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Capacity  and  Cutoff  Rate of Noncoherent FSK with 
Nonselective  Rician  Fading 
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Abstract-The capacity and cutoff rate of frequency-shift keying 
(FSK) modulation and noncoherent reception when the signal is subject to 
Rician fading are calculated.  Both hard and soft  decisions with maximum 
likelihood  combining are considered,  as well as  soft  decisions with 
square-law combining. Optimal code rates are found that minimize the 
required signal-to-noise ratio for reliable communication. 

I. INTRODUCTION 

T HE use of error-correcting  codes has  become  widespread 
in the  last  several years in digital  communication  systems. 

Error-correcting  codes  are  extremely useful in communication 
systems in which there  is  strong pulsed interference [l]-[4]. 
The improvement in signal-to-noise  ratio  with coding  can  be 
on  the order of 30 dB  for these channels. Another  communica- 
tion  channel for which there  are  large potential  gains by the 
use of error-correction  coding  is  the Rayleigh  fading  channel. 
This  channel is very similar qualitatively to the pulsed 
ihterference  channel [l]. For this channel, without  the  use of 
coding, the average bit error probability  varies  (approxi- 
mately) inversely with the  signal-to-noise  ratio.  This is in 
contrast  to the case of white  Gaussian  noise, where the error 
probability is  an exponentially decreasing function of the 
signal-to-noise  ratio.  It is shown in [5] that with ‘simple 
repetition codes  (i.e., diversity  transmission) on, a Rayleigh 
faded channel, the coded  error probability can be  made to 
decrease exponentially with the  signal-to-noise  ratio  (when the 
diversity level or length of the  repetition code ia chosen 
optimally).  It is  also  shown  [5,  p. 5501 that for repetition 
coding,  the loss incurred by a  Rayleigh  faded  channel over a 
nonfaded channel is approximately 5.25 dB. However,  for 
very low error probability  the  rate of the  optimal  length 
repetition code becomes  very small.  The possibility of having 
very  small error probability  without  the  rate of the code 
approaching zero  as the  block  length  becomes  very large  is 
guaranteed when the  channel  capacity is  nonzero.  We  are 
interested in the largest possible rate  for which reliable 
communication  (arbitrarily  small error probability) is possi- 
ble, or equivalently  the  smallest  possible  signal-to-noise  ratio 
which guarantees  arbitrarily small error probability with codes 
of rate r. Here we  show  that the loss due  to fading can  be 
reduced to approximately 1.35 dB by the  use of optimal codes. 
Furthermore, these codes  have  nonzero rate  and have  arbitrar- 
ily small error probability. (The  loss  due  to fading will be 
different  when  we do not require  arbitrarily reliable  communi- 
cation, and  could in fact be negative.) 

In this  paper  we examine the performance of optimal codes 
on  a  channel  subject to Rician  fading as measured by the 
minimum  signal-to-noise ratio necessary for reliable commun- 
ications. This minimum can be  calculated by computing the 
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channel capacity.  We  also  examine  the “practical limits” [6] 
of coding by computing the cutoff rate.  The cutoff  rate is the 
rate above which  the number of steps per decoded  digit 
becomes  infinite with sequential  decoding [5]. The cutoff  rate 
is also useful in determining the error probability of convolu- 
tional codes [7]. 

We first discuss  some of the assumptions  that will be made 
and  their  implications  on  the  results. The modulation  we 
consider is that of  M-ary FSK;  which  generates one of M 
orthogonal  signals of  duration T. The received  signal  consists 
of three components:  the  transmitted  signal  (with some 
constant  attenuation (Y and a  constant phase), the  transmitted 
signal with the  attenuation R being  Rayleigh  distributed  and 
phase  uniformly  distributed on the  interval [0, 2x1,  and  a 
white  Gaussian  noise  component  that is independent of the 
other  random  quantities. Since  we  assume  an unknown  phase 
for the  received signal, we are considering  a  noncoherent 
communication  system. We  consider soft decision  (maximum- 
likelihood) receivers  for the  binary case and  hard  decision 
receivers for the M-ary  case. 

We will assume that  the  channel is memoryless and that  the 
random  attenuation R is constant during  every symbol 
duration.  The  memoryless assumption is equivalent to  assum- 
ing  that  the random variables  that determine  the attenuation 
during a  symbol  transmission are independent from symbol  to 
symbol. In reality,  this attenuation is a  slowly  varying  function 
of time  which  could be modeled as a  slowly  varying random 
process; however, by assuming that  the  channel is  memory- 
less, we  obtain lower bounds on the  capacity of the  channel. 
From the  results in [8] we know that if the  receiver  has an 
additional output,  the attenuation R of the channel  (which is 
Rayleigh distributed), then  the  capacity with memory is 
independent of the memory  length. Also, the  capacity  without 
this “side  information”  is  less than  the  capacity with side 
information,  and approaches the  capacity with side informa- 
tion as the memory length becomes  large.  Thus, by computing 
the  capacity under the memoryless assumption with and 
without side  information, we  obtain  bounds  on  the  capacity 
with memory.  The actual  evaluation of the  capacity of 
channels  with memory  and  hard decision  receivers  has been 
carried  out in [9]. Here we  only  present  results for the 
memoryless case.  Since the  capacity with side information is 
larger than the capacity without,  one conclusion  that is reached 
in [9] is that  interleaving decreases the  channel  capacity  unless 
side information is available. The interested reader should 
consult [9] for  further discussion of this. 

The  coding  theorem  of information  theory  guarantees there 
exist  codes with  rate less than  the capacity, such that  the error 
probability can  be  made  arbitrarily small  when  decoded  using 
maximum  likelihood decoding.  For a  Rician  faded  channel, 
maximum  likelihood  decoding is very  hard to implement  since 
it involves  highly  nonlinear  functions.  A receiver that  can be 
more easily  implemented is the  square-law  combining  re- 
ceiver. For this receiver  we  are interested in knowing  what is 
the  largest  rate for which  reliable  communication is possible. 
This  is given by the “mismatched” capacity  which is defined 
in [ 101 and [ 1 11. We  examine  the mismatch  capacity for Rician 
fading  when  using square-law  combining. Although  square- 
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law combining is  suboptimal, we  show that the theoretical  loss 
in using  square-law combining  is very small (less than 0.1 dB). 

The outline of  the  paper  is  as follows. In Section I1 we 
describe mathematically  the  model of a Rician faded  channel. 
In Section I11 we calculate  the capacity of a Rician fading 
channel with both  soft and  hard decisions. We then calculate 
the  capacity of a  Rayleigh  faded  channel  with side information 
available. Lastj we  calculate  the “mismatched” capacity when 
using square-law  combining.  In Section IV we  repeat these 
calculations for the  cutoff rate.  We  see that  the  cutoff  rate with 
square-law  combining  is closely  related to the  Chernoff bound 
on  error probability.  Numerical results  are discussed in 
Section V, where we give the code  rates that  minimize  the 

For the  Rician  fading  channel  model considered, it is easy to 
show that the  probability  densities of the random  variables Y k , c  
and Y k , s  conditioned on x = i are Gaussian with mean 

E [  Yk,cI  X =  i] = ffp cos dk&j,k 

E [  Y k , s I X =  i]  = ap sin ok&j,k 

where 8i,k = 1 if i = k and is  zero  otherwise and p2 = 2ET/No. 
The variances of Y k , c  and Y k , s  are 

var [ Y , , c  I X = i] = var [ Y k , s  I X = i] = a2P 26;,k + 1 . 
The conditional  density  function Y k  is  then given by 

signal-to-noise ratio necessary for reliable  communication. 

11. CHANNEL MODELS 

In  this section we  present  the channel  models for frequency- 
shift  keying  used in this  paper.  The input  alphabet A for the 
channel consists  of M letters (say A = { 0, 1, . . , M - 1 }). 
If X is  the input to  the  channel, then X = i corresponds  to 
transmitting a sine  wave si(t) with power P for T seconds  at 
frequency wi: 

s i ( t )=J2P COS (wjt+ei),  o l t l ~  (1) 

where Oi is  the  phase  of the ith signal. (We assume throughout 
that w;, , O  5 i 5 M - 1 ,  and T are  chosen so that the si(t) 
form  an  orthogonal signal set.) 
’ For  the fading channel, when the  transmitted  signal is s;(t), 

the received  signal is given by 

i - ( t ) = a ~ j ( t ) + ~ J 2  COS (wj t+ej++)+n( t )  (2) 
where a is the strength  of  the  specular  component, and R is a 
Rayleigh distributed  random  variable with mean square 2a2: 

for y 2 0 and p ( y k l X  = i) = 0 for y k  < 0. In (5) Io is  the 
modified Bessel function of  order  zero. Note  that if r = E T /  
No and yz = 2a2/a2 ,  then  we  have a2p2  = 2r / (1  + y2) and 
a2p2 = y21’/(l + y2). Using the above relations in (5) we  can 

-express p(y,lX = i) in terms of and y2. 

111. CAPACITY OF MEMORYLESS FADING CHANNELS 

In this  section we calculate the capacity of FSK  with 
noncoherent  reception in the  presence  of Rician fading.  We 
consider several  possible  situations. First,  we calculate  the 
capacity of  the Rician  fading  channel when the receiver  uses 
maximum  likelihood  (optimum) decoding.  We calculate  this 
for both hard and  soft decision  receivers.  Next,  we  consider 
the case that the  receiver  uses a square-law  combining 
receiver.  We calculate  the loss  incurred by such  a  suboptimal 
receiver.  Last,  we  consider a Rayleigh  faded  channel  and 
calculate the capacity  when the receiver has side information 
concerning the  level of  fade  for  each received symbol.  This  is 
done  for both hard and soft decision receivers. 

The capacity of a memoryless channel with input X and 
output Y is  given by 

Also, in (2) ,  4 is uniformly  distributed  between 0 and 2% and 
independent of R .  The noise n(t)  in (2) is a  white  Gaussian 
noise process with two-sided spectral density N0/2.  Setting a 
= 0 in (2)  results in the  slow Rayleigh  fading channel. Setting 
2a2 = 0 yields the nonfaded  model.  Letting y2 = 2a2/a2 ,  we 
have the  Rayleigh  model for y2 = 00 and  the  nonfading case 
for y2 = 0. For 0 < y2 < 00 we have  the Rician  fading 
channel. The  average received energy  per transmission is 
given by ET = (a2 + 2a2)ET where ET = PT. 

Thexeceiver  computes the  M-dimensional,  vector Y = (Yo, ... , YM-~) where 

Y ;  = Y; ,=2  + Y;,s2 (4) 

2 T  

K T  0 

y .  =- s r ( t )  cos wit dt 

2 T  

K T  0 

y .  =- 1 r ( t )  sin wit dt. 

C=maxZ(X; Y) 
X 

where  the  maximum  is  over all  distributions on  the  random 
variable X and the  integration is  over M. Due  to the symmetry 
of the  channel we  consider,  the distribution  that  achieves  the 
maximum in (6) is the  uniform  distribution with P{X = i }  = 
1/M for i = 0, 1, . . 0 ,  M - 1, so that we  can  write  the 
capacity as 

where 

For the  Rician  faded channel, p ( y ( X  = i )  can be  determined 
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from (5) as Since  the  signal  set is  an  orthogonal  set,  the channel is  an M- 
ary  symmetric  channel with crossover probability P,/(M - 

channel us: is achieved-by uniform input distribution,  and  is 
given' by Cdr, y) = CdPe)  where 

f ( y i W M  1) .  The capacity Cdr, y) for this  channel in M-ary  symbols/ 
(1 + a2p) 2 1 + u2p2 

p ( y l X =  i )  = 

(12) 

so that 
For a  Rayleigh  faded  channel [a = 0 in (l)], we can 

compute the  capacity  when  the receiveddecoder has  a  perfect 
estimate of the  fading  variable R for each  received  symbol. In 
order  to  compute  the capacity  with  this side information 
available to the decoder, we  need to  determine the joint density 
of the random vector Y = (Yo, Y l )  and  the  random  variable R.. 

The capacity is thus We first compute  the conditional  density of Yk given R .  This 

can be seen  to  be 

P(Yk I R ,  X =  i)  

f (Y.1 
f (Y0 )  . 

A , ( y ) = L  

2 M (  1 + d p )  1, - Sm e-p/2f(yo)  e-(Yk+R2a2)/210(dym ) k = i  c(r, y ) = l -  

These integrals  can  be  evaluated  using  Gaussian-Laguerre 
quadratic formulas [4], but  the  evaluation  requires large  for yk 2 0 and p(yklR, x = i) = 0 for y k  < 0. The  joint 
amounts of computation  when M > 2. For the  special case  of density of Y given R and X = i is then 
no  fading  (i.e..,  additive  white  Gaussian  noise  channel),  the 
capacity is found by letting y2 = 0.0: p ( y ( R ,  X =  i )  = 2 - M  

and 

for yi 2 0, i = 0, 1 ,  . . * ,  M - 1 ,  and is 0 otherwise. The 
joint density of Y, R can  be found from (3) and (14) as 

p ( y ,  r ( X = i ) = -  
2 M d  

' logM [ +F Aj(Y)]  dY (9) r 

The capacity with side information  available is then 
which for M = 2 is a  result in [12]. For the  special case of 
Rayleigh fading, the  capacity is found by letting y2 = 00 or a c= 1 - 1 m . . . Sm p ( ~ ,  rlX=O) 
= 0: Yo=O y M - , = O  r = O  

. logM { 1 + exp [ ( y - 2 y 0 ) 0 2 p 2 ] )  dy. (10) 
2( 1 + $02)  

For hard decisions,  the capacity of M-ary FSK with Rician 
fading  can  be  easily computed.  From [13] we  have  that  the 
probability of error P, for Rician  fading is given by 

With a hard decision receiver, the  capacity with side 
information  available can be  computed  using  results in [8] as 

where 



is the  conditional error probability given R = r ,  and C,,,(x) is 
given in (12). Numerical results will be given for these in 
Section V. 

The capacity  was determined  for  the Rician faded  channel, 
based on  assuming  an optimal receiver.  For Rician fading in 
general, this  involves  using  a metric that  involves  the Bessel 
function  and  exponential  functions which are not easily 
implemented in practice. A more practical  receiver might 
instead just  use the outputs x. defined in (4) as the  sum of the 
squares  of  the matched filter outputs. This receiver  (decoder), 
which is called  the  square-law  combining receiver,  is subopti- 
mal except when  the  fading is Rayleigh (a = 0). Thus, a 
question  that can  be asked is what is  the largest  rate,  such that 
codes  exist with arbitrarily small error probability when using 
square-law  combining (a suboptimal  receiver). The question is 
a  special case  of a more  general question about the largest rate 
for which  reliable  communiyation is possible  when using a 
decoder with a decision rule based  on  the  likelihood ratio 
between  probabilities  that are different from the  actual  channel 
transition  probabilities. This has  been answered by Fisher [ 1 13 
and,  for a symmetric  channel,  is  given by 
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where 

and p* denotes  the transition  probabilities used. by the 
decoder.  When  the  receiver uses  square-law combining, we  let 

for yi 2 0, j = 0, 1, e * - ,  M - 1 andp*(y lX  = j )  = 0 
otherwise. Also in (20), a and b are positive parameters. 
Thus, 

Notice when a, b E R+, (a - b)/ab can  take  on any  value in 
R. We  let z = (a - b)/ab. The capacity under mismatch with 
parameter z is  then 

Since z is a free  parameter,  we may choose z to maximize 
C*(z). It is  easy  to  show that C*(z) is a concave function of z 
with limz-.w C*(z) = limz+ - w  C*(z) = - 00, C*(O) = 0, and 
t3C*(z)/t3~I~=~ 2 0. From  the  above  facts we conclude that 
C*(z) has a unique  maximum that occurs  for z > 0. This 
maximum can  be easily  found  numerically. We indicate  the 
numerical results in the  last section. 

Iv. CUTOFF  RATE OF MEMORYLESS FADING CHANNELS 

In  this section  we evaluate the  cutoff  rate for the  Rician 
fading  channel with both soft and hard decisions. We  compare 
this to  the cutoff  rate  when  using  a square-law combining 
receiver  which is suboptimal if there  is a nonzero  direct path 
component in the received signal. For completeness,  we also 
evaluate  the cutoff  rate in the Rayleigh  fading case when  the 

receiver has  knowledge  about  the strength of the  received 
signal  which has been  calculated earlier by Bucher [ 141 for M 
= 8 .  Here we  give  formulas for calculating  the  cutoff  rate for 
general M .  This  is  done  for  hard and soft decision  receivers. 

The cutoff  rate when using M orthogonal ,signals and 
maximum likelihood  decoding has been shown  to  be given by 
~ 1 5 1  

where 

To  compute  the cutoff  rate for Rician  fading, we  need  only 
substitute (5) into  (23).  Thus, 

This  is  the cutoff  rate for noncoherent  FSK  with maximum 
likelihood decoding  and soft decisions.  For  the special case  of 
Rayleigh fading, (24) reduces  to 

Ro = 1 - lOgM [ 1 +  ( M -  1)4p(l  -p)] 

where p = (2 + aZp2)-'. If,  in addition to the  vector Y as  the 
channel output, the receiver  also  has knowledge of the random 
variable R for each  received symbol,  then the receiver  has  side 
information. In  this  case  the cutoff  rate for Rayleigh  fading 
can  be  shown  to  be 

where 

and 

Notice  that for M orthogonal signaling  with or without side 
information, D does not depend  on M ,  the number  of 
orthogonal  signals. As a result,  once D is calculated  (for  each 
signal-to-noise ratio),  we  can  calculate  the cutoff  rate for  every 
M .  This  is not true when hard  decisions  are  made,  as  shown 
below. 

When hard  decisions  are  made,  the cutoff rate  is 

where 

- M - 2  
D(x)  = - 

M -  1 
x+2Jx(1   -x ) / (M-  1) 
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and P, is  given  in (1 1). When  side information is available,  the 
cutoff rate with hard  decisions (on y) becomes [8] 

Ro = 1 - logM(1+ ( M -  1)D) (28) 
where 

m r  
0 a2 

D =  1 - e-r2/202fi(P,(r)) dr (29) 

with P,(r) given in (18). 
Finally, we  evaluate  the  cutoff  rate  with  Rician  fading  under 

mismatch (Le.,  square-law  combining).  The cutoff  rate  under 
mismatch  was  defined in [16] as 

Ro* = 1 - lOgM(l+ ( M -  l)D*) (30) 
where 

Using (21) in (31), we  obtain 

We now see that (32) is the Chernoff bound on  error 
probability for a  Rician  faded  channel. This has been 
computed by Jacobs [ 171 as 

exp {aw[l + w(1 +a2P2)]} 

1 + w a 2 p  - w2( 1 f a2p) 
D* = (33) 

where 

daZ+6axy+x2y2-a-yz  

4Y 
w =  

anda  = a2P2/2,x = 2 + a2P2,y = 1 + u2PZ,andz = 2 - 
a2b. Numerical  results for  the cutoff  rate will be given in the 
next section. For  the  case  of Rayleigh  fading where square-law 
combining is  optimum, (33) and (30) reduce to (25). 

v. NUMERICAL RESULTS AND DISCUSSION 
In this  section  we  present some numerical  results for the 

cutoff  rate  and capacity.  We  first relate  the  symbol  signal-to- 
noise  ratio E/No to the  information  bit  signal-to-noise  ratio 
Eb/N0. If we  use codes of rate r information  symbolslchannel 
symbol, then  we  have  that 

Eb E 
No No 
-=-I(. log2 M).  

From the  channel coding  theorem [18], there exist codes of 
rate r with arbitrarily small error probability,  provided r is less 
than  the  channel capacity.  The capacity is a  function of the  bit 
signal-to-noise ratio, so reliable  communications is possible, 
provided 

r 5 C( E/No) 

or 

(34) 

The right-hand side  of (34) is  the minimum  signal-to-noise 
ratio (over all  possible codes  of  rate r) necessary for reliable 

Fig. 1 .  

Code  Rate r 

EJN, needed for reliable communication for Rician fading with soft 
decisions. 

5 . 0 1  ' 
0.0 0 2 5  0.50 0.75 1.00 

Code Rate r 
Fig. 2. Eb/No needed for reliable communication for Rician fading with 

hard decisions. 

communications. Similar calculations for the  cutoff  rate  show 
"practical  communications" are possible with codes  of rate r, 
provided 

(35) 

In  Figs. 1-6 we plot  the  right-hand side of (34) and (35) as a 
function of the code rate r for various cases.  In  Fig. 1 the 
minimum  signal-to-noise  ratio for reliable  communications 
with Rician  fading and a soft decision  receiver is  shown.  The 
corresponding results for a hard decision receiver  are shown in 
Fig. 2. In  Fig. 3 we  show the  minimum  signal-to-noise  ratio 
for reliable  communications  with  Rayleigh  fading (r2 = 03) 
for  four  receivers.  These  are soft and hard decision  receivers 
with and  without side information  available to  the  decoder. 
Evidently, side information is worth  considerably more in the 
hard decision receiver  than in the soft decision  receiver. 
Howeyer, the decoder  in the case of side information  available 
and hard decisions (on y) does not quantize  the side informa- 
tion. These  curves with  and  without side information  also  give 
an indication of the  signal-to-noise  ratio  needed for reliable 
communication with codes of rate r when the  channel  has 
memory.  The signal-to-noise  ratio  necessary for reliable 
communications  when the channel has memory is  upper 
bounded by the signal-to-noise  ratio  needed in the  memoryless 
case, and is  lower bounded by the signal-to-noise  ratio  needed 
when side information is available. 

We notice from these curves that there  exists  an optimal 
code rate for which the signal-to-noise  ratio  necessary for 
reliable  communication is minimized.  Notice also that  the 
curves  are relatively  flat near the optima  for the AWGN 
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t 
W 
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I5'O Hard  decisions. no side 

Hard decisions, with  side 

Soft decisions, no side 

\Soft decisions, with  side 
information 

0.0 0.25 0.50 0.75 1.00 

Code  Rote r 

Fig. 3 .  &/No needed for reliable communication for Raleigh fading with 
and without side  information  available (hard and soft decisions). 

15'01 12.5 

7.5 t 
5.01 I I I I 

0.0 0.25 0.50 0.75 1.00 

Code Rote r 

Fig. 4. Eb/No needed for Ro > r for Rician fading with soft  decisions. 

7.5 t 
5 O1 I I I I 

0.0 025  0.50 0.75 1.00 

Code Rate r 
Fig. 5. &/No needed for Ro > r for Rician fading with hard decisions. 

channel,  compared  to the  Rayleigh  fading channel.  This 
indicates  that  the performance  is much more sensitive to the 
code rate chosen in the Rayleigh  fading channel,  as  compared 
to the AWGN  channel.  The optimal code rates are summarized 
in Table I. We  also include  the minimum signal-to-noise  ratio 
for the case  of square-law combining  receiver.  (We have not 
plotted the  performance  of  the square-law  combining receiver, 
since it is very close  to the  maximum-likelihood  combining 
receiver.)  From  Table I we see that  square-law combining  is 
less efficient  than maximum likelihood combining by less than 
0.1 dB.  We  also notice from  Table I that  the  loss  incurred by 
Rayleigh  fading (7' = m), compared  to no fading (r2 = O.O) ,  
is 1.35 dB. This  is  for the best codes (and for  the optimal  rate). 
This should be  compared  to the 5.25 dB loss [5] when 
comparing uncoded FSK with Gaussian noise  and  repetition 
coded  FSK with Rayleigh fading. 

- 
D 
U 

no slde 

I Hord deCis1ons, 
0 wlth side 5 10.0 information 
D 

W Soft decisions, 
no side 

I \  mforrnotion 

5.0) I I I I 
0.0 0 2 5  0.50 0 7 5  1.30 

Code Rate r 

Fig. 6. &/No needed to achieve cutoff  for Ro > r for Rayleigh fading with 
and without side information  available (hard and soft decisions). 

TABLE I 
MINIMUM &/NO AND  OPTIMAL  CODE  RATES  FOR  RELIABLE 

COMMUNICATION . 

y 2  Eb/No (dB) Rate 

Square-law combining 0.0 6.78 0.41 
Maximum likelihood combining 0.0 6.71 0.48 
Hard decisions 0.0 7.82 0.50 
Maximum likelihood combining 00 8.06  0.24 
Maximum likelihood combining, 

side information available m 7.31 0.23 
Hard decisions m 10.24 0.21 
Hard  decision, side 

information available m 8.53 0.24 

TABLE I1 
MINIMUM Eb/N, AND  OPTIMAL  CODE RATES BASED ON THE  CUTOFF 

RATE 

.. y2  E,/No (dB) Rate 

Square-law combining 
Maximum likelihood combining 
Hard  decisions 
Maximum likelihood combining 
Maximum likelihood combining, 

side information available 
Hard decisions 
Hard  decision, side 

information available 

~ 

0.0 8.44 0.52 
0.0 8.29 0.53 
0.0 9.84  0.48 
03 10.14  0.23 

03 9.36 0.21 
m 12.94 0.13 

m 10.84 0.20 

~~ 

In Figs. 4-6 we  show  the  corresponding results  (to Figs. 1- 
3) when the cutoff  rate is the parameter of interest  instead of 
the  channel capacity.  The  corresponding  curves  for  other 
values of M for soft decisions  can  be obtained  using  (23a) as 
follows.  Let fi(r) be the miniml;m signal-to-noise  ratio such 
that Ro = r using two  orthogonal signals. Then the  minimum 
signal-to-noise ratiofdr)  for M orthogonal signals is given by 

In Table 11, the  optimal code rates are given with the minimum 
necessary  signal-to-noise  ratio. 
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