
524 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-32, NO. 5, MAY 1984

Node Synchronization for the Viterbi Decoder
GARY LORDEN, ROBERT J . McELIECE, SENIOR MEMBER, IEEE, AND LAIF SWANSON

Abstract-Motivated by the needs of NASA’s Voyager 2 mission, in this
paper we describe an algorithm which detects and corrects losses of node
synchronization in convolutionally encoded data. This algorithm, which
would be implemented as a hardware device external to a Viterbi decoder,
makes statistical decisions shout node synch based on the hard-quantized
undecoded data stream. ,We will show that in a worst-case Voyager
environment, our method will detect and correct a true loss of synch
(thought to be a very rare event) within several hundred bits; many of the
resulting outages will be corrected by the outer Reed-Solomon code. At
the same time, the mean time between false alarms is on the order of
several years, independent of the signal-to-noise ratio.

R
I. INTRODUCTION

ECENT studies [11, [21 have shown that at the very low
signal-to-noise ratios NASA’s Voyager- 2 mission will

encounter at Uranus in 1986, the performance of the Reed-
Solomon/Viterbi concatenated coding system could be seriously
degraded by erratic behavior in the node synchronization sub-
system of NASA’s hardware decoder. In this paper we will
show that this problem can be avoided by disabling the Viterbi
decoder’s internal synchronization hardware and , replacing
it with a simple outboard hardware node synchronizer whose
details we describe in this paper. For definiteness, this paper
will deal only with the system parameters relevant to Voyager,
but our technique is applicable (with minor modifications) to
any convolutionally encoded telecommunications system.

On Voyager, the high-rate downlink telemetry is protected
by a K = 7 , rate 1/2 convolutional code concatenated with a
depth-4 interleaved (255, 223) Reed-Solomon code. In princi-
ple this combination provides. excellent error protection (bit
error probability 1.OE-6) for Voyager’s highly sensitive imag-
ing data, at bit signal-to-noise ratios as low as 2.9 dB. Since the
rate of the outer code is 223/255 = -0.6 dB, when the overall
SNR is 2.9 dB, the inner convolutional code is operating at
about 2.3 dB.

However, in practice, the performance of the concatenated
system is significantly worse than theoretical predictions. One
problem is carrier-loop jitter, which degrades performance by
0.5 dB or more [11. This means that if the system bit SNR
remains at the nominal 2.9 dB value, the inner convolutional
code must operate at less than 2.0 dB. This is a value much
lower than that for which the Deep Space Network’s hardware
Viterbi decoders were designed. In this demanding .environ-
ment, the Viterbi decoder’s internal node synchronization
hardware, whose function is to detect and correct true ex-
ternal losses of node synch, is prone to produce false alarms,
i.e., spurious losses of node synch, and send useless data to the
Reed-Solomon decoder until node synch is reestablished. In
[2] it was shown that this hardware problem can degrade
Voyager’s performance by a further 1 .O dB or more.

In this article we shall show that this data loss due to
spurious node synch loss in the Viterbi decoder is completely
avoidable. Our proposed solution involves disabling the Viterbi
decoder’s internal synchronization hardware and implementing
an external node synch algorithm. Our .algorithm is easy to
implement and depends on likelihood calculations based on
observations of the hard-quantized encoded data stream. In a
worst-case Voyager environment, our method will detect and
correct a true loss of node synch within several hundred bits;
many of these outages will, be corrected by the Reed-Solomon
code. On the other hand, the mean time between false alarms
for our technique (which is independent of the SNR) is on the
order of several years. Thus, for practical purposes our techni-
que introduces no false alarms, and the system SNR loss due
to node synch problems will be e ~ i n a t e d , with no loss of
protection against true node synch losses. As an outboard
hardware device, our algorithm could be implemented on a
single Deep Space Network standard single-board computer
such as the iSBC 86/12, at least at data rates up to 20 kbits/s.

The paper is divided into three sections (this is Section I).
In Section 11, we present a functional description of our algo-
rithm, together with a summary of the relevant mathematics.
In Section 111, we present some numerical performance results
for our technique. They will quantify the assertions made
above (mean time between false alarms, probability of uncor-
rectable errors due to true loss of synch, etc.). We also include
in the Appendixes some background information.

11. THE UP-DOWN COUNTER
We adopt the following model, which has been found to be

very accurate for coherent deep-space communication [41 .
The information to be transmitted via the convolutional code
(which in Voyager is already encoded) is a sequence ..., J L 4 ,

M - 2 , M o , M z , M4, ..* of independent identically distributed
random variables, each equally likely to be 0 or 1. The en-
coded stream :-, C--3, C - 2 , C- 1 , Co, C1, -.. is defined by the
encoding equations’

C 2 k = M 2 k + M 2 k - 2 + j g 2 k - 4 + I M 2 k - 6 + ’ 2 k - 1 2

(mod 2) (2)

We also define the * versions of the encoded stream:

matical Society SummerMeeting, Toronto, Ont., Canada, August 1982. Man-
uscript received March 11, 1983; revised October 14, 1983. This work was
supported by a contract from the National Aeronautics and Space Administra-
tion. I We shill illustrate all of our results for the NASA standard K = 7 , rate 1/2

The authors are with the Jet Propulsion Laboratory, California Institute of convolutional code, but everything generalizes easily to any rate 112 convolu-
,, Technology, Pasadena, CA 91109. tional code.

0090-6778/84/0500-0524$01.00 0 1 9 8 4 IEEE

LORDEN e ta l . : NODE SYNCHRONIZATION FOR VITERBI DECODER 525

detectiop and demodulation, a sequence { b k } is received,
where Dk = D k + z k . The sequence { z k } is the error se-
quence. If the noise process is additive white Gaussian noise,
then the sequence { z k } is i.i.d., the common distribution
being Gaussian, mean zero and variance u2 = l /p, where p
is twice the symbol SNR.

The Viterbi decoder attempt: to recover the message bits
from the noisy code sequence { D k } . It does this by making a
very efficient maximum likelihood estimate of each of the
message bits { M 2 / } . However, in order to operate, the Viterbi
decoder must have node synch, i.e., it must know which of the
received symbols have even subscripts and which have odd sub-
scripts. Of course, there are only two possibilities, but if the
wrong hypothesis is made, the output of the Viterbi decoder
will bear no useful relationship to the message stream { M 2 i) .

Our algorithm will provide node synch information for the
Viterbi decoder. It is based on the hard-quantized received
sequence { R k } , where

R k = { 0 ifLjk>O

1 if ik < 0.

Clearly Rk = Ck + Ek (mod 2), where { E k } is i.i.d, and Ek =
0 or 1. The error probability p e = Pr {Ek = l} is given by

l r n
p e = ~ r ; i .I e - t 2 / 2 dt

where, as before, p = 2Es /No .

{ R k } is the syndrome, or parity-check sequence {x,} [51 :
Associated with the hard-quantized received sequence

1 + (1 - 2pe)’0
n =

2

The foregoing describes the distribution of the received
sequence and of the parity-check sequence in case node syn-
chronization is maintained. This will be called the in-synch
hypothesis. The out-of-synch hypothesis describes the situa-
tion when node synchronization is in error. In this case the
R i s and Xi’s behave as though the subscripts were shifted by
one. Thus, under the out-of-synch hypothesis it is the odd
parity checks that are correct with probability n and the even
ones that are purely random.

We assume that node synchronization has been acquired
and maintained and that the in-synch hypothesis is initially
true. We wish to monitor the received sequence so as to de-

tect loss of synch, i.e., a sudden change making the received
sequence obey the , out-of-synch hypothesis, A method for
doing this simply can be based on a general statistical tech-
nique [7 1 for detecting a change in distribution.’To apply this
technique it is necessary to simplify the model by assuming
that the parity checks X i , are independent. They are not
independent for even i, but the dependence between widely
separated Xi’s is slight, so calculations based on this assump-
tion should be illustrative.

The method for detecting loss of synch is based on a counter
with increments

where p(X,) and q (X ,) are the likelihoods of X,, under the
in-synch and out-of-synch hypotheses, respectively. As shown
above

1/2 if n is odd

n if n is even and X, = 0

1 - n if n is even and X , = I

whereas q(X,) reverses the odd and even cases. Thus,

The counter is defined by

To = 0

T, = max ((T+ + L(X,)) , O), n 2 1.

A threshold y > 0 is chosen, and the process stops the first
time T, 2 y. Since at this point there is a substantial likeli-
hood ratio in favor of the out-of-synch hypotheses, the in-
ference is made that loss of node synchronization has occurred.
This loss of node synch can be remedied by either adding or
deleting a channel symbol; the node synchronizer will alter-
nate adding and deleting symbols in order to avoid ruining
frame boundaries in case of false loss of synch.

The performance of such a counter for a particular y is
characterized by two average run lengths (ARL’s).

1) The short A R L . This is the average number of pairs of
symbols needed to reach the threshold if the out-of-synch
hypothesis is true from the beginning.

2) The long A R L . This is the average number of pairs of
symbols needed to reach the threshold if the in-synch hypoth-
esis remains true.

The short ARL gives an upper bound on the average time
between loss of syhch and its detection, since whenever loss of
synch occurs, the counter has a nonnegative value. The long
ARL (or its reciprocal) describes the frequency of false detec-
tion of loss of node synchronization.

An exact determination of the ARL’s will be made in Sec-
tion 111, for a, very slight modification of the scheme described.
It is instructive, however, particularly for later comparisons, to
consider their asymptotic behavior as y + m. It turns out that

short ARL - - Y
I

and

long ARL Cer,

526 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-32, NO. 5 , MAY 1984

so that

short ARL - log (long ARL)

Z

Here the constant I , which is much more critical than C, is
the Kullback-Leibler information number per pair of symbols,
This number is simply the average increment of*the counter
per pair of symbols when the out-of-synch hypothesis is true.
Since each pair of symbols generates one even X, and one odd
X,,

i = I1 + I ,

where

I , = q(0 I n odd) log 27r + 4(l I n odd) log (2(1 - n))

= n log (2n) + (1 - 77) log (2(1 - n))

TABLE I
DEPENDENCE OF INFORMATION NUMBERS ON SYMBOL ERROR

PROBABILITY

and

Table I shows the dependence of the information numbers
on, p e , the symbol error probability. It should be noted that
the information numbers decrease substantially as the symbol
error probability becomes larger. Thus, the ARL’s become less
favorable as p e increases.

If one makes the very slight change of inspecting the counter
only at even n, i.e., once for each pair of symbols, then a
simpler description of the counter is possible. This is because
two consecutive X,’s = 0 (successful parity checks) yield a net
change of zero, as do consecutive X,’s = 1. If, however, one of
the pair of X,’s is 0 and the other 1, then the total increment
of the counter is easily seen to be log (n / l - n), with + if
and only if the odd X, = 0 (Le., both a successful check for
the out-of-synch hypothesis and a failure for the in-synch
hypothesis). Thus, the counter moves up and down by a fixed
step size and standard random walk formulas [3, p. 3511 can
be used to derive exact formulas for the ARL’s under the
simplifying assumption of independence. Assuming without
loss of generality that

n
y = m log ->

1 - -n

m an integer, one has

and

long ARL = (n - 0.5)-
1 - (1 - 7r)/n

Table I1 dlustrates the relationship between the two ARL’s
as a function of m for two symbol error probabilities, 0.08
and 0.1.

Counter with Memory
A simple parity check counter does a fairly good job of

node synchronization in case of high SNR [51 . But in the case
of high symbol error probability, the probability of parity

P T 1, 12 I

0.08 0.5875 0.0154 0.0155 0.0309

0.10 0.5537 5.78 X 5.80X 0.0116

0.12 0.5321 2.07 X ,
2.07 X 4.14 X

TABLE II
RELATIONSHIP BETWEEN AVERAGE RUN LENGTHS

P I m Short A R L Long A R L

0.1 0.5537 001157 I O 118 547

15 205 2,062

20 296 6,693

0.08 0.5875 0.03091 I O 88 .1.164

IS 145 7,496

20 202 44.850

check error is quite high. For example, symbol error proba-
bility 0.1 corresponds to 7r = 0.45. Thus; in-synch data with
p e = 0.1 will fail an even parity check with Probability 0.45,
while out-of-synch data will fail the even parity checks with
probabiiity 0.5. A counter to distinguish between distributions
which are so close will either require a long time to react to
incorrect synch or have a large probability of incorrect ,change.
Performance numbers for such a counter are indicated in Table
I1 above; . . ’

If the pafity checks were independent, there would be no
way to improve thisperformance [7] But the parity checks are
not independent. This ,is because, under the in-synch hypothe-
sis, one channel symbol error changes the value of five even
parity checks. Under the in-synch hypothesis, for example, an
isolated error in the (n - 12)th channel symbol will cause
parity check failures at time n , n - 2, n - 6 , h - 8, and n -
12. Thus, a long sequence of successful parity checks would
lead us to believe that another success is on the way, while the
sequence X n T l ~ = 1, X n - l ~ = 0, X n - g = 1, X i - 6 = 1,

= Oi. X n P 2 = 1 would lead one to believe that X, is
very likely to be 1. The reason a log-likelihood counter works
so well in the independent case is that by adding logarithms we
multiply their arguments. After receiving parity checks Xi =
xl, X 2 = x 2 , -e, Xi, = x , , where each xi is 0 or 1, the counter
contains

i= 1

If the parity checks were independent, this would be exactly

log (q(X1 = X I , X, =X,, -.*, X, = X ,)

@(X1 = X I , X , = x , , ...) X , = X ,)

the log of the ratio of the likelihood of the string (Xl = x l ,

LORDEN et al.: NODE SYNCHRONIZATION FOR VITERBI DECODER 527

X , = x 2 , e * . , X , = X ,) under the two hypotheses, which is
statistically optimal for detecting loss of synchronization.

In the case of noisy convolutionally encoded data, the
probability of a string of parity checks is not just the product
of the probabilities of the individual parity checks. Updating
the p probability of a string requires the conditional proba-
bility p (X , = x , I X,- = x , - ,, X,- 2 = X , - 2 , ..., X 1 =
x ,) . Therefore, a counter with increment

In general, the counter using k parity checks has increment

The system which we have investigated in detail is therefore a
system which takes hard-quantized received channel symbols
R l , R 2 , ..., creates parity checks X l 4 , X, 5, ... with X i = R i

R i - , +R i- , 3 , and keeps a counter whose increment at time
n is

Ri-1 f R i - 3 + Ri-4 f Ri-5 + Ri--6 f Ri-7 + Ri-10 +

would, after step r, contain
-

exactly the log of the quantity we desire. Of course, a real
counter will not take into account a past of indefinite length.
But a (possibly large) integer m can be chosen, and a counter
constructed whose increment at time n is

As might be expected, for large m, the information number
approaches the information number for the hypothetical
counter based on the indefinite past of the parity check se-
quence. This is verified in Appendix A. Moreover, the informa-
tion numbers obtained using the parity check sequence are
identical with information numbers obtainable from the hard
quantized received sequence. This means that there is no loss
of information or efficiency in using the parity check sequence
instead of the hard quantized received sequence to detect
loss of node synchronization-this is also shown in Appendix
A. Also, Appendix A shows that the counter increments
depend only on parity checks of the same (odd or even) type,
i.e., (8) is unchanged if the given = =

..*) is replaced by (X n p 2 = x n P 2 , X n - 4 = x , - 4 , ...).
We will describe the counter in terms of the number of

parity checks used to determine the counter increment, and
we will call this k. For example, the "simple" (memoryless)
parity check counter corresponds to k = 1, while the counter
fo rk = 8 has counter increments

4 (X , = x, I X n - 2 = x n - 2 , " ' , X n - 1 4 - x n - 1 4) ,

P(x, = X , I X n - 2 = X n - 2 j . ' * * , X n - 1 4 - x n - 1 4)

-

-

In order to design this counter, we need to know P (X , =

same event for even and odd n. To calculate these values,
remember that for in-synch data, the even parity checks de-
pend only on the sequence of channel symbol errors. so given
a probability p e of symbol error, we can calculate the proba-
bility that E, = e,, E,- 1 =en- 1 , " ' 9 E n - 2 k - 1 1 = e n - 2 k - 1 1
for each sequence e , , e n - 1 , , e n - 2 k - 1 1 , and use these
probabilities to CalcUlatep(X, = X , , " ' , X n - 2 k + 2 = X n - 2 k t 2)
and p(X,-2 = X n - 2 , "', X n - 2 k + 2 = X n - 2 k + 2) and find

even n.

X,'s are independent with p (X , = 0) = 1/2. Thus

- x , 1Xn-2 - x , - 2 , "', X n - 2 k + 2 = X , - 2 k + 2) and 4 Of the

...

p (X n = x n l X n - 2 = x n - 2 , " ' 3 X n - Z k + Z - x r 1 - 2 k + 2) for -

For odd n , just as in the case of the simple counter, the

P(Xn = x n ~ / x n - 2 = x n - 2 , . . ' , X n - 2 k + 2 = X n - 2 k + Z)

= 1/2 for odd n.

To calculate the probabilities 4 associated with the out-of-
synch hypothesis, just exchange even with odd in the above
argument. From these values, we can calculate the counter
increments, We did this assuming a channel symbol error rate
of 0.1, which corresponds to a Viterbi decoded bit error rate
of 5 X loe3, the standard for imaging data. Voyager's data
rate has been adjusted so that this is the largest channel sym-
bol error rate which will be encountered.

Information Numbers and Run Lengths
Just as in the case of the up-down counter, the average run

lengths are essentially determined by the threshold y and the
information number I, i.e., the average increment of the
counter when the data are truly out of synch. For large y the
run lengths are approximately

Y
short ARL - -

I
and

long ARL - CeDr

where C, D, and I depend, of course, on k , the number of
parity checks used in determining the counter increment.
These approximations were borne out by the simulations re-
ported in Section 111, and the constants C and D were deter-
mined empirically for each k considered. Z, the information
number, is the average increment of the counter when the data
are truly out of synch. (Of course, I depends upon k , the num-
ber of parity checks used in determining the counter incre-
ment, and is an increasing function of it.)

528 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-32, NO. 5 , MAY 1984

TABLE III
INFORMATION NUMBERS

k Total Out-of-sync ’ In-sync

16 0.0862 0.0601 0.0261

8 0.0633 0.0406 0.0228

The information I from a pair of parity checks is the sum of
the information number I , from the odd parity checks (the
average increment of the counter at odd n) and I2 from the
even parity checks. Table I11 shows the contributions of these
two parity check subsequences, revealing that the odd checks
contribute roughly two thirds of the total information.

In designing the detection algorithm, we must choose a
symbol error probability p e , at which the counter is designed
to operate most efficiently. In practice, as the true symbol
error probability variesfwith the signal-to-noise ratio, it will
generally be smaller than p e , so that fewer parity check fail-
ures occur. In this case, the counter will perform better
whether the data are in synch or not, i.e., the short ARL will
be reduced and the long ARL increased.

In case the signal-to-noise ratio is degraded so much that
the symbol error probability exceeds p e , however, a problem
arises in the performance of the counter, as both the short and
long ARL’s become less favorable. In real life, the symbol
error probability is not constant, and the fact that the long
ARL’s shorten during periods of low signal-to-noise ratio
would introduce the same spurious loss of synch which seems
to plague the current Viterbi decoders. If the short ARL gets
longer during a period of high symbol error rate, this causes
the response time to a loss of synch to increase and may cause
a string of data to be lost if a true loss of synch hits at the time
of low signal-to-noise ratio, but a shortening of the long ARL
whenever there is such a period will have a far greater effect
on the overall behavior of the system.

This degradation of long ARL can be totally eliminated by
giving up the information I z from the even parity check sub-
sequence. When the counter uses only the odd subsequence,
the long ARL is unaffected by the signal-to-noise ratio. This is
because the odd checks are completely random (independent,
with 50 percent probability of success) whenever the process is
in synch.

Since most of the information comes from the odd sub-
sequence anyway, we believe it is prudent to base the counter
on this subsequence alone. The performance parameters in the
next section were all calculated for counters based solely on
the out-of-synch parity checks. It should be repeated, how-
ever, that these performance figures are based on the assump-
tion that the data are a sequence of i.i.d. random variables
equally likely to be +1. If the actual data stream deviates
significantly from this model, e.g., if long strings of zeros or
ones are probable, then the performance of our algorithm will
not be as good as predicted.

111. PERFORMANCE NUMBERS

The size of the ROM needed for counter increments is 2 k .
As before, we will describe the counter in terms of the number
k of parity checks needed to compute the counter increment.

Once k is chosen, the log-likelihood scheme determines
the counter increments. The only question left in algorithm
design is the threshold at which the system is declared out of
synch. If the threshold is high, the probability of false loss of
synch is low, or equivalently, the time between false losses of
synch is long. On the other hand, a high threshold will also

make the short run length (or the time between loss of synch
and detection of that loss of synch) large.

We first consider the influence of short run length on sys-
tem performance. There is an obvious reason to want the short
run length to be small: the sooner after a loss of synch that the
system gets back on track, the better. But there is another
reason as well. Voyager has a concatenated coding scheme:
after the convolutional code is Viterbi decoded, an additional
code, the Reed-Solomon code, is decoded, As far as the Reed-
Solomon decoder is concerned, the data stream during the
short run is just a stream of bad data. (Of course, if the out-of-
synch condition was caused by the deletion of a symbol, and
the node-synchronizer solves the problem by deleting another
symbol, then a whole bit has been deleted, and frame bound-
aries are lost as well. In this case, the data during the short run
can never be recovered. So we will consider the case in which
the total number of channel symbols has not been changed.
This will be true when the out-of-synch condition was caused
by a spurious loss of synch caused by the node synchronizer,
since the synchronizer will alternate adding and deleting chan-
nel symbols, and will be true half of the time anyway.) The
Reed-Solomon decoder can recover a fair amount of bad data,
and so if the short run is short enough, the Reed-Solomon
decoder will be able to recover it most of the time. So the
length of the average short run is not as important as the
probability that the Reed-Solomon decoder will be able to
recover the data in the short run. For the k = 8 counter,
assuming Viterbi burst statistics for 2.3 dB [8] and depth 4
interleaved Reed-Solomon words, Table IV shows the proba-
bility of decoding for a word in a frame wholly containing a
short run.

This same table shows the long run lengths (both in bits and
in time, at the reasonable Voyager data rate of 20 000 bits/s)
for these same thresholds. Looking, for example, at threshold
15, we see that the probability that a word contained in a
short run will be corrected by the Reed-Solomon decoder is
2/3, and that synch is lost incorrectly every two days.

Can we do better? In fact, by going to k = 16, we can do
much better. Table V shows this same information with k =
16. With k = 16 and threshold 14.5, a word which is in a
frame attacked by a short run will decode correctly with
probability 0.86, and the mean time between false losses of
synch (average long run time) is 6.7 years.

These numbers were obtained by simulation methods ex-
plained in Appendix B.

Several other questions can be asked about the perform-
ance of the counter. What if a short run hits more than one
frame? With k = 16 and threshold 14.5, the probability that
a short run hits more than one frame is 0.033. And even if the
short run does intersect more than one frame, the probability
that it causes a word error in each frame is less than 0.005.
Thus, the probability of a decoder error in each of two con-
secutive frames because of a spurious loss of node synchroniza-
tion is less than 0.0002.

Another question is the probability of some loss of data
due to a short run. We saw that in the case k = 16, threshold
14.5, the probability that any one word fails to decode is
0.14, but since decoding failures in the four words are by no
means independent, this does not tell us the probability that
there is some loss of data-that is, that one or more of the four
interleaved Reed-Solomon words fails to decode. In the case
k = 16, threshold 14.5, this probability is 0.19.

This counter is “tuned” to the channel; that is, counter in-
crements are based on probabilities, calculated from the chan-
nel model, of each block under the “in-synch hypothesis” and
the “out-of-synch hypothesis.” To make a counter for a chan-
nel with other than independent errors, one would make the
same calculations using probabilities for that channel.

LORDEN et al . : NODE SYNCHRONIZATION FOR VITERBI DECODER 529

TABLE IV
COUNTER PERFORMANCE WITH K = 8

P r o b a b i l i t y t h a t a Mean Long Run

Thresho ld
Mean S h o r t Run Reed-Solomon Word

(b i t s) i n a Shor t Run Will Decode Bits Time (at 20.000 bps)

5 116.6 .98 6 .1 x l o 4 3 seconds

10 238.6 .86 5.2 x l o 7 43 minu te s

&.

15 363 .3 .66 4 .5 x 1010 26 days

16 387 .6 .62 1 .7 x 10" 100 days

18 438.0 .52 2 .6 x 1OI2 4 y e a r s

20 487.4 .43 3 .8 x 60 y e a r s

TABLE V
COUNTER PERFORMANCE WITH K = 16

P r o b a b i l i t y t h a t a
Reed-Solomon Word Mean S h o r t Run

Mean Long Run

Threshold (b i t s) i n a Shor t Run Will Decode B i t s Time (a t 20 ,000 bps)

5 88.6 .99 5.9 x 106 5 minutes

10 171 .4 .95 7.9 x l o 9 4 days

11.5 196.4 .93 6.0 x l o l o 35 days

13 221.7

14.5 246.9

18 305.1

20 338.8

.90

.87

.77

.71

5.0 x 1011 290 days

4.2 x 1 0 l 2 6 .7 yea r s

6 .1 x lo1' 960 years

1.0 x l 0 l b 16 ,000 yea r s

APPENDIX A

PROOFS

This Appendix gives mathematical proofs of the statements
made in Section 11.

We use the same random processes to model the situation:
1) .-, M - 2 , M o , M 2 , ... an i.i.d. process, P (M 0 = 0) = P(M0 =
1) = 1/2, representing the message; 2) .-, E - 2 , E-1, EO, E l ,
... an i.i.d. process, P(E0 = 1) = symbol error probability, rep-
resenting the errors in the received sequence and independent
of the sequence -., M - 2 , M o , M 1 , '-; 3) ..-, R-2, R- 1 , Ro,
R , , .-, the convolutionally encoded Mi's added to the Eis ,
representing the hard-quantized received channel symbols; and
4) . . e , X- 1, X , , X , , *.. the sequence of parity checks derived
from the Ri's.

Proposition: p (X , = x , , = .-, X n - 2 k - -
x , - 2kj = [P(Xn = X,- 2 = x n - 2 , *'., Xn-2k = X,-2k).*
P(Xn-1 = X n - 1 , " ' , X n - 2 k + l - x n - Z k + l)] .

-

Proof: First observe that for rn odd,

P(Xm = 1 IXm-2, X , - 4 , ..., *.. E-, , Eo, E l , .*.)= 1/2

because X, is a sum of M,+1 and other variables, p(M,+1 =
1) = 1/2, and M,+l is independent of all the random varia-
bles on which we are conditioning. This means that for odd m

p (X , = X r n > xm-2 = X r n - 2 , " ' ,

X m - 2 1 = x , - ~ , I I . . . , E - ~ , E o , E ~ , . . .)

= 2-1- 1 a.s.

for any sequence (x , , x , - 2 , ..., x , - 2 1) of zeros and ones.
But the values of the even parity checks are determined en-
tirely by ..., E-.,, Eo, E, , -., and so are independent of the
odd parity checks.

Notice: 1) The fact that we looked at a sequence of odd
length was convenient for notation but had no effect on the
proof. 2) We showed not only that the even and odd parity
checks are independent, but that the odd parity checks are
themselves i.i.d. with probability 1/2 of success. 3) The same
result holds for the measure q , reversing the roles of even and
odd.

Corollary: p (X , = x , 1 X,- ,, X n - 2 , .-) = p(X n - - xnl
X n - 4 , -.), and the same for q . If n is odd, p(X , =

x , l X n - 2 , Xn-4, .*.) = 1/2; for even n , q (X , = x , JX,-2,
- j = 1/2.

Definition: The one-sided, pseudoparity check sequence xl, 2 2 , ... is the parity check sequznce based-on the process
..., 0, 0,. R 1 , R 2 , R-3, * e . . That is, X , = R, , X2 = R2 + R,, x3 = R , -b R 2 , .-,X, = X , for n 14. -

Proposition: Every event of the form (X, = x l , X 2 = x 2 ,
1-, X , = x , ,) corresponds to exactly one event (R1 = r l , .-,
R , = r, j .

Proof: The - 2:s are derived from the R;s,Going back-
wards, knowing X I tells you R 1, and knowing X i and R 1 , .-,
Ri- tells you Ri.

Corollary: A log-likelihood counter based on the xis will
always contain exactly the same value as one based on the
Ris.

Proposition: If I , is the information number of any log-
likelihood counter with inputs based on the last rn outputs

-
-

530 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-32, NO. 5 , MAY 1984

of any discrete random process and Z the information number
with increments based on the indefinite past, then limm-+m I , =
Z.

Proof: For simplicity, we give the proof for random
variables taking on the values 0 and 1. The proof for random
variables taking on finitely many values is exactly the same.

Let .-, Y-,, ..., Y o , Y l , ... be the stationary process. (In
our case, the Y i s are pairs of hard-quantized received channel
symbols.) Let

where y is chosen from the probability space on which the Y i s
are defined and j is 0 or 1.

It isa standard result of martingale theory [10, p. 2371 that

lim f n (Y , i> = f (Y , i)
n+-

= i I Y-1, -.)>(Y)

(4(Yo = i I y- -))(v>
= log 3 a.s.

and so by the dominated convergence theorem

r .-

and the same for integration with respect to q . But these are
just the information numbers for the counters.

Notice: A log-likelihood counter using k panty checks
based on parity checks 2 will, after time 2k + 14, have exactly
the same increments as a log-likelihood counter using k
parity checks and based on parity checks X , because the values
of x and X are exactly the same starting at time 14.

Theorem: As k approaches infinity, the information in the
log-likelihood counter whose increment at time n is

kept separately for n even and odd, approaches all the synch
information in the hard-quantized received channel symbol
stream R 1 , R 2 , . e . .

Proof: As k goes to infinity, the information in a counter
C(1) based on past of length 2k of the hard-quantized received
channel stream approaches all the information in the stream.
The values in C(1) are exactly the same as would be in a
counter C(2) based on the past of length 2k of the (non-
stationary) parity checks xi. For n > 2k -k 14, the increments
in counter C(2) are the same as those in a counter C(3) based
on the probabilities of (X, *.-, X n - z k) . But, since
even and odd parity checks are independent, this is exactly the
same as the counter of the theorem.

APPENDIX B

SIMULATION OF ARL‘s
The performance figures of Section 111 were obtained by

simulation. The short ARL’s were simulated directly by gen-
erating independent symbol errors with probability p , comput-
ing the resulting parity check stream, and feeding it to the
counter with threshold y. Direct simulation of the long ARL’s
is not feasible, however, because (as the results show) the time
required to generate a statistically useful sample of long run
lengths would be too great.

The long ARL’s were simulated by a modification of a
standard technique called “importance sampling” 191, in
which the process to be analyzed-in this case, the parity
check sequence-. is generated using a probability distribution
Q different from the distribution P for which results are de-
sired. In our case, P specifies independent 50-50 results for the
out-of-synch parity checks-so that the time for the counter to
reach a distant threshold y is quite large. A distribution Q was
chosen to make the counter reach the threshold more quickly-
namely, independent parity checks with probability of failure
n*, substantially less than 1/2.

The method of importance sampling is based on the simple
fact that for any event A , the probability of A under P can be
obtained from simulations carried out under the distribution
Q. The key is provided by the identity

P(A) = d P = (z)
Here the quantity dP/dQ is the Radon-Nikodym derivative of
P with respect to Q, which in our application is simply the
likelihood ratio

P V l) ... P(X,>

Q(xl> Q (X n >

of the parity checks X1, -., X, up to the time that A occurs.
Since P(Xi) E 1/2, and Q(Xi) = n* if Xi = 1 (failure), = 1 -
n* if Xi = 0 (success), relation (1) can be made more explicit.
Using EQ to denote expectation under Q, it takes the form

where F and S are the numbers of failures and successes, re-
spectively, in the out-of-synch-parity checks up to the time
that A occurs, and 1{A} = 1 if A occurs, = 0 otherwise.

The simulation of the long ARL was based on the de-
finition of a counter cycle. Starting from a given state s* of
k zeros and ones, the cycle ends the first time that the counter
resets to zero with the same sequence s* in its memory. Let
T denote the time (number of symbol pairs) for a cycle to end
and let N denote the number of cycles until the threshold y
is crossed. Then using a standard result called Wald’s equation
[3 , vol. 11, p. 6011, we have

long ARL = EN - ET

(Actually, the right side gives the expected time until the end
of the first cycle on which y is crossed, but the extra time to
end the cycle after crossing is negligible compared to the long
ARL.) The quantity ET was easily simulated directly, since
when the parity checks are random the cycles end fairly
quickly (and do not depend on y at all). The evaluation of EN
was based on

1
EN=-

P(A)
where A = {y is crossed} for a given cycle, and P(A) was
simulated using the method of importance sampling, as de-
scribed above.

Importance sampling was used to estimate P(A) in several
independent sets of simulations. Not surprisingly, the esti-
mates were more stable for smaller thresholds. After all the
data were gathered, a least squares line was drawn through the
points representing small thresholds (see Figs. 1 and 2). These
lines were used for the long ARL’s in Tables IV and V.

LORDEN et al.: NODE SYNCHRONIZATION FOR VITERBI DECODE

H
2
W
VI
-I c
0
I-
VI
t
m
0

0 s

Fig. 1

16 - I

14 -

12 -

10 -

-

4 ~ I I ’ ~ ’ * I ~ ’ ‘ I ’ I I
4 6 8 10 12 14 16 18 20

NODE-SYNC THRESHOLD

. Mean time to false alarm, k= 16; least squares line from thresholds 4,
5 , 6 , and 7.

H
2
W
v)
-I c
0

VI
c
m
0

0
9

Fig. 2.

1 1 1 a 1 1 1 1 1 1 1 1 1 1 1 1 1

44 6 8 10 1 2 14. 1 6 1 8 2 0
NODE-SYNC THRESHOLD

Mean time to false alarm, k = 8; least squares line from thresholds 5 ,
10. and 15.

REFERENCES
[l] L. J. Deutsch and R. L. Miller, “The effects of Viterbi decoder node

synchronization losses on the telemetry receiving system,” Jet Propul-
sion Lab., Pasadena, CA, TDA Progress Rep. 42-68, Aug. 15, 1981.

[2] -, “Viterbi decoder node synchronization losses in the Reed-Solo-
mon/Viterbi concatenated channel,” Jet Propulsion Lab., Pasadena,
CA, TDA Progress Rep. 42-71, Nov. 15, 1982.

[3] W. Feller, An Introduction to Probability Theory and its Applica-
tions, vols. I and 11. New York: Wiley, 1968, 1971.

[4] S. Golomb et at., Digital Communications with Space Applica-
tions. Englewood,Cliffs, NJ: Prentice-Hall, 1964, ch. 7.

[5] C. A. Greenhall and R. L. Miller, “DeSigd of a quick-look decoder for
the DSN (7, 1/2) convolutional code,” Jet Propulsion Lab., Pasadena,
CA, DSN Progress Rep. 42-53, July-Aug. 1979.

[6] K. Y. Liu and J. J. Lee, “An experimental study of the concatenated
Reed-Solomon/Viterbi channel coding system performance and its im-
pact on space communications,” Jet Propulsion Lab., Pasadena, CA,
Pub. 81-58.

:R 53 1

[7] G. Lorden, “Procedures for reacting to a change in distribution,” Ann.
Math. Statist., vol. 42, no. 6, pp. 1897-1908, 1971.

[SI R. L. Miller, L. J. Deutsch, and S. A. Butman, “Ontheerror statisticsof
Viterbi decoding and the performance of concatenated codes,’’ Jet Pro-
pulsion Lab., Pasadena, CA, Pub. 81-9.

[9] D. Siegmund, “Importance sampling in the Monte Carlo study of se-
quential tests,”Ann. Statist., vol. 4, pp. 673-684, 1976.

[lo] H. G. Tucker, A Graduate Course in Probability. New York:
Academic, 1967.

*

*
Robert J. McEliece (M’70-SM181) was born in
Washington, DC, in 1942. He received the B.S. and
Ph.D. degrees in mathematics from the California
Institute of Technology, Pasadena, in 1964 and
1967, respectively, and attended, Trinity College,
University of Cambridge, Cambridge, England, dur-
ing 1964-1965.

From 1963 to 1978 he was employed by the Cali-
fornia Institute of Technology’s Jet Propulsion Labo-
ratory, where he was Supervisor of the Information
Processing Group. From 1972 to 1982 he was Pro-

fessor of Mathematics and Research Professor at the Coordinated Science Lab-
oratory, University of Illinois, Urbana-Champaign. Since 1982 he has been
Professor of Electrical Engineering at Caltech. He is also a Consultant with the
Jet Propulsion Laboratory and with Cyclotornics, Inc. His research interests
include telecommunications, computer memories, and applied mathematics.

*
Laif Swanson was born in California on May 13,
1950. She received the B.A. degree in mathematics
from the University of California, Irvine, in 1970,
and the Ph.D. degree from the University of Califor-
nia, Berkeley, in 1975.

After six years with the Department of Mathemat-
ics, Texas A&M University, College Station, she
joined the Communications Research Section of the
Jet Propulsion Laboratoiy, Pasadena, CA, in 1981.
Her interests include coding, information theory, er-
godic theory, and probability theory, and she is cur-

rently a Visiting Lecturer in the Department of Mathematics, California Insti-
tute of Technology, Pasadena.

