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Optimal Symbol-by-Symbol Detection for 
Signaling 

Duobinary 

MITCHELL D. EGGERS AND JOHN H. PAINTER, SENIOR MEMBER, IEEE 

Abstract-An optimal  symbol-by-symbol ietection scheme  for  duo- 
binary signaling  (Class I PRS) which  exploits  the inherent  correlation 
properties  of partial  response  signaling (PRS) is postulated.  Analyti- 
cal  results indicate a max,imum improvement of approximately 0.7 dB 
over  conventional  split shaping  duobinary  detection  at a 10-4 error 
rate.  Although  duobinary signaling  is  emphasized,  sufficient  generai- 
ity within  the formulation  is  maintained  to  accommodate  any  class of 
PRS. 

A 
I. INTRODUCTION 

LTHOUGH a  maximum likelihood detector  has been 
shown to  exhibit  the lowest error rates for partial  response 

detection [ l ]  , [ 2 ] ,  the vast memory requirements  and un- 
wanted  output delays  prevent physical realization. An alterna- 
tive detection scheme is postulated which exploits  the prevail- 
ing correlation  properties  of partial  response signaling (PRS), 
while avoiding the  complexity  encountered with maximum 
likelihood detection.  The following discussion emphasizes 
duobinary (Class I PRS) signaling, yet preserves sufficient 
generality to accommodate  any class of PRS. 

11. BACKGROUND 

A .  Precoded Duobinary Signaling 
Assuming the  intersymbol  interference is present  only at 

adjacent sampling intervals, and in the absence of channel 
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noise, the  kth  precoded  duobinary  output  symbol is  given by 
P I  

Sk = b k  3. b k - 1  (1) 

where 

b k   = m k  ‘ b k - 1  

b k  E { P ~ ~ P z }  = (-1 9 1 )  

skE{61,62,63}={--2,0,2}. 

Also, the source data stream { m k }  in an analog (-1, 1)  for- 
mat is assumed to  be  equiprobable  and  independent. Defining 
the  adjacent  symbol  correlation coefficient as 

E { ( S k - f k ) ( S k - I  -&-l)} 
P =  ( 2 )  

‘Sk ‘Sk - 1 

where 

$ = E { s ~ }  

oSj2 = var {si} 

the statistical dependency of the  output symbols formed 
from partial response filtering  becomes apparent.  The ensem- 
ble of  joint  output probabilities C p i j } ,  where 

pjj =P(Sk  = S j ,  s k -  1 = S j ) ,  (3) 

0090-6778/83/0900-1077 $01 .OO 0 1983 IEEE 

Authorized licensed use limited to: Texas A M University. Downloaded on February 18,2010 at 12:58:04 EST from IEEE Xplore.  Restrictions apply. 



1078 IEEE  TRANSACTIONS O N  COMMUNICATIONS, VOL. COM-31, NO. 9 ,  SEPTEMBER 1983 

TABLE I 
JOINT OUTPUT PROBABILITIES 

-1 k- 1 

- 2  118 1 l / d  I o  

necessary for  the  computation  of p ,  are  shown in Table I. 
The resulting correlation coefficient is shown to be p = 1/2 
[ 4 ] .  Therefore,  the adjacent received signal samples are 
50 percent  correlated  although  the source  precoded sym- 
bols { b k } ,  are Statistically independent. Moreover, while pre- 
coding clearly removes the  functional dependence of the 
output symbols on past symbol decisions, it preserves the 
statistical dependence with  respect to  the previous  precoded 
bit. 

B. Channel Model 
The noise incurred in the channel is modeled as 

mean, white Gaussian stochastic process  with the 
spectral density 

a  zero 
power 

(4 )  

Hence,  the received noise power  within the  Nyquist band 
[-TIT, n/T]  becomes 

Due  to  the coloring 'of  the PRS receiver filter, a  statistical 
dependency is introduced within the noise process.  This  de- 
pendency is revealed from  the  autocorrelation  function  of  the 
noise  process at  the  detector Rn(7j given by 

Considering the split  shaping model, where the PRS pulse 
shaping  filter Hto) is apportioned equally between  transmitter 
and receiver, the relationship for  the receiver filter is HR (a) = m. Specifically, for  duobinary signaling, H(o) satisfies 

{ t T  * cos ( 0 T / 2 )  I 01 < T/T  
H(w) = 

elsewhere 

where T-' is the  symbol  rate.  Consequently,  the  autocorrela- 
tion  function (6) of the noise process for  duobinary signaling 

with split shaping is 

Hence,  the noise autocorrelation  function  at  the  detector is 
the  duobinary impulse scaled by the channel noise variance. 

Evaluating the  autocorrelation  function  at integer multi- 
ples of the sampling period kT yields the covariance between 
any two noise samples separated b y  distance k.  Examining 
(71, a significant amount of correlation is prevalent between 
adjacent noise samples (7 = kT = 1 T ) ,  while beyohd  the 
neighboring sample ( k  > 1) the  correlation appears negligible. 
Moreover, the  adjacent noise samples are seen to be 33 percent 
correlated  and  the rate of correlation falls inversely with  the 
square of the distance  separating the samples. Consequently, 
only  the  correlation between  adjacent noise samples is con- 
sidered where the  correlation coefficient 6 & p . ,  1 - - 
1/3, thereby reducing the multivariate Gaussian noise density 
to a bivariate form given by 

I 1  li-jl=l 

where 

o2 = 2No/n noise variance at  the  detector. 

111. OPTIMAL SYMBOL-BY-SYMBOL DETECTION 

To circumvent the  complexity of maximum likelihood de- 
tection, a symbol-by-symbol  detection  operation is most 
desirable. The  optimum  symbol-by-symbol  detector is defined 
as the  detector which maximizes the a posteriori probability 
conditioned  on  the  additional knowledge of the  most  recent 
symbol decision and noise sample. Assuming the  most  recent 
symbol decision is correct,  the  detector is then  optimal  with 
respect to  the decision on m k .  The rationale for  conditioning 
the decision  event exclusively on  the  most  recent  symbol deci- 
sion and noise sample is substantiated  from  the  correlation 
properties discussed previously. 

The primary  assumption governing the derivation of the 
detector is perfect synchronization of the PRS waveform. As a 
result,  the  kth sample input  to  the  detector will be denoted 

With the prescribed  modeling of the  detector  input,  the  con- 
ditioning events  become 

' k  = Y k  present received sample (1 oa> 

rk- = Y k -  most recent received sample (1 Ob) 

i k -  1 = 6i most recent  symbol decision. ( 1  OC) 
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The derivation  of the  optimal  symbol-by-symbol  detector Case 11: ;k- = & 2  = 0 
follows  from maximizing the a p o s t e r i o r i  probability  condi- 
tioned on the above  events.  Hence, the  detector  sets i k  = 61 if f 2 - ( Y k -  1 )  = f 1 / 3 ( y k -   1 ) ’ - ( a 2 / 2 ) ( 1  - 1/9) In 2 

Rewriting  the  decision rule  in terms of the  known a p r i o r i  
probabilities  (Table I) and density functions,  the  maximum  The probabilistic behavior of the  detector  input sequence 
a p o s t e r i o r i  detector  sets i k  = 6 ,  whenever ::; { r k }  is depicted  according to  the various cases in  Fig. 1 .  The 

a p o s t e r i o r i  probabilities  are  shown as a  function of the pres- 
P n k -   l , n k ( Y k -  1 -&i ,  Y k   - 6 1 ) p ( 6 i >  & I >  ent received sample value Y k .  The decision regions denoted 

Iii, where 

all j # 1. ( 1 2 )  ~ 1 ,  ~ 3 ) ;  case selector 

With the specification  of the bivariate  Gaussian noise  process 0 kk  =--I 
(8) the  detector chooses i k  = 61 if and only if j = I l  . ; message selector 

m k  = 1 

& I 2  + 6 1 ( 2 t ( Y k -  1 - &i)- 2’Yk) 
P(Si, 6,) exp - [- I partition  the  ternary received sampled space into  the disjoint 

with (I) .  Consequently,  the  decision-directed  detector  with 
noise  feedback is a variable threshold  slicer,  controlled by both 

sample  estimate ( i k -  Two  other  detectors, being  deriva- 
(l 3, tives of the preceding, will  be developed to  reveal the degree of 

A realization  of the decision rule (1 3) yields  a variable thresh-  detection  improvement achieved by  considering the correla- 
old  slicer,  where the  threshold levels are given  by [ 4 ]  . tion  properties  of  the received signal and noise samples. 

Considering the  correlation of the signal samples only,  the 

detector  with  the  exception of the noise feedback.  Thus,  the 
a p o s t e r i o r i  probabilities  are  conditioned  only on the  knowl- 

2 2 ( 1  - 4.2) binary message regions (hk = - 1 ,  r i k  = I ) ,  in  accordance 

2n2(1 - p) the  most  recent  symbol decision ( i k -  1 )  and  the previous  noise [ 1 6: f 6 j ( 2 g ( y k -  1 - si)  ’- 2 7 , )  > P ( 6 i ,  h j )  exp - - 

all j # 1. 

6j + 6, decision-directed detector is identical  with  the preceding 
h ( y k - l ) = - + t ( Y k - l  -&i) 

2 

edge of the  most  recent  symbol decision ( S k - l ) ,  resulting 
( 1 4 )  in a  detector which  sets i k  = 6, if and  only if 

That is, to yield a decision i k ,  the value of the  present received 
sample value Y k  is compared  to  a  threshold  that is function- 
ally dependent  upon  the  past received sample value Y k -  1 .  

Notice  that  the inclusion of  the noise correlation  properties 
within  the  conditioning  event  is seen to translate  the  threshold 
level ( 1 4 )  by an amount  equal  to  the previous noise  sample 
estimate (ik- = Tk- - i k -  1), weighted by the  adjacent 
noise correlation  coefficient. Second,  the  conditioning  pro- 
vided  by the PRS signal correlation  adjusts  the levels ac- 
cording  to  the  joint  probability of the  output  symbols within 
the  correlation span ( s k -   s k ) .  

Depending  upon the  most  recent  symbol  decision, i k -  1 ,  

the threshold levels ( 1  4) can be evaluated  in terms  of  the  most 
recent received  sample ( Y k e 1 )  and  the noise variance.  Thus, 
three cases arise from  the permissible duobinary  output levels 
in which the specific  thresholds  are 

P ( s k  = 6I / rk  = Y k ,  sk- 1 = s i )  

> P ( s k   = 6 j / r k  = y k , S k - l  = s i )  a l l i f l .  (1 6)  

Now,  the Gaussian noise  density  is  single-dimensional  since 
the noise process is considered  statistically independent. With 
this density substitution,  the decision-directed detector 
chooses S*k = 6 ,  whenever 

Realizing ( 1 7 )  in  the  form of a variable threshold  slicer,  the 
thresholds  are given  by 
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4 '30 -I31 - 
f3 

Fig. 1. Probabilistic behavior of the received samples according to 
(a) Case I, (b) Case 11, (c) Case 111. 

which  are  equivalent to  the levels given by (14) with  the noise 
correlation coefficient set  to  zero.  In an analogous manner, 
three cases arise where the specific thresholds are given by 

U2 
Case 11: f2'- = - 1 - - In 2 

2 

U2 
f2'+ = 1 + - In 2 .  

2 

Therefore,  the decision-directed detector is a variable thresh- 
old slicer controlled by the  most  recent  symbol decision. 

The final derivative of the decision-directed detector with 
noise feedback is the mean detector. This detector ignores the 
correlation  properties of both  the signal and noise samples 
and simply chooses ŝ k = 6 ,  whenever 

Thus,  the resulting mean  detector threshold levels do  not 
discriminate with regard to  the permissible cases; rather,  the 
levels are based on the average output  symbol  occurrence.  The 
two  threshold levels for  the  mean  detector are given by 

(21a) 

U2 
f + = 1 + 7 1 n 2  

L 

and are seen to be functionally dependent  only upon the 
noise variance. 

For comparison  purposes, the conventional detector  for 
split shaping duobinary signaling  will also be considered.  This 
detector is simply a  fixed level slicer with the  symmetric 
thresholds placed at -1 and +1 to partition  the  ternary 
signal space. 

For convenience, the  detectors will be henceforth  denoted 
by  the following  acronyms: 

CD/S conventional detector  for split  shaping 
MD mean detector 
D3  decision-directed detector 
D3/N decision-directed detector with noise feedback 

Finally,  the  distinction  among  other  PRS  optimum  detec- 
tor derivations is credited to  the a posteriori conditioning 
event. This  event is determined  from  the degree of correlation 
present in the noise samples, due  to receiver filtering,  and 
within the signal samples themselves. 

IV. PROBABILITY OF  ERROR AND COMPARISON WITH 
OTHER DETECTION METHODS 

A.  Probability of Error  and  Comparison for a 
Known Channel Level 

Concerning the decision-directed detectors,  the  most  recent 
decision i k -  is assumed correct.  This assures tractable  error 
probability expressions  by  establishing proper  thresholds  for 
the  current decision i k .  Hence,  the resulting P(e) expressions 
for  the  D3/N  and D3  actually  represent a lower bound on 
probability of error. 

The increased conditioning of the  D3/N, based on the  cor- 
relation  present in the  information bearing sequence {sk}  and 
the noise samples { n k } .  is incorporated  into  the P(e) expres- 
sion based on the average occurrence  of  such events. Therefore, 
the average error probability over the ensemble of possible 
{sk}  and {nk}  occurrences  within the  correlation span  yields 

where 

and 

U 2  
f-=--l--  I n 2  

2 The  conditional probability (23) arises from  the  conditioning 
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:vent on  the previously determined noise sample ( & - I  = 
rk-  - i k -  l ) .  Thus,  to reflect the  added  conditioning,  the 
conditional  probability ( 2 3 )  is averaged with  respect to the 
permissible range of  the  random variable r k -  1 .  The condi- 
tional probability within the integral  (23), 

00 

P(e/Si, 6 j >  a) = x N(Si + E(. - Si>, 0-1 
m f m ( a )  

(24) 

where N(x ,  y )  represents a Gaussian density  with  mean x and 
variance y 2 ,  is functionally  independent  of  the most racent 
received sample value a. Therefore, (23)  reduces to 

where 

The above sum indexed on m includes all error events,  repre- 
sented as intervals bounded by the  thresholds f,(a) (see Fig. 
1). The  independence is explained by examining the  condi- 
tional mean of the density function in (24) 

&k/?lk-  1 = 6i + (26) 

and  the threshold functionsfm(a) (14). Any translation  of  the 
density  function by an  amount t (a  - Si) is countered by an 
equivalent translation in the threshold value. Hence, the  con- 
ditional  error  probability (24) is independent of the previous 
received sample i-k- = a, due to the  counteraction of the 
thresholds. 

Inserting the  joint probabilities of the adjacent output 
symbols tabulated in  Table I ,  the P(e) expression  (22)  becomes 

i= 1 

where 

Clearly,  each Pi(e) represents  the average probability of error 
for  the  ith case encountered.  The resulting  probabilities 

{Pj(e)} according to  the respective cases are given by (see 
Fig. 1) 

Case I: sk- = 6 1  =-2 

J- m 

where 

Case 111: sk-l  = 6 ,  = 2 

Combining {Pi(e)} for  the  three cases in conjunction  with 
(27),  the average probability of single bit error is [4] 

+ $  [Q(y) - .(?)I 
where 

A, = A(1 - g 2 )  (33) 

A = u2 In 212. (34) 

Since the D3 is analogous to  the D 3 / N  with the  exception 
of the noise feedback, whereby  only the  correlation of the 
information sequence ( s k }  is considered, the P(e) expression 
follows  from (32)  with .$ = 0. Thus,  the average probability of 
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single bit  error  for  the D3 is  given  by 10-1 m g  

(3 5) 

Due to  the neglect of the correlation present within the 
information  and noise sequences {sk} and { n k } ,  respectively, 
the  error  event  for  the MD is only conditioned  on  the  current 
transmitted  symbol.  Thus,  the P(e) is formulated according 
to the  total  probability 

P(e) = C. P(e/sk = 6 i ~ ( s k  = s i ) .  (36) 
i 

Here,  the  thresholds vary only  with  respect to  the noise 
variance u2 at  the  detector.  The resulting probability of single 
bit  error  for  the MD is 

I" 
8 1u 12 14 16 18 

StlR (OB) 

F i g .  2. Low error rate performance  of the various detection schemes. 

u2 = 2No/n at  the  detector in terms of the  SNR  results in the 

P(e) = Q t?) + 3 { Q(F) - Q(T)} 3 + A  . bit  error  rate curves shown  in Fig. 2.  The  additional  acronyms 
include: 

(37) CD/F conventional detector  for full transmitter shaping 
PAM ideal pulse amplitude  modulation  with split  shap- 

The final detector,  the  CD/S, is a fixed level slicer with  the ing 
thresholds placed symmetrically at -1 and +l . Therefore, MLD maximum likelihood detector 
the  CD/S is a special case of the MD with  the  stipulation A = 
0. Consequently,  substitution of A = 0 into  (37) yields the 
probability of single bit  error  for  the CD/S. 

accompanied by the following asymptotic P(e) expressions 
[61> [71. 

The  asymptotic  approximations  for  the P(e) expressions, 
obtained by allowing the  SNR  to become  sufficiently large 
(A + 0), are given by 

D3/N : P(e) 2 e< 1/ u d m )  (39) 

D3: P(e) r $ Q(l/u) (40) 

MD: P ( e ) z  3 Q(l/u) (41 1 
CD/S: P(e) $ Q(l/a). (42) 

Notice  that  the  asymptotic  performance of the  detection 
process is improved  by  decision-direction. The additive detec- 
tion  improvement provided by the noise feedback is revealed 
by the presence of the  correlation  term 4- in the Q func- 
tion  argument. Also from  the  asymptotic  approximations, 
the MD and  CD/S  are  shown to perform  identically. 

For split  shaping duobinary signaling, the averaging channel 
SNR (P,/P,J is  given by [5] 

8 
SNR=---* (43 1 

TNO 

Here, P, and P, respectively denote  the average symbol power 
and noise power  in the  channel. Expressing the noise variance 

PAM: P(e) = e(-) (45) 

The P(e) curve shown  in Fig. 2  for  maximum  likelihood  detec- 
tion results from simulation studies  [2] . 

Notice that within the  asymptotic range (SNR > 8 dB), 
both  the MD and D3  differ  only marginally from  the CD/S. 
However, with  the inclusion of the noise feedback,  the result- 
ing D3/N is shown  to  exhibit an improvement of approxi- 
mately 0.7 dB with respect to  the CD/S at  a  error  rate. 
For  the lower range (SNR < 7 dB), the  D3/N margin of  im- 
provement increases to approximately  1 dB. 

In comparison to maximum  likelihood detection, which 
exhibits  the lowest attainable P(e) for  duobinary signaling, the 
D3/N suffers 1.3 dB at  a lop4  error rate.  Hence,  the  D3/N 
avoids the  complexity associated with  maximum likelihood 
detection  at  an expense of  at least 1.3 dB SNR  degradation. 

An alternate  approach to improving PRS  detection  that 
avoids the  constraints imposed by maximum  likelihood  detec- 
tion is null zone  or ambiguity  zone detection,  postulated by 
Smith  [8] . Essentially, detection is performed by a  quantizer 
with ambiguity levels about  the  threshold regions. Most re- 
ceived samples which fall into  the ambiguity or null zones  are 
replaced by the  correct decision value based on the partial 
response signal redundancy. Nulls which cannot be  replaced 
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sequently, due tG''the dependency of the  threshold  function 
upon  the channel level, automatic gain control (AGC) cir- 
cuitry must accommodate  the  threshold  detector  to maintain 
optimality. 

The probability of error expression  resulting from  the un- 
known  channel level signal model (47)  and  the  optimal  thresh- 
old function (48) is given by 

, a ..: 
unambiguously  are substituted by the  most  probible values 
based on the previous received sample values: The analysis by 
Smith indicates an  improvement of at least 0.7 dB at  a 
error  rate over conventional duobinary  detection with split 
shaping employed.  The inability to  determine  the  exact im- 
provement of this  scheme with  the split shaping model is 
attributed  to  the  assumption of independent noise samples at 
the  detector, which is valid only for full shaping. That is, 
the  improvement of 0.7 dB was obtained analytically for full 
transmitter shaping and  interpreted as an  upper performance 
bound  for split  shaping. 

The  questioh of the  optimal null zone partitioning for such 
a scheme was pursued by Kobayashi  and  Tang [9].  Extending 
the works of Smith  from an algebraic standpoint, an optimal 
ambiguity  zone was established (optimal in the sense of mini- 
mizing the probability of ambiguous reception given the 
probabiiity of an incorrect decision). The  formulation revealed 
the  functional dependence of the  optimal ambiguity  zone 
upon  the noise variance. The performance analysis (assuming 
independent noise samples at  the  detector  and  correct previous 
decisions) led to  the following asymptotic P(e) expression for 
optimal ambiguity  zone detection (AZD) [9].  

AZD: P(e) Q(2(fi- 1 ) m ) .  (46) 

Several factors must be recognized to warrant  correct 
interpretation of the relative performance of the  D3/N  and  the 
AZD method illustrated in Fig. 2 .  First,  both P(e) expressions 
represent upper  performance bounds due to  the assumption of 
correct previous decisions. Second, the D3/N analysis accom- 
modates correlated noise samples at  the  detector  and hence 
accurately  reflects  split shaping. However, the AZD analysis 
assumes independent noise samples at  the  detector  and  there- 
fore accurately  depicts full shaping. Conceivably, from  the 
bounds  obtained by Smith [ 8 ] ,  AZD incorporated  with split 
shaping would increase the margin of improvement  beyond 
0.7 dB. 

B. Probability of Error for an Unknown Channel  Level 
Suppose  the  detector  input signal is of  the  form 

rk =ask + nk (4 7) 

where "a" represents a fixed but  unknown channel level. The 
channel level constant is assumed to be statistically independ- 
ent  of  both  the  transmitted signal and channel noise. 

The corresponding decision rule, which maintains the 
optimality as previously defined, is realized by a variable 
threshold  detector  with  a threshold function given by 

The derivation of (48) follows analogously from  the previous 
case whereby the channel level was assumed to be unity. Con- 

Notice that  the utilization of the threshold function  (48) in 
determining the P(e) imposes the  additional  constraint of 
perfect AGC. The  asymptotic  approximation  for  the above 
P(e) expression is 

while the  asymptotic P(e) expression obtained in the absence 
ofAGC(f(yk_l;a)=f(yk-l;  1))isgivedby 

- Q (  y}] 
Clearly, AGC employed in the decision process enhances the 
P(e) performance. 

Most importantly, however, is the question of sensitivity. 
Since  perfect AGC  is not physically obtainable,  it is desirable 
to determine  the  amount  of  bit  error  rate performance sacri- 
ficed  due to  the inability of the AGC to recover the  exact 
channel level constant.  Thus,  the variation of the bit error 
rate with  respect to small deviations about  the  exact channel 
level constant is examined. 

Consider a bit  error rate measure of sensitivity defined 
according to 

where 

P(e) = probability of error assuming perfect AGC 

P,(e) = probability of error  with AGC error E .  

That is, the sensitivity is a normalized  measure of error  rate 
difference  between the ideal case which presumes  perfect AGC 
and  the physical case where an  error e exists between  the AGC 
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Fig. 3. Performance  sensitivity with respect to AGC error for various error rates. 

determined channel ievel constant  and  the  actual value. The 
derivation of the P,(e) follows the previous work  with  the 
exception  that  the  threshold  function f F ( y k -  ; p )  now  en- 
compasses the discrepancy between  the  actual  and AGC 
determined channel level constant according to 

Consequently,  the  asymptotic P,(e) becomes 

Hence,  for sufficiently large SNR’s, the sensitivity  expression 
(52) utilizing (50) and (54) is 

+ (a2 - E ~ / ~ ) ( u  + E )  exp {-i uo2(-2aE + E 2 > )  

+ (az - e2/9)(a - E )  exp (-3 uO2(2ae + E’)}  (56) 

and  the  exponential approximationQ(ol) =( 1/2na) exp (-o12/2) 
has been employed. Fig. 3 depicts  the family of sensitivity 

curves generated  by ( 5 5 )  for a substantial range of error  rates. 
The  actual channel level was assumed to be unity  and as a 
result,  the AGC error is expressed as a percentage difference. 
For  example, suppose a given  AGC unit  exhibits  an average 
error of 11 percent.  Then  from Fig. 3, together  with  an ideal 
bit  error  rate of the sacrifice in  performance would be 
a doubling of the  error  rate. 

V. CONCLUSION 

By exploiting  the prevailing correlation of the  induced 
intersymbol  interference  inherent  to partial  response  schemes, 
a n  opt imal  symbol-by-symbol detection  scheme  resulted.  This 
scheme was shown to be dependent upon the channel level. 
Furthermore,  the analytical P(e) expression revealed a maxi- 
mum  improvement of approximately 0.7 dB in SNR over 
conventional  duobinary  detection  with split  shaping.  However, 
with respect to maximum  likelihood detection,  the  optimal 
symbol-by-symbol  detection scheme suffered 1.3 dB at  an 
error  rate of 
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Frequency-Selective Fading Effects in Digital  Mobile Radio 
with  Diversity  Combining 

BERNARD GLANCE, MEMBER, IEEE, AND LARRY J. GREENSTEIN, SENOR  MEMBER, IEEE 

Abstract-We analyze  the  effects of frequency-selective  fading  in  a 
cellular  mobile  radio  system  that  uses 1) phase-shift  keying  (PSK)  with 
cosine  rolloff  pulses,  and 2) space  diversity  with  maximal-radio  com- 
bining.  The  distorting  phenomena  with .which we deal are  multipath 
fading  (which  produces  the  frkquency  selectivity),  shadow  fading,  and 
cochannel  interference.  The  relevant  quality  measure  is  defined  to be 
the  bit  error  rate  averaged  over  the  multipath  fading,  denoted by 
(BER). The relevant  system  performance  characteristic  is  defined  to 
be the  probability  distribution  for, (BER), taken  over  the  ensemble of 
shadow  fadings  and  locations of the  desired  and  interfering mobiles. 

To  obtain  numerical  results, we use a combination of analysis  and 
Monte  Carlo  simulation,  invoke widely accepted models for  the  multi- 
path  and  shadow  fadings, and. assume  a  cellular system  with  seven 
chanhel  sets  and  centrally  located  base  stations.  The  outcome  is  a  set 
of performance  curves  that  reveal  the  influences of various  system  and 
channel  parameters.  These  include:  the  number of modulation levels 
(two or four),  the  diversity  order,  the  shape of the  multipath  delay 
spectrum,  and  the  standard deviation (or delay  spread, TO) of the 
multipath  delay  spectrum.  Practical  factors  accounted  for in these 
assessments  include  fading-  and  interference-related  timing  recovery 
errors and combiner  imperfections. 

Our results  highlight  the  importance of the  ratio T o / T ,  where T is 
the  digital  symbol  period.  They  show  that  the  delay  spectrum  shape is 
of no importance  for T O / T  0.2, but  can  have  a  profound  influence 
for T O /  T 2 0.3. We also  find  that  using  4-PSK  leads  to  better  detection 
performance, in  certain  cases,  than  using  2-PSK. 

Paper  approved  by the  Editor  for Data Communication Systems of 
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tation. Manuscript received September 29, 1982; revised March 7,1983. 
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I. INTRODUCTION 

I N the digital mobile  radio  environment, transmission  be- 
tween mobiles and base stations  takes place over multi- 

path channels. The associated delay spreads cause frequency- 
selective fading,  which limits system performance by causing 
intersymbol  interference in the  detection process. 

The  effects of frequency-selective  fading in digital radio 
communication were extensively  analyzed by Bello and 
Nelin [ l]  for  binary differentially encoded signals using 
square pulse signaling: They assumed an &pulse response 
that is slowly the-varying, where the value for  any delay 
is a complex Gaussian stationary process and is independent 
of the values at all other delays. Such a channel  can be char- 
acterized,  in  part, by the mean-square magnitude of ,the im- 
pulse response;’ we call this  function  the delay spectrum, and 
scale it in amplitude so that  its area is unity. 

Lacking  specific data  on  the shape of the delay spectrum, 
Bello and Nelin assumed a Gaussian shape. Bailey and Linden- 
laub [ 2 ]  extended  the analysis to  Nyquist pulse signaling and 
assumed  a  square-shaped delay spectrum.  Both  studies were 
made assuming a matched filter receiver with linear diversity 

1 A complete characterization requires, in addition, a  description 
for  the  temporal variations  of the impulse response. In the  present  study, 
wherein the signaling rates  are large compared to  the fadjlig rates,  this 
aspect of the channel will not  be  treated explicitly. Instead, we will 
analyze the  channel response as  though  random  but  static,  and perform 
appropriate averages over the randomly changing responses. 

0090-6778/83/0900-~1085$01 .Ob 0 1983 IEEE 

Authorized licensed use limited to: Texas A M University. Downloaded on February 18,2010 at 12:58:04 EST from IEEE Xplore.  Restrictions apply. 


