm  with  the  optimality 
criterion  optimal  symbol  detection  rather  than  optimal  sequence 
detection.  A  salient  common  feature is the  merge  phenomenon which 
allows  common  decisions to  be  made  before  the  entire  sequence is 
received. 

INTRODUCTION 

T HE Viterbi  algorithm [ I ]  is a dynamic  programming tech- 
nique  for decoding sequential codes. Forney [2], [3] ap- 

plied the algorithm to  the detection  of pulse amplitude  modu- 
lated sequences disturbed by additive Gaussian  noise and  inter- 
symbol  interference.  Optimal  detection of  an entire trans- 
mitted sequence  is  achieved  while the  number of computations 
grows linearly with  the  length of the sequence. In  the sequel 
we  shall  derive  an  algorithm  which uses the  entire received 
sequence for symbol-by-symbol detection with  minimum 
probability of error.  The algorithm  was inspired by  a version 
of the Viterbi algorithm and, as a consequence, has  a  number 
of similar features. In particular,  for both algorithms there is 
a merge phenomenon which  allows optimum  detection before 
the  entire sequence  is received. Earlier work by  Abend  and 
Fritchman [4] considered optimal symbol detection using a 
portion  of  the received  sequence.  Related  work  was also done 
by Chang  and  Hancock [ 5 ] ,  who developed a sequential 
procedure  for making optimum decisions about  a subsequence 
of  symbols  whose length is equal to  the memory in the  chan- 
nel. 

The  Viterbi algorithm offers considerable  advantage  over 
nonsequential  detection algorithms,  which  grow in  computa- 
tional  complexity  exponentially with the  length of the se- 
quence. Nevertheless the algorithm, in  its  pure  form, is still 
complex. If the channel memory is m, and L symbol levels are 
transmitted,  the receiver  must store and process L"' state 
variables. Considerable effort has  been expended  on proposing 
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and evaluating approximations to the  Viterbi algorithm  which 
reduce this complexity. One approach [6],  [7] has  been to 
prefilter the  received  waveform so as to reduce the channel 
memory. A second approach  has been toeliminate from  con- 
sideration a subset  of the  internal  states [SI, [ 9 ] .  A series of 
papers [ 101 -[ 131  has  delved further  into  the problems  of 
practical implementation,  treating aspects  such as  unknown 
channel characteristics and microprocessor implementation. 
The  Viterbi algorithm  is  shown to  be robust [ 101 in  the sense 
that approximations do  not lead to a  precipitous  deterioration 
in performance. 

As  we  shall see, the symbol-by-symbol  algorithm  is rather 
complex.  However, the approaches that have  been taken to 
approximate  the  Viterbi algorithm can also be  employed here. 
Hopefully, similar strides toward practical application  can  be 
taken. 

MATHEMATICAL  BACKGROUND 
We consider the case  of data  transmitted at baseband' by 

means  of  pulse amplitude  modulation [ 141.  The  transmitted 
sequence  is ai; j = 1, 2, -, N .  We assume that  the transmitted 
symbols aj are independent of one  another  and  may assume L 
different values with equal probability.  The  length N of  the 
transmitted sequence is assumed to  be large but finite.  The 
symbols are transmitted at a rate of 1/T symbols/s  over a 
linear channel perturbed  by additive white  Gaussian noise?The 
received  signal  is 

N 
y ( t )  = aih(t - jT )  + n(t); 0 < t < 7, nT< 7 < 00 (1) 

j =  1 

where the impulse  response h(t)  represents the  combined 
effects  of  the channel and shaping filters at  the  transmitter  and 
receiver. The Gaussian  noise with power  density spectrum 
N0/2  is denoted  by n(t). We assume that h(t)  has finite  dura- 
tion, allowing us to confine  the received  signal to the interval 

In  the succeeding sections we  shall examine,  in turn, opti- 
mum sequence detection  and  optimum  bit-by-bit  detection. 
The  development of  optimum sequence detection follows that 
of Ungerboeck [ 151 and Mackechnie [ 161 . While this deriva- 
tion  has been  presented  elsewhere [20], we  shall  give an  ab- 

[O, 71 . 

1 We shall address ourselves exclusively to  the problem of baseband 
signal detection. Ungerboeck [ 171  has extended  the  Viterbi algorithm 
to  the passband channel. This technique  can  be used to extend  our re- 
sults in a similar fashion. 

2 The white noise assumption simplifies the analysis considerably. 
However, similar results  can be  obtained  for  nonwhite noise. 
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breviated version for the sake of  completeness.  Both, algo- 
rithms have certain common elements' which  will  now  be 
presented. A key  term that arises in the  decision rules is the 
probability  density  functional 

This is the  probability  of  a particular signal  being  received in 
the interval [0, 71 given that  a particular sequence  of symbols 
a , ,  u2,  * - e ,  iN was transmitted. Since the impulse 'response is 
known,  the  only  random  component  of the received  signal  is 
the additive channel noise  [see (l)] which is  assumed to be 
white  and Gaussian.  Under these conditions  the expression 
for this conditional  probability is 

. .  

N 
=Kexp  [ -- 2 N O  / ' [ y ( t ) -  x 6ih(t-i7')]2 d l ] .  (2) 

i=N 

Our interest in (2) lies  in the relative  values for different 
sequences t i l ,  22,  *-, &. Therefore, we concentrate  on the ex- 
ponent. This exponent can be decomposed into  the con- 
venient  form 

N - l  N - 1  N - 1  
= l ' y z ( t ) d t  - 2  hizi + z 2 ;,r 

i= 1 i = l  j = 1  
i  1 1 - j  

where 

zi 62 1' z(tyl(t - iT )  dt 

and 

r i - j  b h(t - iT)h(t - j T )  dt .  d' 
We make the assumption  that the intersymbol interference 
memory  length is finite; thus, ri-j = 0 for I i - j  I > m. 

In  terms of this notation,  the  output z i  of the matched 
filter m(t) can be  written as 

m - I  
zi = ii+,q + ni. 

j = - m + l  

The  fact  that the noise components nk of the samples of the 
output of the  matched fiter are correlated {E(nini+j) = Ti} 
was eliminated  by  the  introduction of  a whitening transversal 
filter [ 171 in early versions of  the  Viterbi  algorithm  (Forney 
[2] , Kobayashi ' [ 181). The  whitening filter also shortens  the 
intersymbol interference from  two-sided in the  past  and  future 
to one-sided  involving only  the past, and is equivalent to  the 
forward filter of the decision feedback equalizer [ 191 . No loss 
of optimality is introduced by  the whitening filter, but Under- 
boeck [ 151 shows that  a simple  recursive calculation can also 
be obtained  without the whitening filter. We shall  use the  non- 
whitened  approach because with (3), the  optimal bit detector 
turns  out  to  be simpler. 

Notice that there is a  recurrence  in (3) in that  the first two 
terms  in  the  right-hand side  are  similar in form to the left- 
hand side. We shall continue this recurrence in the course of 
developing the algorithms. Notice also that  the last three terms 
on  the RHS of (3) are functions  only of {;N- m ,  6 ~ -  + 1 ,  - * e ,  

2 N }  and not of the rest of the possible transmitted  sequence. 
These two  observations are at the core  of the subsequent 
analysis. 

We pause now to define some terms that are  essential to 
the  development of the technique. We define a set  of state 
vectors 

o k  = { a k - m + l ,  & k - m + l ,  i k } ;  
A .  

k = m, m + 1 ,  -, N (5) 

and define Si to be the sequence  of state vectors up  to and 
including the  state  at time jT.  Thus 

S k A  = { U m , U m + 1 , . ' " } = ~ 2 l , i 2 , ' ' . , ~ k } ;  k < N .  

Similarly, we define the sequence  of  outputs  of  the  matched 
filter 

Z k A  = { Z 1 , Z 2 , * . * , Z k } ;  k < N .  

We use the same notation in defining the sequences uk and rik. 

definitions 
In  terms of the elements in (3) we make the following 

k k k  
v(zk,  sk) 62 2 x h i z i  - x z hiijri-j ( 6 4  

i= 1 f = 1  j = 1  

k -  1 

v ( z k ,   u k -  1 ,  (Tk) = & k z k  - &k x ;irk- i + 6k2r0.  
i = k - m  

(6b) 

From (6) and these definitions one  can  write  the iterative 
relationship 

u(zk, sk) = u(zk- 9 Sk- ' )  + v ( z k ,   ( I k -  1 ,  o k ) .  (7) 

We return now to (2). Ignoring factors common to all  se- 
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quences 6, , i2, - e ,  6N allows us to write given ON- 1 .  We have then 

= c exp ~(9, s N )  

where c is a  constant. 

OPTIMUM  SEQUENCE  DETECTION 

In  optimum sequence detection we want to find  the  most 
probable  transmitted sequence that resulted in a particular 
received  signal.  This  is  equivalent to maximum  likelihood 
sequence estimation  under  the assumption that  the transmit- 
ted symbols are independent  and identically distributed.  From 
(7) and (8) we have 

The problem  of optimum sequence detection  then comes 
down to maximizing U ( 9 ,  fl) over  all transmitted sequences. 

From (7) 

Notice that  there is a recurrence in  the  term F(ak). We have 
the general  expression 

F(uk)= max [ V ( z k , ~ k - l , ( J k ) + F ( ~ k - l ) ] .  (12) 
Ok- 1 l0k 

By repeated  application of (12), the  optimum sequence can  be 
found. The initial step  of  the calculation if F(um) A U(Z"', 
Sm). At each step of the  calculation, the  path history leading 
to a particular value of a  state is  preserved. The maximiza- 
tion over the final set of  states yields the  optimum sequence. 

We shall see that  it is possible, through  the merges, to make 
optimal decisions  before the final set of states has  been  reached. 
At  a given  time there is associated with  each  state  a  number 
F(uk), indicating the  likelihood,  and  a  path vector Pi = {a l  *, 

that were  passed through  in reaching the present state.  The 
essence of  the technique is that no other  path gives a greater 
value of F(ak). Now  suppose that  up  to a  certain  point  in  the 
past all states have the same path. This  is indicated  by the fact 
that  the first several components  of each  of the  path vectors 
Pi; j = 1, 2, .-, Lm are the same.  This common  path  then  must 
be  a segment  of the  optimum sequence.  This  segment can be 
read out as a decision. It must be  recognized that a merge  is a 
random phenomenon  and  consequently may  be  of  limited 
value in practical applications. (In applications, decisions 
which may  be  suboptimum are  made after  a  certain  maximum 
delay.) Experimental results show that this  procedure does not 
lead to a  precipitous decline in performance. 

a2*, ... q2* ,  -., ), j = 1,  2, .-, Lm, indicating the  states * 

OPTIMUM  SYMBOLBY-SYMBOL  DETECTION 
In  the previous  section the whole  received  signal  was  used 

where the  notation u,, . . e ,  ON- 1 1 UN means that UN is held 
fmed while urn, . . e ,  UN- is varied. Continuing, we  have 

to detect  the  transmitted sequence. In  optimal symbol-by- 
symbol detection,  the whole  received  signal  is  used in  the de- 
tection of  each symbol  separately. Again  we  have the received 
signal  given  by (l) ,  and we assume the channel has finite 
memory as expressed in .(4). In  the sequel  we shall focus on 
the  detection  of  one  of  the N transmitted symbols,  which  we 
designate as a,, where 1 < w < N .  

The  detection process consists of  attempting to find  the 
most likely value of a, given the received  signal, i.e., we find 
6, such that Pr [a, = i, Iz(t), 0 < t < 71 is  maximized. In 
order to proceed  with  the derivation of  a  tractable expression 
for this likelihood, we  define a subset of  the set of states [see 
(5)] . Let Cj1; j = 1,2 ,  -., N, 1 = 1,2 ,  -., L denote  the same set 

[U(zN-" sN-l)  + V(zN' O N -  " uN)l ' (lo) of states as  defined  previously except  that 2, is set equal to 
one of  its L possible values, i.e., 6, = 1. Thus 6jI = uj, for j < 

Two  key observations  allow  us to proceed: 1) if UN- 1 and UN w and j 2 w + rn. For w < j < w + rn, .sil has L possible 
are fixed, V(ZN, UN- 1, uN) is independent of urn, e**, u N - 2 ,  values  depending on the L possible values  of i,. We also 
and 2) U ( p - ' ,  S N -  ') is conditionally  independent of uN, define SIk = {ZmI, l f m + l , l ,  -., G k l } .  

- 
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Armed  with these definitions, we proceed to find 

We recognize that  Pr[al = G l ,  - * e ,  aN = (2N] = L-N and By defining  the  expressions 
that Pr [z(t), 0 < t < 71 is common to all terms. From (8) and 
(9) we have G(ckl, 

k = m  + 1 , - - , N  

In order to calculate the summaticn in (14), we  use a similar G(cm1, 2,) = exP [U(Z" 31~)1 3 

recurrence to  that used  previously  [see (S)] : we can write 

(exp [U(P-',SN-l)+ v ( z N , c N - l ~ , l ,  C N I ) ] )  >> The steps required to find the  optimum value  of i, can  be 
summarized as follows. For each of the L possible  values of 
(2,, we make  the following computations: 

where 1) Compute for each Zm1 the quantity G(iS,l, i,). 
2) Using the iterative relationship (16), compute in succes- 

sion the quantities G ( C m + l , ~ ,  i,), G(Cm+2,~ ,  6,) - * a  G ( ~ N I ,  

3) Sum G ( E N ~ ,  (2,) over all states GNI and choose 2, 
c 

Z N - I J  I ~ N I  4,). 

denotes  summation over  all realizations of the state ? ~ N - ~ , I  
holding state EN1 fixed. Similarly, 

which  produces a maximum. 
As in optimum  sequence detection, the finite memory of 

the channel allows us to define a suitable set of states, thereby 
avoiding complexity that grows exponentially  with  the  length 
of  the  transmitted sequence.  However, the foregoing  calcula- 
tion  must  be  repeated for each of the N transmitted  symbols, 

denotes  summation over cm1 5 N - 2 , ~  holding c ~ -  1,1, ~ N I  
fixed. By the same line of reasoning  which  led to (1 1) we  have 

implying an growth in complexity. 
There is a degree  of commonality in the calculations for 

each  of  the  symbols, which  may reduce  complexity to some 
extent.  Conider, for example, the detection of symbols 

- z exp [ W N , S N ) I  a, and aW2 where 1 < w1 < w2 < N .  For j <al, the  state 
Y 1  + 

uml"'QNI a'. is independent  of a, and a, and we  have G(Ejl, i ) = 
] I -  G(Ujl, â  ). Thus, in order to detect the symbols ri, 1, a, 

1 ,  * - e ,  a,, Lm values of G(Ej1, (2, l )  need  be  computed for the 
states e j ~ ,  j = 1, 2 ,  - e ,  w1 - 1 .  When at  the w1 th  step, a 
distinction must  be  made among the possible  values of 2,,, , . 

=.( c . w 2  

exp [ Y ( z N ,  zN- 1,1, CNI)] 
Q N I  Z N -  1 , I I ~ N I  

- 
Until a decision  is  made on 6, 1,  the quantities G(EjI, (2, ;) 
must be computed for all  possible  values  of 2, 1. In carrying 
out the computations for the successive states, we carry along 
G(cj1, ( 2 ~ )  which  is  used in the calculations of G(cj1,  hk); j ,  k < 

(15) N .  This commonality reduces the  complexity of computation 
by  one-half. 

- 
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MERGES 
A  property  that is  analogous to merges  in optimum se- 

quence  detection may offer the possibility of further reduc- 
tions in complexity.  Let (a,, a2, - e ,  aL} denote  the values 
that a symbol a,; 1 < o < N may assume. As indicated in 
(14), it is decided that a ,  = aI if 

C G ( ~ N I ,  6,) I tw=al 2 ~ ( F N I ,  i w ) I t w # a I .  (17) 
ZNI :N I 

Now suppose that  for  a particular j such that j > m + o 
G(CjI,iw)I~,=aI>G(FjI,6w)It,#aI Vcjl. (1 8) 

From (1 5) it follows that Vk > j :  

- I  

G ( ~ k Z ~ a w ) I ~ , = a r > G ( ~ j I , ~ , ) I c i , # a I  Vck;cl. ( 1  9) 

Consequently, (1 7) holds. 
Thus, if the relationship in (18) holds,  then  it is not neces- 

sary to compute G(i?kl, 2,); k > j .  The decision 6, = a~ 
can be made at time jT. In analogy with  the  Viterbi  algorithm, 
a practical compromise would be to force a decision after a 
certain delay. 

IMPLEMENTATION OF ML SEQUENCE  DETECTION 
AND  SYMBOL-BY-SYMBOL  DETECTION 

The calculations that must  be carried out in each symbol 
interval for  the  algorithms  under  consideration are indicated 
for  sequence  detection in (12), and  for  symbol-by-symbol 
detection in (16). We begin the comparison of  relative com- 
plexity by noting that  the  quantity v ( z k ,  uk-l ,  uk) [see (6)] 
is common to  both. Ostensibly, (6)  indicates m + 3 multi- 
plications and m + 2 additions. However, this is  far too 
pessimistic. The quantities cik$=L'miirk-i + ak2ro may  be 
computed  one  time  and stored. Nor is it necessary to store 
all possible  values  of these quantities. The ai; i = 1 ,  2,  -, 
L are  assumed to be regularly spaced integer values. There- 
fore, we  can increment  through  the whole  range  of states 
starting from  one particular state simply by additions. The 
same  can be said for the calculation of the quality i k z k .  In 
the sequel we denote  the  number  of  additions necessary to 
compute v(Zk, O k - 1 ,   U k )  for  a single pair of  states as  equiva- 
lent to A additions. 

From (12) we  see that in order to find F(uk) for  a single 
realization of (Tk, L(A + 1 )  additions  and L - 1 comparisons 
are necessary. Thus,  for all realizations of the state uk,Lrn+l 
( A v  + 1 )  additions  and LM(L-1) comparisons  must  be 
carried out  in each  symbol interval. If we  assume that  a com- 
parison  is equivalent to an  addition, we  have for the  total 
number of equivalent  additions 

Si = L m ( L A v  + 2L - 1 ) .  (20) 

Memory must also be  considered in assessing the relative 
complexity  of  the  two  techniques. The optimum  sequence 
estimator carries  along a  path  history and the  quantity F(uk) 

for  each state from symbol interval to symbol interval. Let R l  
denote the number of bits necessary to store F(ak) with 
sufficient accuracy. We also  assume that  the  path history is 
allowed to reach  some  maximum length Ml whereupon 
decisions  are  made.  This approach is suboptimum. However, 
if M1 is  large enough,  a significant number of  merges  will 
take place before  the  path  length is truncated. We find then 
that the storage requirement  for  optimum sequence detection 
is 

Bl = L m [ R 1   + M l  log, L ]  bits. (21) 

Here B1 is a minimum  value  since  we  have not  taken into 
account  any  memory  required to calculate v(Zk, ( T k - , ,  (Tk). 

The estimation of the  complexity of optimum  symbol-by- 
symbol detection is  more complicated. Recall that  the  quantity 
G(Zjz, 2 N )  is computed in each  symbol interval. Now from 
(16) we  see that this requires LA v + L-1 additions, L multi- 
plications, and L exponentiations  for  each  state. We shall 
assume that  a single multiplication is equivalent to P addi- 
tions. There are several  ways that  the exponential may be cal- 
culated. The most costly is to compute  the series expansions 
term-by-term,  implying  a  number of multiplications and 
additions. On the  other  hand,  the use  of read-only  memory 
may reduce  the  number of operations that are required. Let 
us denote the number of additions that are equivalent to 
exponentiation as E. The total number  of  equivalent addi- 
tions to calculate C(Gji,, ciN) for all states is then Lm+l (A v + 
P + E + 1 )  - L" additions in each  symbol interval. These 
are not all of  the calculations that must be performed.  For 
each G(Cj;.l, i k ) ,  k < j ,  a separate set of calculations must 
be  performed  for  each possible  value  of i k .  It is  possible that 
these must  be  done for all j = k ,  k + 1 ,  - - e ,  N .  However,  we 
shall truncate as in optimum sequence detection. We assume 
that after M .  symbol intervals a decision on a  transmitted 
symbol is made. The total number of equivalent  additions  for 
optimum bit-by-bit detection is 

S 2 = L m ( L A v + P L + E L + L - 1 )  

+ E d 2 L m + ' ( L A v + P L + E L + L - l )  

= L y L A v + P L + E L + L - l ) ( 1 + M 2 L ) .  (22) 

The amount  of storage required  for bit-by-bit detection is 
governed by  the fact that  the quantities G(Zjl, i k )  must be 
stored for each state,  for  each possible  value of  the M, un- 
detected  symbols. We assume that R2 bits are required to store 
the  quantity G(Cj1, i k )  with sufficient accuracy. We find that 
the  required  memory is 

B2 = L"R2 [ 1 + M2L].   (23)  

CONCLUSION 
We have  derived an  algorithm for optimum  symbol-by- 

symbol detection.  The starting point  for  the derivation is the 
Viterbi  algorithm used for optimum  sequence detection. The 
difference in the  optimality criterion can  be brought into 
focus  by the following considerations. Let a be  a  random finite 



HAYES e t  al.: OPTIMAL SEQUENCE AND SYMBOL-BY-SYMBOL DETECTION 157  

length  sequence of kl’s. The  Viterbi  algorithm finds the vector 
ci which minimizes P(6 # a). The  symbol-by-symbol  algorithm 
in this  paper  finds the vector ci which minimizes the  expected 
number of  places in which ci and a disagree. Thus, the first 
algorithm minimizes the  probability of any error whatsoever, 
and the second  minimizes the expected  number of symbol 
errors. Both  algorithms exhibit the merging phenomenon.  That 
is, a sequential computation allows the fixing  of a 
number  of ui)s at  the beginning of the sequence  whenever jt from 1960 to 1962. In 
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