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Node Synchronization for the  Viterbi  Decoder 
GARY LORDEN, ROBERT J .  McELIECE, SENIOR MEMBER, IEEE, AND LAIF SWANSON 

Abstract-Motivated by the  needs of NASA’s Voyager 2 mission,  in  this 
paper we  describe  an  algorithm  which  detects and corrects losses  of  node 
synchronization in convolutionally  encoded  data.  This  algorithm,  which 
would  be  implemented as a hardware device external to a Viterbi decoder, 
makes  statistical  decisions shout  node synch  based on the hard-quantized 
undecoded  data  stream. ,We will show that in a worst-case Voyager 
environment,  our  method  will  detect and correct a true loss of synch 
(thought to be a very rare event)  within several hundred bits;  many of the 
resulting outages will be corrected by the  outer  Reed-Solomon  code. At 
the  same  time,  the  mean  time  between  false  alarms  is  on  the order of 
several  years,  independent of the  signal-to-noise  ratio. 

R 
I. INTRODUCTION 

ECENT studies [ 11, [ 21 have shown  that  at  the very low 
signal-to-noise ratios NASA’s Voyager- 2 mission will 

encounter  at Uranus in  1986,  the  performance of the Reed- 
Solomon/Viterbi  concatenated coding system  could be seriously 
degraded by erratic behavior in  the  node  synchronization sub- 
system of NASA’s hardware  decoder. In this  paper we will 
show  that  this  problem can be avoided by disabling the Viterbi 
decoder’s internal  synchronization hardware and ,  replacing 
it with  a simple outboard hardware node synchronizer whose 
details we describe  in  this  paper. For definiteness,  this  paper 
will deal  only with  the system  parameters  relevant to Voyager, 
but  our  technique is applicable (with  minor modifications) to 
any convolutionally encoded  telecommunications  system. 

On Voyager, the high-rate downlink  telemetry is protected 
by a K = 7 ,  rate 1/2 convolutional  code  concatenated  with  a 
depth-4 interleaved (255,  223) Reed-Solomon code. In princi- 
ple this combination provides. excellent error  protection  (bit 
error  probability 1.OE-6) for Voyager’s highly sensitive imag- 
ing data,  at bit signal-to-noise ratios as low as 2.9 dB. Since the 
rate of the  outer code is 223/255 = -0.6 dB,  when  the overall 
SNR is 2.9 dB, the  inner  convolutional  code is operating at 
about 2.3 dB. 

However, in  practice,  the  performance of the  concatenated 
system is significantly worse than  theoretical predictions.  One 
problem is carrier-loop jitter, which degrades performance by 
0.5 dB or  more [ 11. This  means that if the system bit SNR 
remains at  the  nominal 2.9 dB value, the  inner  convolutional 
code  must  operate  at less than 2.0 dB. This is a value much 
lower than  that  for which the Deep Space  Network’s  hardware 
Viterbi  decoders were designed. In this  demanding .environ- 
ment,  the  Viterbi decoder’s internal  node  synchronization 
hardware, whose function is to detect  and  correct  true ex- 
ternal losses of node  synch, is prone to produce false  alarms, 
i.e., spurious losses of node  synch,  and send useless data  to  the 
Reed-Solomon decoder  until  node  synch is reestablished. In 
[2]  it was shown  that this  hardware problem can degrade 
Voyager’s performance by a  further  1 .O dB or more. 

In this  article we shall show  that  this  data loss due to 
spurious node  synch loss in the Viterbi decoder is completely 
avoidable. Our proposed solution involves disabling the  Viterbi 
decoder’s internal  synchronization hardware  and implementing 
an external  node  synch algorithm. Our .algorithm is easy to  
implement and depends on likelihood  calculations based on 
observations of the hard-quantized  encoded data  stream. In a 
worst-case Voyager environment,  our  method will detect and 
correct a  true loss of node  synch within several hundred bits; 
many of these  outages will, be corrected  by  the Reed-Solomon 
code. On the  other  hand,  the mean time  between false alarms 
for  our  technique (which is independent of the  SNR) is on  the 
order of several years.  Thus, for practical  purposes our techni- 
que  introduces no false alarms,  and the system SNR loss due 
to node  synch problems will be e ~ i n a t e d ,  with no loss of 
protection against true  node  synch losses. As an  outboard 
hardware device, our algorithm could be implemented on a 
single Deep Space Network standard single-board computer 
such as the iSBC 86/12,  at least at  data rates up  to  20  kbits/s. 

The paper is divided into  three sections (this is Section I). 
In Section 11, we present a  functional description of  our algo- 
rithm,  together  with  a  summary of the relevant mathematics. 
In Section 111, we present  some  numerical performance results 
for  our technique.  They will quantify  the assertions made 
above  (mean time  between false alarms, probability of uncor- 
rectable  errors  due to  true loss of synch, etc.). We also include 
in  the Appendixes  some  background information. 

11. THE UP-DOWN COUNTER 
We adopt  the following model, which  has  been found  to be 

very accurate  for  coherent deep-space communication [ 41 . 
The  information to be transmitted via the  convolutional  code 
(which in Voyager is already encoded) is a sequence ..., J L 4 ,  

M - 2 ,  M o ,  M z ,  M4, ..* of  independent identically distributed 
random variables, each  equally likely to  be 0 or 1. The en- 
coded stream :-, C--3, C - 2 ,  C- 1 ,  Co, C1, -.. is defined by the 
encoding  equations’ 

C 2 k   = M 2 k   + M 2 k - 2   + j g 2 k - 4   + I M 2 k - 6   + ’ 2 k - 1 2  

(mod  2)  (2) 

We also define the * versions of the  encoded  stream: 

matical  Society SummerMeeting, Toronto, Ont., Canada, August 1982. Man- 
uscript  received March 11, 1983;  revised October 14, 1983. This work was 
supported by a contract from the  National  Aeronautics and Space  Administra- 
tion. I We shill illustrate all of our results for the NASA standard K = 7 ,  rate 1/2 

The authors are with  the Jet Propulsion Laboratory, California Institute of convolutional code, but everything generalizes easily  to  any rate 112 convolu- 
,, Technology, Pasadena, CA 91109. tional code. 

0090-6778/84/0500-0524$01.00 0 1 9 8 4  IEEE 



LORDEN e ta l . :  NODE SYNCHRONIZATION  FOR VITERBI DECODER 525 

detectiop and demodulation,  a sequence { b k }  is received, 
where Dk = D k  + z k .  The sequence { z k }  is the error se- 
quence. If the noise  process is additive  white Gaussian noise, 
then  the  sequence { z k }  is i.i.d.,  the  common  distribution 
being Gaussian, mean zero  and variance u2 = l /p,  where p 
is twice the  symbol SNR. 

The Viterbi decoder attempt: to recover the message bits 
from  the noisy code sequence { D k } .  It  does  this by making a 
very efficient  maximum  likelihood estimate of each of the 
message bits { M 2 / } .  However, in order to operate,  the Viterbi 
decoder must have node  synch, i.e., it must  know which of the 
received symbols have even subscripts  and  which have odd sub- 
scripts. Of course, there are only two possibilities, but if the 
wrong hypothesis is made,  the  output of the Viterbi  decoder 
will bear no useful  relationship to  the message stream { M 2 i ) .  

Our algorithm will provide node  synch  information  for  the 
Viterbi  decoder. It is based on  the hard-quantized received 
sequence { R k } ,  where 

R k =  { 0 ifLjk>O 

1 if ik < 0. 

Clearly Rk = Ck + Ek (mod 2), where { E k }  is i.i.d, and Ek = 
0 or 1. The error probability p e  = Pr {Ek = l} is given by 

l r n  
p e  = ~ r ; i  .I e - t 2 / 2  dt 

where, as before, p = 2Es /No .  

{ R k }  is the syndrome, or parity-check  sequence {x,}  [ 51 : 
Associated with the hard-quantized received sequence 

1 + (1 - 2pe)’0 
n =  

2 

The foregoing describes the  distribution of the received 
sequence  and of the parity-check  sequence in case node syn- 
chronization is maintained.  This will be called the in-synch 
hypothesis. The out-of-synch  hypothesis describes the situa- 
tion when node  synchronization is in  error. In this case the 
R i s  and Xi’s behave as though  the subscripts were shifted by 
one.  Thus,  under  the out-of-synch hypothesis  it is the  odd 
parity checks that are correct with  probability n  and  the even 
ones  that are  purely random. 

We assume that  node  synchronization has  been  acquired 
and  maintained  and  that  the in-synch hypothesis is initially 
true. We wish to  monitor  the received sequence so as to de- 

tect loss of synch, i.e., a  sudden change making  the received 
sequence obey the ,  out-of-synch hypothesis,  A  method  for 
doing this  simply can be based on  a general statistical  tech- 
nique [ 7 1  for  detecting  a change in  distribution.’To apply  this 
technique it is necessary to simplify the  model by assuming 
that  the parity  checks X i ,  are independent.  They are not 
independent  for even i, but  the  dependence  between widely 
separated Xi’s  is slight, so calculations based on this assump- 
tion should be illustrative. 

The  method  for  detecting loss of synch is based on  a counter 
with increments 

where p(X,) and q ( X , )  are the likelihoods of X,, under  the 
in-synch  and  out-of-synch hypotheses, respectively. As shown 
above 

1/2 if n is odd 

n if n is  even and X, = 0 

1 - n if n is  even and X ,  = I 

whereas q(X,) reverses the  odd and even cases. Thus, 

The  counter is defined by 

To = 0 

T, = max ((T+ + L(X,)) ,  O), n 2 1. 

A threshold y > 0 is chosen,  and  the process stops  the  first 
time T,  2 y. Since at  this point  there is a  substantial likeli- 
hood  ratio in  favor of the out-of-synch hypotheses,  the  in- 
ference is made that loss of node  synchronization has  occurred. 
This loss of node synch can be remedied by either adding or 
deleting a channel symbol;  the  node synchronizer will alter- 
nate adding  and  deleting  symbols  in order to avoid ruining 
frame  boundaries in case of false loss of synch. 

The performance of such a counter  for  a particular y is 
characterized by two average run  lengths (ARL’s). 

1) The  short A R L .  This is the average number of pairs of 
symbols needed to reach the threshold if the out-of-synch 
hypothesis is true  from  the beginning. 

2) The long A R L .  This is the average number of pairs of 
symbols  needed to reach the threshold if the in-synch hypoth- 
esis remains true. 

The short ARL gives an upper  bound  on  the average time 
between loss of syhch and its  detection, since whenever loss of 
synch occurs, the  counter has a nonnegative value. The long 
ARL  (or  its reciprocal) describes the  frequency of false  detec- 
tion of loss of node  synchronization. 

An exact  determination of the ARL’s will be made in Sec- 
tion 111, for a, very slight modification  of  the scheme described. 
It is instructive,  however,  particularly for  later comparisons, to 
consider their  asymptotic behavior as y + m. It  turns  out  that 

short ARL - - Y 
I 

and 

long ARL Cer, 
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so that 

short  ARL - log (long ARL) 

Z 

Here the  constant I ,  which is much  more critical than C, is 
the Kullback-Leibler information  number per pair of symbols, 
This number is simply the average increment  of*the  counter 
per pair of symbols when the  out-of-synch hypothesis is true. 
Since each  pair of symbols  generates  one even X, and one  odd 
X,, 

i = I1 + I ,  

where 

I ,  = q(0 I n odd) log 27r + 4(l I n odd) log (2(1 - n)) 

= n log (2n) + (1 - 77) log (2(1 - n)) 

TABLE I 
DEPENDENCE OF INFORMATION NUMBERS ON SYMBOL ERROR 

PROBABILITY 

and 

Table I shows the  dependence of the  information  numbers 
on, p e ,  the  symbol  error  probability.  It should be noted  that 
the  information  numbers decrease substantially as the  symbol 
error  probability becomes larger. Thus,  the ARL’s become less 
favorable as p e  increases. 

If one makes the very slight change of inspecting the  counter 
only  at even n, i.e., once  for each pair of symbols, then  a 
simpler  description of  the  counter is possible. This is because 
two consecutive X,’s = 0 (successful parity checks) yield a  net 
change of zero, as do consecutive X,’s = 1. If, however, one of 
the pair of X,’s is 0 and the  other  1,  then  the  total  increment 
of the  counter is easily seen to  be log (n / l  - n), with + if 
and  only if the  odd X, = 0 (Le., both  a successful check  for 
the  out-of-synch  hypothesis  and  a  failure  for  the in-synch 
hypothesis).  Thus,  the  counter moves up and down by a fixed 
step size and  standard  random walk formulas  [3, p. 3511 can 
be used to derive exact formulas for  the ARL’s under  the 
simplifying assumption of independence. Assuming without 
loss of generality that 

n 
y = m log -> 

1 - -n  

m an integer, one has 

and 

long ARL = (n  - 0.5)- 
1 - (1 - 7r)/n 

Table I1 dlustrates  the  relationship  between  the  two ARL’s 
as a  function of m for  two  symbol  error probabilities, 0.08 
and 0.1. 

Counter  with  Memory 
A simple parity check counter does a fairly  good job of 

node  synchronization  in case of high SNR [ 51 . But  in  the case 
of high symbol  error  probability,  the  probability  of parity 

P T 1, 12 I 

0.08 0.5875 0.0154 0.0155 0.0309 

0.10 0.5537 5.78 X 5.80X 0.0116 

0.12 0.5321 2.07 X , 
2.07 X 4.14 X 

TABLE II 
RELATIONSHIP BETWEEN AVERAGE RUN LENGTHS 

P I m Short A R L  Long A R L  

0.1 0.5537  001157 I O  118 547 

15 205 2,062 

20 296 6,693 

0.08 0.5875  0.03091 I O  88 .1.164 

IS 145 7,496 

20  202 44.850 

check error is quite high. For  example,  symbol  error  proba- 
bility  0.1 corresponds to 7r = 0.45.  Thus; in-synch data  with 
p e  = 0.1 will fail an even parity check with Probability 0.45, 
while out-of-synch  data will fail the even parity checks  with 
probabiiity 0.5. A  counter  to distinguish between  distributions 
which are so close will either  require  a long time  to  react  to 
incorrect  synch  or have a large probability of incorrect ,change. 
Performance numbers  for  such  a  counter are indicated in  Table 
I1 above; . . ’ 

If the  pafity  checks were independent,  there would be no 
way to improve thisperformance  [7] But the  parity checks  are 
not  independent. This ,is because, under  the in-synch hypothe- 
sis, one  channel  symbol  error changes the value of five even 
parity checks.  Under the in-synch hypothesis,  for  example,  an 
isolated error  in  the ( n  - 12)th  channel  symbol will cause 
parity check failures at time n ,  n - 2,  n - 6 ,  h - 8, and n - 
12. Thus, a long  sequence of successful parity checks  would 
lead us to believe that  another success is on  the way, while the 
sequence X n T l ~  = 1, X n - l ~  = 0, X n - g  = 1, X i - 6  = 1, 

= Oi. X n P 2  = 1 would lead one to believe that X, is 
very likely to be 1. The reason a log-likelihood counter works 
so well in the  independent case is that by  adding logarithms we 
multiply  their  arguments.  After receiving parity checks Xi = 
xl, X 2  = x 2 ,  -e, Xi, = x , ,  where  each xi is 0 or  1,  the  counter 
contains 

i= 1 

If the  parity checks were independent,  this would be exactly 

log ( q(X1  = X I ,  X, =X,, -.*, X, = X , )  

@(X1 = X I ,  X ,  = x , ,  ...) X ,  = X , )  

the log of the  ratio of the likelihood of the  string (Xl = x l ,  
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X ,  = x 2 ,  e * . ,  X ,  = X , )  under  the  two  hypotheses, which is 
statistically optimal  for  detecting loss of synchronization. 

In  the case of noisy  convolutionally  encoded data,  the 
probability of a  string of parity checks is  not  just  the  product 
of the probabilities of the individual parity checks. Updating 
the p probability of a  string requires the  conditional proba- 
bility p ( X ,  = x ,  I X,- = x , -  ,, X,- 2 = X , -  2 ,  ..., X 1  = 
x , ) .  Therefore,  a  counter with increment 

In general, the  counter using k parity checks  has increment 

The system which we have investigated in detail is therefore  a 
system  which  takes  hard-quantized received channel  symbols 
R l  , R 2 ,  ..., creates parity checks X l  4 ,  X, 5, ... with X i  = R i  

R i -  , +R i- , 3 ,  and  keeps a  counter whose increment  at  time 
n is 

Ri-1 f R i - 3  + Ri-4 f Ri-5  + Ri--6 f Ri-7 + Ri-10  + 

would, after  step r,  contain 
- 

exactly  the log of the  quantity we desire. Of course, a real 
counter will not  take  into  account  a past of indefinite  length. 
But a (possibly large) integer m can be chosen, and a  counter 
constructed whose increment  at time n is 

As might be expected,  for large m,  the  information  number 
approaches the  information  number  for  the  hypothetical 
counter based on  the  indefinite past of the  parity check se- 
quence.  This is verified in Appendix A. Moreover, the  informa- 
tion  numbers  obtained using the  parity check  sequence are 
identical with information  numbers  obtainable  from  the hard 
quantized received sequence. This means that  there  is  no loss 
of information  or efficiency in using the  parity check  sequence 
instead of the  hard  quantized received sequence to detect 
loss of node synchronization-this is also shown in Appendix 
A. Also, Appendix A shows that  the  counter  increments 
depend  only on parity  checks of the same (odd  or even) type, 
i.e., (8) is unchanged if the given = = 

..*) is replaced by ( X n p 2  = x n P 2 ,  X n - 4  = x , - 4 ,  ...). 
We will describe the  counter in terms of the  number of 

parity checks used to determine  the  counter  increment, and 
we will call this k.  For  example,  the "simple" (memoryless) 
parity check counter corresponds to k = 1, while the  counter 
fo rk  = 8 has counter  increments 

4 ( X ,  = x, I X n -  2 = x n -  2 ,  " ' , X n - 1 4 - x n - 1 4 )  , 

P(x, = X ,  I X n - 2   = X n - 2 j . ' * * , X n - 1 4   - x n - 1 4 )  

- 

- 

In order  to design this counter, we need to know P ( X ,  = 

same  event for even and  odd n. To calculate  these values, 
remember  that  for in-synch data,  the even parity checks de- 
pend only on  the sequence of channel  symbol errors. so given 
a  probability p e  of symbol  error, we can calculate the proba- 
bility that E,  = e,, E,- 1 =en- 1 ,  " ' 9 E n - 2 k - 1 1 = e n - 2 k - 1 1  
for each  sequence e , ,   e n - 1 ,  , e n - 2 k - 1  1 ,  and use these 
probabilities to CalcUlatep(X, = X , ,   " ' , X n - 2 k + 2   = X n - 2 k t 2 )  
and p(X,-2 = X n - 2 ,  "', X n - 2 k + 2  = X n - 2 k + 2 )  and find 

even n. 

X,'s are independent with p ( X ,  = 0) = 1/2.  Thus 

- x ,  1Xn-2 - x , - 2 ,  "', X n - 2 k + 2  = X , - 2 k + 2 )  and 4 Of the 

... 

p ( X n  = x n l X n - 2  = x n - 2 ,  " ' 3  X n - Z k + Z  - x r 1 - 2 k + 2 )  for - 

For  odd n ,  just as in  the case of the simple counter,  the 

P(Xn = x n ~ / x n - 2  = x n - 2 ,   . . ' , X n - 2 k + 2   = X n - 2 k + Z )  

= 1/2  for  odd n. 

To calculate the probabilities 4 associated with  the  out-of- 
synch  hypothesis,  just exchange even with odd in the above 
argument. From these values, we can calculate the  counter 
increments, We did this assuming a channel symbol  error  rate 
of 0.1, which corresponds to  a Viterbi  decoded bit error rate 
of 5 X loe3,  the  standard  for imaging data. Voyager's data 
rate has been  adjusted so that this is the largest channel  sym- 
bol error  rate which will be encountered. 

Information Numbers and Run Lengths 
Just as in the case of the up-down counter,  the average run 

lengths  are essentially determined by the threshold y and the 
information  number I, i.e., the average increment of the 
counter when the  data are truly  out of synch. For large y the 
run lengths are approximately 

Y 
short  ARL - - 

I 
and 

long  ARL - CeDr 

where C,  D, and I depend,  of course, on k ,  the  number of 
parity checks used in  determining the  counter  increment. 
These approximations were borne  out by the simulations re- 
ported in  Section 111, and the  constants C and D were deter- 
mined empirically for each k considered. Z, the  information 
number, is the average increment of the  counter when the  data 
are truly  out  of  synch. (Of  course, I depends upon k ,  the  num- 
ber of  parity checks used in determining the  counter incre- 
ment,  and is an increasing function of it.) 
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TABLE III 
INFORMATION NUMBERS 

k Total Out-of-sync ’ In-sync 

16 0.0862 0.0601 0.0261 

8 0.0633 0.0406 0.0228 

The  information I from  a pair of parity checks is the sum of 
the  information  number I ,  from  the  odd parity  checks (the 
average increment of the  counter  at  odd n )  and I2 from  the 
even parity checks. Table I11 shows the  contributions of these 
two  parity  check subsequences, revealing that  the  odd checks 
contribute roughly two  thirds of the  total  information. 

In designing the  detection  algorithm, we must choose a 
symbol  error  probability p e ,  at which the  counter is designed 
to operate  most  efficiently. In practice, as the  true  symbol 
error  probability  variesfwith  the signal-to-noise ratio, it will 
generally be smaller than p e ,  so that fewer parity check fail- 
ures  occur. In this case, the  counter will perform  better 
whether  the  data are in  synch  or  not, i.e., the  short  ARL will 
be reduced  and  the  long ARL  increased. 

In case the signal-to-noise ratio is degraded so much  that 
the  symbol  error  probability exceeds p e ,  however, a problem 
arises in the  performance of the  counter, as both  the  short  and 
long ARL’s become less favorable. In real  life, the  symbol 
error  probability is not  constant,  and  the  fact  that  the long 
ARL’s shorten during  periods of low signal-to-noise ratio 
would introduce  the same spurious loss of synch which seems 
to plague the  current Viterbi  decoders. If the  short  ARL gets 
longer during  a period of high symbol  error  rate, this causes 
the response time to a loss of synch  to increase and may cause 
a  string of data to be lost if a  true loss of synch  hits  at  the time 
of low signal-to-noise ratio,  but  a  shortening of the long ARL 
whenever there is such  a period will have a far  greater effect 
on  the overall behavior of the  system. 

This degradation of long ARL can be totally eliminated  by 
giving up  the  information I z  from  the even parity check  sub- 
sequence. When the  counter uses only  the  odd subsequence, 
the long ARL is unaffected by the signal-to-noise ratio. This is 
because the  odd checks  are  completely random  (independent, 
with 50 percent  probability of success) whenever the process is 
in  synch. 

Since most of the  information comes from  the  odd sub- 
sequence anyway, we believe it is prudent to base the  counter 
on this  subsequence  alone. The  performance  parameters  in  the 
next section were all calculated for  counters based solely on 
the  out-of-synch parity  checks.  It  should  be repeated, how- 
ever, that these performance figures are based on  the assump- 
tion  that  the  data are a sequence of i.i.d. random variables 
equally  likely to be +1. If the  actual  data  stream deviates 
significantly from this model, e.g., if long  strings of zeros or 
ones  are  probable,  then  the  performance of our algorithm will 
not be as good as predicted. 

111. PERFORMANCE NUMBERS 

The size of the ROM needed for  counter  increments is 2 k .  
As before, we will describe the  counter  in  terms of the  number 
k of parity checks  needed to  compute  the  counter  increment. 

Once k is chosen, the log-likelihood  scheme determines 
the  counter  increments.  The only question  left  in algorithm 
design is the threshold at which the system is declared out of 
synch. If the  threshold is high, the  probability of false loss of 
synch is low, or equivalently, the  time  between false losses of 
synch is long. On  the  other  hand,  a high threshold will also 

make the  short  run  length  (or  the  time  between loss of synch 
and detection of that loss of synch) large. 

We first  consider the  influence of short  run  length  on sys- 
tem  performance.  There is an obvious  reason to  want  the  short 
run length to be small: the  sooner  after  a loss of synch  that  the 
system gets back on  track,  the  better. But there  is  another 
reason as well. Voyager has a  concatenated coding  scheme: 
after  the  convolutional code is  Viterbi  decoded, an additional 
code,  the Reed-Solomon code, is decoded, As far as the Reed- 
Solomon  decoder is concerned,  the  data  stream during the 
short  run is just  a stream of bad data. (Of course, if the  out-of- 
synch  condition was caused by the  deletion of a  symbol,  and 
the node-synchronizer solves the problem by deleting another 
symbol,  then  a whole bit has  been deleted,  and  frame  bound- 
aries are lost as well. In this case, the  data  during  the  short  run 
can never be recovered. So we will consider the case in which 
the  total  number  of  channel symbols  has not been  changed. 
This will  be true when the out-of-synch condition was caused 
by a  spurious loss of  synch caused by the  node  synchronizer, 
since the synchronizer will alternate adding  and  deleting  chan- 
nel  symbols, and will be true half of the  time anyway.) The 
Reed-Solomon  decoder  can  recover a fair amount of bad data, 
and so if the  short  run is short  enough,  the Reed-Solomon 
decoder will be  able to recover it most of the  time. So the 
length of the average short  run is not as important as the 
probability  that  the Reed-Solomon decoder will be able to 
recover the  data  in  the  short  run.  For  the k = 8 counter, 
assuming Viterbi burst statistics for 2.3 dB [8] and  depth  4 
interleaved Reed-Solomon words,  Table IV shows the proba- 
bility of decoding for  a word in  a  frame wholly containing  a 
short  run. 

This same table shows the long run lengths (both in bits  and 
in  time,  at  the reasonable Voyager data  rate of 20 000 bits/s) 
for these same thresholds.  Looking, for  example,  at  threshold 
15, we see that  the  probability  that  a word contained  in  a 
short  run will be corrected by the Reed-Solomon decoder is 
2/3, and  that  synch is lost  incorrectly every two days. 

Can we do  better? In fact, by going to k = 16, we can do 
much  better. Table V shows  this  same information with k = 
16. With k = 16  and threshold 14.5, a word which is in a 
frame  attacked by a  short  run will decode  correctly  with 
probability  0.86,  and  the mean time  between false losses of 
synch (average long run  time) is 6.7 years. 

These numbers were obtained by simulation  methods ex- 
plained in Appendix B. 

Several other  questions can be asked about  the  perform- 
ance of the  counter. What if a  short  run  hits  more  than  one 
frame? With k = 16  and  threshold  14.5,  the  probability  that 
a  short  run  hits  more  than  one frame is 0.033. And even if the 
short  run does intersect  more  than  one  frame,  the  probability 
that  it causes a word error  in each frame is less than 0.005. 
Thus,  the  probability of a  decoder  error in each  of  two con- 
secutive  frames because of a  spurious loss of node  synchroniza- 
tion is less than 0.0002. 

Another  question is the  probability of some loss of  data 
due  to  a  short  run. We saw that in the case k = 16,  threshold 
14.5, the  probability  that any one word fails to decode is 
0.14, but since  decoding  failures  in the  four words  are by no 
means independent, this  does not tell us the  probability  that 
there is some loss of data-that is, that  one or more of the  four 
interleaved  Reed-Solomon  words fails to decode. In the case 
k = 16, threshold 14.5, this probability is 0.19. 

This counter is “tuned”  to  the  channel;  that is, counter in- 
crements are based on probabilities,  calculated from  the chan- 
nel model, of each  block under  the “in-synch hypothesis”  and 
the “out-of-synch hypothesis.” To make  a  counter  for  a chan- 
nel with  other  than  independent  errors,  one would make  the 
same  calculations using probabilities for  that channel. 
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TABLE IV 
COUNTER  PERFORMANCE  WITH K =  8 

P r o b a b i l i t y   t h a t  a Mean Long Run 

Thresho ld  
Mean S h o r t  Run Reed-Solomon Word 

( b i t s )   i n  a Shor t  Run Will Decode Bits Time (at  20.000 bps) 

5  116.6 .98   6 .1  x l o 4  3   seconds  

10 238.6 .86  5.2 x l o 7  43   minu te s  

&. 

15  363 .3  .66   4 .5  x 1010 26   days  

16   387 .6  .62  1 .7  x 10" 100  days  

18  438.0 .52  2 .6  x 1OI2 4 y e a r s  

20  487.4 .43  3 .8  x 60 y e a r s  

TABLE V 
COUNTER PERFORMANCE WITH K =  16 

P r o b a b i l i t y   t h a t  a 
Reed-Solomon Word Mean S h o r t  Run 

Mean Long Run 

Threshold ( b i t s )   i n  a Shor t  Run Will Decode B i t s  Time (a t   20 ,000   bps)  

5 88.6 .99  5.9 x 106 5   minutes  

10   171 .4  .95  7.9 x l o 9  4   days  

11.5  196.4  .93  6.0 x l o l o  35  days 

13 221.7 

14.5  246.9 

18 305.1 

20 338.8 

.90 

.87 

.77 

.71  

5.0 x 1011 290  days 

4.2 x 1 0 l 2  6 .7   yea r s  

6 .1  x lo1' 960   years  

1.0 x l 0 l b  16 ,000   yea r s  

APPENDIX A 

PROOFS 

This Appendix gives mathematical  proofs of the  statements 
made in Section 11. 

We use the same random processes to  model  the  situation: 
1) .-, M - 2 ,  M o ,  M 2 ,  ... an i.i.d. process, P ( M 0  = 0) = P(M0 = 
1) = 1/2, representing the message; 2 )  .-, E - 2 ,  E-1,  EO, E l ,  
... an i.i.d. process, P(E0 = 1)  = symbol  error  probability,  rep- 
resenting the  errors in the received sequence and  independent 
of the  sequence -., M - 2 ,  M o ,  M 1 ,  '-; 3) ..-, R-2, R- 1 ,  Ro, 
R , ,  .-, the convolutionally  encoded Mi's added to  the Eis ,  
representing  the hard-quantized received channel symbols;  and 
4) . . e ,  X- 1, X , ,  X , ,  *.. the  sequence of parity checks derived 
from  the Ri's. 

Proposition: p (X ,  = x , ,  = .-, X n - 2 k  - - 
x , -  2kj  = [P(Xn = X,- 2 = x n - 2 ,  *'., Xn-2k  = X,-2k).* 
P(Xn-1 = X n - 1 , " ' , X n - 2 k + l   - x n - Z k + l ) ] .  

- 

Proof: First observe that  for rn odd, 

P(Xm = 1 IXm-2,  X , - 4 ,  ..., *.. E-, ,  Eo,  E l ,  .*.)= 1/2 

because X, is a sum of M,+1 and  other variables, p(M,+1 = 
1) = 1/2,  and M,+l is independent of all the  random varia- 
bles on which we are conditioning. This  means that  for  odd m 

p ( X ,  = X r n >  xm-2 = X r n - 2 , " ' ,  

X m - 2 1  = x , - ~ , I I . . . , E - ~ , E o , E ~ , . . . )  

= 2-1- 1 a.s. 

for any sequence ( x , ,  x , -  2 ,  ..., x ,  - 2 1 )  of zeros  and ones. 
But the values of the even parity checks are determined en- 
tirely by ..., E-.,, Eo,   E, ,  -., and so are independent of the 
odd  parity checks. 

Notice: 1) The  fact  that we looked  at  a sequence of odd 
length was convenient for  notation  but had no  effect  on  the 
proof. 2 )  We showed not  only  that  the even and  odd parity 
checks  are independent,  but  that  the  odd  parity checks  are 
themselves i.i.d.  with probability  1/2 of success. 3) The same 
result  holds for  the measure q ,  reversing the roles of even and 
odd. 

Corollary: p ( X ,  = x ,  1 X,- ,, X n - 2 ,  .-) = p(X n - - xnl  
X n - 4 ,  -.), and  the same for q .  If n is odd, p(X ,  = 

x ,  l X n - 2 ,  Xn-4, .*.) = 1/2;  for even n ,  q ( X ,  = x ,  JX,-2, 
- j  = 1/2. 

Definition: The one-sided, pseudoparity check  sequence xl, 2 2 ,  ... is the  parity check  sequznce based-on the process 
..., 0, 0,. R 1 ,   R 2 ,  R-3, * e . .  That is, X ,  = R, ,  X2 = R2 + R,, x3 = R ,  -b R 2 ,  .-,X, = X ,  for n 14. - 

Proposition: Every event of the  form (X, = x l ,  X 2  = x 2 ,  
1-, X ,  = x , , )  corresponds to  exactly  one  event (R1 = r l ,  .-, 
R ,  = r, j .  

Proof: The - 2:s are derived from the R;s,Going back- 
wards, knowing X I  tells you R 1,  and knowing X i  and R 1 ,  .-, 
Ri- tells you Ri. 

Corollary: A log-likelihood counter based on  the xis will 
always contain  exactly  the same value as one based on  the 
Ris.  

Proposition: If I ,  is the  information  number of any log- 
likelihood counter with inputs based on  the last rn outputs 

- 
- 
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of  any discrete random process and Z the  information  number 
with increments based on  the indefinite  past, then  limm-+m I ,  = 
Z. 

Proof: For  simplicity, we  give the proof for  random 
variables taking on  the values 0 and 1.  The proof for  random 
variables taking on finitely  many values is exactly  the same. 

Let .-, Y-,, ..., Y o ,   Y l ,  ... be the  stationary process. (In 
our case, the Y i s  are  pairs of hard-quantized received channel 
symbols.) Let 

where y is chosen from  the probability space on which the Y i s  
are  defined and j is 0 or 1. 

It  isa  standard result of martingale theory [ 10, p. 2371 that 

lim f n (Y ,  i> = f ( Y ,  i) 
n+- 

= i I Y-1, -.)>(Y) 

(4(Yo = i I y- -))(v> 
= log 3 a.s. 

and so by the  dominated convergence theorem 

r .- 

and the same for  integration  with respect to q .  But  these are 
just  the  information  numbers  for  the  counters. 

Notice: A log-likelihood counter using k panty checks 
based on  parity checks 2 will, after  time 2k + 14, have exactly 
the same increments as a log-likelihood counter using k 
parity checks and based on  parity checks X ,  because the values 
of x and X are  exactly  the same starting  at  time  14. 

Theorem: As k approaches  infinity,  the  information in the 
log-likelihood counter whose increment at time n is 

kept separately for n even and odd,  approaches all the  synch 
information  in  the  hard-quantized received channel symbol 
stream R 1 ,  R 2 ,  . e . .  

Proof: As k goes to infinity,  the  information  in  a  counter 
C( 1) based on past of length 2k of the  hard-quantized received 
channel  stream  approaches all the  information  in  the  stream. 
The values in  C(1)  are exactly  the same as would be in a 
counter C(2) based on  the past of length 2k of the  (non- 
stationary) parity  checks xi. For n > 2k -k 14,  the  increments 
in  counter C(2) are  the same as those  in  a  counter C(3) based 
on  the probabilities of (X, *.-, X n - z k ) .  But, since 
even and  odd  parity checks  are independent, this is exactly  the 
same as the  counter of the  theorem. 

APPENDIX B 

SIMULATION OF ARL‘s 
The  performance figures of Section 111 were obtained by 

simulation.  The  short ARL’s were simulated directly by gen- 
erating  independent  symbol  errors  with  probability p ,  comput- 
ing the resulting parity check stream, and  feeding it to the 
counter  with  threshold y. Direct  simulation of the long ARL’s 
is not feasible,  however, because (as the results show)  the  time 
required to generate a statistically  useful  sample of long run 
lengths  would be too great. 

The long ARL’s were simulated by a  modification of a 
standard  technique called “importance sampling” 191, in 
which the process to be analyzed-in this  case, the  parity 
check sequence-. is generated using a probability distribution 
Q different from  the  distribution P for which  results are de- 
sired. In our case, P specifies independent 50-50 results for  the 
out-of-synch parity checks-so that  the  time  for  the  counter  to 
reach a  distant threshold y is quite large. A  distribution Q was 
chosen to make the  counter reach the threshold  more  quickly- 
namely, independent  parity checks  with  probability of failure 
n*, substantially less than  1/2. 

The  method of importance sampling is based on  the simple 
fact  that  for any event A ,  the  probability of A under P can be 
obtained from simulations  carried out  under  the  distribution 
Q. The key is provided by the  identity 

P(A) = d P =  (z) 
Here the  quantity dP/dQ is the Radon-Nikodym derivative of 
P with  respect to Q, which in  our application is simply the 
likelihood ratio 

P V l )  ... P(X,> 

Q(xl> Q ( X n >  

of the parity  checks X1, -., X, up  to  the  time  that A occurs. 
Since P(Xi) E 1/2,  and Q(Xi) = n* if Xi = 1  (failure), = 1 - 
n* if Xi = 0 (success), relation  (1) can be made  more  explicit. 
Using EQ to  denote  expectation  under Q, it takes the  form 

where F and S are the  numbers of failures  and successes, re- 
spectively,  in the  out-of-synch-parity checks up  to  the  time 
that A occurs, and 1{A} = 1 if A occurs, = 0 otherwise. 

The  simulation of the  long  ARL was based on  the de- 
finition of a counter  cycle. Starting from a  given state s* of 
k zeros and  ones,  the cycle ends  the first time  that  the  counter 
resets to zero with  the same  sequence s*  in its  memory. Let 
T denote  the time (number of symbol pairs) for  a cycle to  end 
and let N denote  the  number of cycles until  the  threshold y 
is crossed. Then using a  standard result called Wald’s equation 
[3 ,  vol. 11, p. 6011, we have 

long ARL = EN - ET 

(Actually,  the right  side gives the  expected  time  until  the end 
of  the first cycle on which y is crossed, but  the  extra  time  to 
end  the cycle after crossing is negligible compared to  the  long 
ARL.) The  quantity ET was easily simulated directly, since 
when  the  parity checks  are random  the cycles end fairly 
quickly (and  do  not  depend  on y at all). The evaluation of EN 
was based on 

1 
EN=-  

P(A ) 
where A = {y is crossed} for  a given cycle, and P(A) was 
simulated using the  method of importance sampling, as de- 
scribed  above. 

Importance sampling was used to  estimate P(A) in several 
independent sets of simulations.  Not  surprisingly, the esti- 
mates were more  stable  for smaller thresholds. After all the 
data were gathered,  a least  squares line was drawn  through  the 
points representing small thresholds (see Figs. 1  and 2).  These 
lines were used for  the  long ARL’s in Tables IV and V. 
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