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ABSTRACT

The problem of designing optical receivers that are robust against uncertainty in
the statistics of the observation process in photodetection is investigated. In particular a
modification in the design of the post-detection matched filter is proposed to account for
possible uncertainty in the rate function of the incident light, the rate of the dark
current, and in the statistics of the additive noise present at the input to the optical
receiver. This design is based on a game-theoretic approach in which a filter is sought
that has the maximum worst-case output signal-to-noise ratio possible over the class of
allowable statistics; that is, the design criterion is maximin signal-to-ratio. A general
characterization of maximin robust matched filters for observed Poisson processes is
presented in this context, and specific solutions for several useful uncertainty models are
obtained. Numerical results are presented for a specific example to illustrate the perfor-

mance of the proposed technique.
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I. INTRODUCTION

Most techniques for signal processing in communication receivers are based on statistical models for vari-
ous signals and noises. Since these models are rarely accurate, it is of interest to design procedures that not
only perform well for the chosen or nominal statistical model but also exhibit a degree of robustness in the face
of deviations from this model. There has been considerable recent interest in the development of such methods,
and many of these are described in a recent survey paper by Kassam and Poor [1]. One class of applications
that have not been treated extensively in this context are those in which the observations are derived from point
processes, such as is in the case in optical communications. This paper together with a companion paper [2] is
concerned with the study of robust detection from observed point processes with uncertain statistics. In [2] we
have examined robust decision designs based on the error probabilities for general discrimination problems
between point processes. Here we develop a robust matched filter design based on a game-theoretic approach in
which we seek a receiving filter to maximize the minimum output signal-to-noise ratio over classes that model
uncertainty in the rate functions of the incident light and dark current of a photodetector, and in the statistics of

the noise at the input to the receiver.

Our system model consists of a continuous-time system with discontinuous observations; i.e. a systems
observed through a point process. We assume that a deterministic function modulates the photon rate of a
transmitting light source and that dark current and additive thermal noise corrupt the received signal as observed
at the output of a photodetector. The objective of an optical detection scheme is to decide the presence or
absence of the modulated light at the photodetector by comparing the output of a matched filter following the
photodetector to an appropriate threshold. The transmitted light signal passes through a channel and can be dis-
torted in ways that are difficult to model accurately, whereas the dark current and the thermal noise are
receiver-generated and thus are more easily modeled. Hence, although we will consider uncertainty in both the
incident statistics and in the dark current/thermal noise, our emphasis will be placed on the former. To model
uncertainty in the statistics of the incident light and the dark current we adopt inhomogeneous Poisson models
for these phenomena in which the corresponding rate functions are assumed to be in some classes of rate func-
tions, but otherwise are unknown. A similar model is used for the additive thermal noise by placing its auto-

correlation function in an uncertainty class. A number of specific uncertainty classes of practical interest are



discussed in detail in the sequel.

As noted above, in order to design matched filters that exhibit performance robustness over such classes of
input statistics, we adopt a maximin formulation similar to that used in related robust matched filter design prob-
lems for continuous observations (e.g., [3-51). For the case of discontinuous observations, the matched filter for
known incident-light signal and dark current rate functions has not been discussed extensively in the literature,
and thus an appropriate signal-to-noise ratio must be defined carefully and put into a form analogous to that
available for the continuous observations case. As is usual in optical signal processing problems, the appearance
of self-noise terms distinguishes this criterion from its continuous observations counterpart. Having chosen an
SNR criterion, our objective is then to select an appropriate receiving filter such that the minimum value of the
output signal-to-noise ratio over the class of possible signal rate functions, dark current rate functions, and (ther-

mal) noise autocorrelation functions is maximized.

This paper is organized as follows. In Section II we describe the system model that we consider
throughout this paper, introduce the necessary preliminaries and notation, and formulate the problems of signal-
to-noise ratio maximization and design of matched filters for discontinuous observations with known signal and
dark current rates and thermal noise autocorrelation. In Section III we formulate the robust optical matched
filter design problem and characterize its solutions for general uncertainty in the statistics of the incident light
and the dark current/thermal noise processes. We then give explicit solutions in Section IV for the robust opti-
cal matched filter in the presence of uncertainty in the statistics of the incident light and the noise (dark
current/thermal noise) when the uncertainty is described by several general types of uncertainty classes. To
illustrate these results, in Section V, we carry out the robust optical matched filter design for three special cases
of the general uncertainty models of Section IV: an e-contamination model, a band model, and a mean-
absolute-distortion model. In Section V we present some numerical results to illustrate the effectiveness of our

approach. Finally, in Section VI, we give a summary of the reults of this paper.



II. PRELIMINARIES
A. System Model

Consider the photodetector model depicted in Figure 1 which is valid for both fiber and free-space optical
communication systems (see [6]) and which allows for the treatment of various noise sources. The output of the
photodetector in this model is given by the sum of a filtered Poisson process i (t) plus an independent zero-mean

thermal noise process iy(t). The current i (t) can be expressed, for t 2 0, as

Nl
(0 = Yeg bt )
k=1

where {N,, 20} is an inhomogeneous Poisson counting processes such that N, is the number of photoelectrons
generated during [0,t], T, is the emission time of the k-th electron, and the g;’s are independent and identically
distributed random variables which, in avalanche photodiode (APD’s), model the number of secondary electrons
generated for each primary photoelectron. Here e is the electronic charge and the detector impulse response is
assumed to be g5 () where 8(°) is the Dirac delta function (i.e., the photodetector is assumed to be ideal). This
latter assumption is not a major restriction, and the results that follow may be modified straightforwardly for the

general case in which the photodetector is not ideal.

The intensity A(t) of (N, t=0} is related to the incident optical power p(t) by the expression

D) = é‘;p(wd = A(D+hy @)

where 1 is the quantum efficiency of the photodetector, h, is Plank’s constant and v is the unmodulated optical
carrier frequency. We assume that p(t) is deterministic, and thus so is A,(t) defined in (2). The rate A4 accounts
for the dark current rate at which spontaneous but extraneous electrons are generated in the photodetector.

(Background radiation can also be lumped into this term.)

The filtered Poisson process y(t) at the output of the receiver filter (see Fig. 1) can be written as

Nt t
y() = Tegh(t-t+ | in(h(-r)dr, 0i<T. ®
k=1

where h is the impulse response of the receiving filter, In [7] the characteristic function and the moments of y(t)
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are evaluated. From these quantities the signal-to-noise ratio at the output of the receiver filter at the end of the

observation interval (t=T) is given by

_ BAlyM|As = 0, in(®) = 0, 0<t<T)

SNR Var(y()

(4a)

T
_ EYg) [ h(T-tA @
E@)  (f BT (M0+INJQeE () Al dt

(4b)

where Ny/2 is the two-sided spectral density of the thermal noise process which for now is assumed to be white
and Gaussian, and the moments E{g} and E{g?} are the common first and second moments of the gain sequence

g1, & . . . , which for our problem are given constants (see also [8]).

The assumptions leading to (4) about the thermal noise being a white Gaussian process and the dark
current rate being constant can be relaxed easily. In particular, we can treat the general situation where the dark

current rate is time-varying (i.e., we have A4(t) instead of Ay) and the autocorrelation function of the thermal

N
noise is Rr(t)6(t—7) instead of —50-5(&-1:) (i.e., the noise intensity is time varying). In this case (4b) becomes

T
_Blm [, hT-0A()de)?
E(g) [ mT-oD0+R 01t

&)

where the term Ry(tERr0/(E(g2))+A(®] incorporates the effects of dark current and thermal noise. Note
that the rate functions A,(t) and A4(t) and the thermal noise intensity function Ry(t) must all be nonnegative func-

tions.



B. The Matched Filter for Optical Reception

As is proved in [7], as certain parameters tend to prescribed limits, the process y(t) defined in (3) tends to
a Gaussian pi'ocess on [0,T] with mean the unsquared numerator of (4b) [or (5)] and variance the denominator of
(4b) [or (5)]. Therefore the probability of error reduces to Q(SNR*) (where Q is the tail of the standard normal
distribution) and the quantity SNR becomes a useful performance measure. Thus, maximizing the SNR over all
possible filter impulse responses is desirable. The resulting optimal filter is, of course, the matched filter. In
order to simplify notation and also to make our analysis analogous to that of robust matched filtering with con-

tinuous observations developed in [3], we adopt the following formulation for this problem.

Assume that each of the functions A,, h, and R, lies in L, [0,T] (the space of square-integrable functions

on [0,T]) which we denote by H, and that A, and R, are in H*, the subset of H consisting of (a.e.) positive func-
T

tions. If for a, b € H we define <a,b> = L a(t)b(t)dt, then (5) can be rewritten as SNR = E?{g}p(h; A,, R,VE(g?)

where

&, :
ot RS A ©)

<h, (A +Ryh>

and where the overbar denotes time reversal; i.e. h(t) = h(T-t). This quantity differs from the analogous quan-
tity for the continuous-observations case (see [3]) in that the signal A, appears in (6) both in the numerator and
denominator, whereas for continuous observations it appears only in the numerator. Of course, it is this self-

noise phenomenon that distinguishes these two problems analytically.

Within this formulation, the optical matched filtering problem for fixed A, and R, is now described by
(compare with {3, section II]) the maximization problem:

maxp(h; A,, Ry). @

heH

The solution to this problem is given by

Property 1: (Optical Matched Filter) Define a filter h, by

_ A (T-1)
ha(0) = TR,y =T ®

Then



maxp(h; Ay, Ro) = plhios Ay R) = <o, (A, + Ry) A ©)
Proof: Since A, > 0 and R, > 0 by assumption, (A, +R,,)‘l is well-defined. Then (9) follows from an application
to (6) of the Schwarz Inequality for the inner product [a, b] = <a, (A, + Rp) b>.

Note that the impulse response (8) is reminiscent of, but is quite different from, the conventional matched
filter impulse response for this model, which does not have the A, term in the denominator.! Note that h, of (8)

satisfies the condition 0<h (t)<1 for all te [0,T].

In the sequel, we will need the following properties of the functional p:
Property 2: For fixed h € H, p(h; A, R,) is convex in (o, R,) € H™>H™,
Proof: The proof is similar to that of Property 2 of [3] and will be omitted.

Property 3: The functional ml?.xp(h; A, Ry) = <A, (A+R)™A,> is convex in (A, Ry) on H™5H".

Proof: Property 3 follows straightforwardly from Property 2.

Remark 1: In comparing <A, (A, + Ry)™'A,> of (8) with the analogous quantity <A, Ry’ 12> for the conventional
problem of [3] notice that the discontinuous-observations case is equivalent to the continuous observations case
with autocorrelation function [Ry(t) +A;(0]8(t—1) (i.e., the useful signal also plays the role of additive time-wise-

uncorrelated noise).

Remark 2: Let us assume that Ay = 0 (no dark current is present) and that no thermal noise disturbs the system

of Fig. 1. Then via (4b) [or (5)] (6) reduces to

p(h; Ay, 0) = <h, A,>%<h, Ah>
and (9) to

maxp(h: A, 0) = p(1; Ay, 0) = <Ay, 1> .

Thus the optimal filter in this case is one with impulse response identically equal to unity on [0,T] which

corresponds to a pure integrator (i.e., an unweighted photon counter).

1y should be noted that the model under consideration could be further refined to include completely general thermal noise autocorrela-
tion functions (as in [3]), in which case (8) would be replaced by an integral equation. However, our model of time-wise-uncorrclated ther-
mal noise should be adequate for most optical applications.



III. DESIGN OF ROBUST OPTICAL MATCHED FILTERS - GENERAL CHARACTERIZATION

Property 1 indicates that for known statistical characteristics A, and R, the optical matched filter is given
by (8). Thus, we need to know the statistics of the incident light and noises exactly in order to design an
appropriate filter. More realistically, we might assume that the quantities represented by A; and R, are known
only to lie within some classes § and N , respectively, of elements of H*, but are otherwise unknown. This
characterization allows for the modeling of channel and photodectector distortion and of possible uncertainties in
the behavior of the thermal noise process. Given this type of uncertainty model, the design criterion

ml?xp(h;l,, R,) is no longer useful since it is quite unlikely that a single filter will maximize p(h;A,, R,) for all

elements of any realistic classes § and N. The alternative objective should be to find a filter that gives at least a
guaranteed minimum level of output SNR regardless of which elements of § and N are actually present during
[0,T]. Thus the performance measure p(h;A,, R,) is more appropriately replaced by its minimum value over §

and N; i.e., a better performance measure is

o, ;:')g sy P Ro),s (10)

which now gives a performance measure dependent only on the classes S and N and not on the specific charac-
teristics A, and R,. Ideally, we would like to find the filter for which the quantity of (10) achieves its maximum
value. That is, we would like to solve the problem

max a, &M p(hiA,, Ry). (11)

Such a filter has the best worst-case performance over the classes of allowable statistics, and thus its perfor-
mance will suffer the least possible performance degradation. Also, in similar design problems (see [1]), it turns
out that filters designed in this way preserve good (near-optimum) performance at nominal operating conditions
when S and N represent neighborhoods of some nominal operating point. Thus, the solution to (11) can be

termed a robust optical matched filter.

To seek solutions to the maximin robust design game of (11), we look for a saddlepoint of p(hiAs, Rp)

over HXSxN. Recall that (hg; A1, Ry) € HXSxN is a saddlepoint solution to (11) if it satisfies



o, Din WP ORiAs Ro) = phgidg, Ry) = max p(h; Ay, Ro). (12)

Note that the right-hand equality of (12) implies that hg is the optical matched filter (8) for the specific model
(A, Rp). The left-hand equality implies that hy achieves its worst-case SNR at the model (A;, Rp) for which it
is optimum. The quantity p(hg;Ay, Ry) is thus the worst-case SNR for the filter hg and is called the value of the

game (11). Concerning such solutions, we have the following result:

Lemma 1: Suppose S and N are convex, (Ar, Ry) €eSxV and hg is the optimum filter (8) for (AL, Rp).

Then (hg; Ap, Ry) is a saddlepoint for (11) if and only if the following inequality holds for all (A,, R,) e SXN :

2 < b, X> ~ <hg, Ap> ~ <hg, (A, + Rhp >2 0 . (13)
Proof: The proof of this result parallels that of Lemma 1 of [3], and will be omitted.

Lemma 1 characterizes saddlepoints of (11). To seek such solutions we introduce the following notion: A

pair (A , Ry) is said to be least favorable for SN if

<Ap, AL+RY) M > = a 21)2 N <Ay, AR A>. (14)

It follows easily from (11), (12), and (14) that (A , Ry )e SxN is least favorable for SXN if (hg;Ar , Ry) with hg

optimum for (A, Ry) is a saddlepoint solution to (11) (see [9]). We also have the following result:

Lemma 2: Suppose § and N are convex and (A; , R{)eSxVN. Then (A, , R;) is least favorable for SV if and
only if (13) holds for all (A,,R,) € SxN.
Proof: The proof parallels those of Lemmas 1 and 2 of {3}, and will be omitted.

Lemmas 1 and 2 imply that the triple (hg;Ap, Ry) with (A, ,R)eSXN and h, = (A+R)™A is a
saddlepoint solution to (11) i and only if (Ap , Ry) is least favorable for § and N. The usefulness of this result
lies in the fact that the search for a saddlepoint of (11) is reduced to a straightforward minimization problem of
the functional <A,,(A, + R)7'A> = j;r{ksz(t)/[ks(tyk,,(t)}}dt. On the other hand, Lemma 1 provides us with a
direct condition (13) which if satisfied guarantees the existence of a saddlepoint for (11). In the following sec-
tions, we use these results to find saddlepoints (hg;A , Ry) for specific uncertainty c-lasses r;nod;hng uncertamty

in the incident rate function and in the noise (dark current and thermal noise).
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IV. DESIGN OF ROBUST OPTICAL MATCHED FILTERS - SOLUTION METHODS

In this section we apply the general results of Section III to derive solution methods for the robust optical
matched ﬂltéring problem for two general types of uncertainty models. The models that we consider allow a
fairly general range of uncertainty behavior, and so should cover most types of uncertainty encountered in appli-

cations. Some specific solutions are discussed in Section V.
A. Uncertainty Based on Mean-Square Distortion.

| We consider first the case in which the noise (dark current and thermal noise) statistics as described by R,
are known to be given by, say, R.(t), and there is uncertainty only in the rate function of the incident light.
Such a situation arises in practice when the dark current and the thermal noise are fairly well-modeled while the
incident light, having passed through a distorting channel and been converted by the PD, is less well modeled.

In this case condition (13) reduces to

<hg(2 - hy), A, = A> 2 0, for all AEeS. . (15)
A good model for the rate function of the incident light is that it satisfies the condition

T

[ {wo—umzdt]* <A, (16)

where A, is a nominal rate function (for example, it ﬁight be a transmitted modulation waveform) and where A,
is a degree of possible distortion caused by nonideal effects in the channel and photodetector. In the formula-

tion introduced in the previous sections, we can write this uncertainty model as

S=(heH" | || 2] [24,) (17)
where || - || stands for the L,{0,T] norm defined by || a || = <a,a>" for a e 4.

To characterize the robust optical matched filter in this case, we define

A = A—AhR(2-hr)/ | | hp(2-hp) || (18)

where h;é(xxﬁﬁ(,)“‘k satisfies the equation
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Rohg = (1-hp)[A—Abg- (2-hg)/|| hp(2-hp)]]]. (19)
Then, if a solution to (19) exists we have the following.
Proposition 1: The triple (hg;AL,R,) is a saddlepoint solution to (11) for § of (17) and N = {R,}.

Proof: From (18) and (19) we have

<hr(2-hp) A—AL)> = <hr(2-hp)A—As> + A || hp(2-hy) |]. (20)

From the Schwarz Inequality, (18) and (19), we have

| <hr(Z-hR)A=Ao> | < || hp(2-hp) |- |1 A=2o ] S | by (2 - hp)] |4, , (1)

which together with (20), implies (15). Lemma 1 assures that (15) is sufficient for (hg:Ar,R,) to be a

saddlepoint for (11).

Equation (19), which gives the robust matched filter for our problem, can be solved iteratively. Iterative

solutions to related equations for the continuous-observations case have been treated in [10].

Next let us suppose alternatively that the incident rate function is completely known to be, say, A, and that

there is uncertainty about the noise model R,(t). In this case hg = (A, + R)™ A, and condition (13) reduces to
<hg,(RL - Rhg > 20, for all ReN. (22)

Suppose that the noise model is known only to satisfy a model analogous to (16); i.e.,

T
[ Ra@-R®Pdt]* < 4, 23)

where R, is a nominal noise model and A, is a degree of uncertainty placed on this nominal model. Then we

have a noise uncertainty class

N = (RieH"| |IR;R, [{<A,}. (24)

On defining

Ry = Ry+Ahd/ | |hd || (25)
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where th=(_X°+§L)“xo satisfies the equation

hg = A+Ro+ARY |[0d DA, (26)
we have the following when a solution to (26) exists.
Proposition 2: The triple (hg;A,,Ry) is a saddlepoint solution of (11) for the N of (24) and S = (A,}.

Proof: Through Lemma 1, (23) and (26) it is sufficient to show that

<hg,Ri-Rohg> = <hg,Ro-Robg>+4, | [hE || 20, @n

which is satisfied since

|<hr,R—R)he>| < |Ihg || [IRR, || < |[nd][A,. (28)

Again solutions to (27) must be found iteratively.

Now we may combine the results of Propositions 1 and 2 to give a solution for the robust optical matched
filter for the case in which both A, and R, are allowed to vary through classes S and N of the form (17) and
(24). In particular we note that it is straightforward to show that the conditions <hg(2-hg)A,—A;>20 (i.e., (15))
and <'ER,(RL—Rn)hR>20 (i.e., (23)) together imply (13). Thus, we may state the following result for simultaneous

uncertainty of the L, type.

Proposition 3: If a solution hy to the following equation exists

(1-hp)[A,~Ahg(2-he¥ | [he(2-hp) | ] = heRo+ABY | IBE]) (29)
then the triple (hg;A;,Rp) is a saddlepoint solution (13) for § and N of (17) and (24), where A; and R, are given
by (18) and (25), respectively.

Proof: Since Ay and R, are defined in (18) and (25), respectively, conditions (15) and (22) are satisfied and
therefore so is (13). Then the optimality of (29) follows from the fact that the condition hg = (AL+R)™AL is

equivalent to the equation (1~hg)AL = hgR..



13

B. Solutions Based on Results from Robust Hypothesis Testing.

In several other problems of robust signal processing it has been possible to find solutions by applying
results developed for analogous problems in robust hypothesis testing. This approach has been particularly use-
ful in the problems of filtering [11,12], prediction [12,13,14] and interpolation [15,16] of time series in which
uncertainties are defined in terms of power spectra of relevant signals and noise. It turns out that because of the
structure of the optical matched filtering problem this approach can also be applied here, even though its utility
in the conventional robust matched filtering problem has been limited.

To formulate this problem, we restrict attention to uncertainty classes in which the total power of all

members of the classes is fixed; i.e., we consider classes S and N for which the quantities

T oA
[ Aoa=pT (30)
and

T A
| Ra®dt=P,T , 31)

are constants. (This is not an unrealistic assumption since total energy is an easily estimated quantity.) Then,
noting that A, and R, are nonnegative functions, we can define two classes of probability density functions

(pdf’s) on [0,T] via

Ps = {p, | pi(t) = L(O)/P,T, O<I<T, A€§) (32)

Py = {py | Pa®) = Ry()/P,T, 0<t<T, RyeN] (33)
Note that the elements of (32) and (33) are pdf’s because of (30) and (31).

We now consider the following composite statistical hypothesis testing problem about a random variable X

taking values in {0,T]

Hy : X has pdf p, € Py
versus 34)

H; : X has pdf p, € Ps.

This problem is an example of a robust hypothesis testing problem as studied by Huber in [17]. A robust test
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for (34) can, for many uncertainty classes of interest, be obtained by finding certain least-favorable pdf’s
(q5.9v)€ PsxPy. These pdf’s have the property that the ratio qg(x)/qp{x) is stochastically largest over Py at qy
and it is stochastically smallest over Pg at q;. This implies, among other things, that the pair (g5, qy) minimizes

over PgxPy all functionals of the form

T
[ COOP)p0dt, PupIe PPy (35)

with C concave. (see, e.g., [12,18,19]).
Returning to the robust optical matched filtering problem for § and N satisfying (30) and (31), we know

from Lemma 2 that a pair (A, R )e SXN together with its optimal filter gives a saddlepoint for (11) if and only if

(AL.Ry) maximizes

T
§ Ny o+R01d (36)

over the uncertainty classes § and N. Note that (36) can be rewritten in the form (35), where

ps(t) = A,()/P,T, pa(t) = R,(t)/P,T, and C is the concave function

P21%x?

Cx) = ppal

,» x 20. 37

Thus we conclude that, if (qs5,qv)e PPy is least favorable for the hypothesis test of (34), then

AL(t) = P,Tqgt) , 0<t<T (3%)
and

Ri(t) = P,Tgp(t) , O<t<T (39

are the least favorable statistics for the robust optical matched filtering problem with the uncertainty models of §
and N. We summarize this result in the following.

Proposition 4: Suppose that S and N satisfy the power constraints (30) and (31) and that there exists a pair of
least-favorable pdf’s (qs, qv) € PsxPy. Then the least-favorable statistics for optical matched filtering in SXV are

given by (38) and (39).
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The utility of the above result lies in the fact that least-favorable pairs of pdf’s are known for many uncer-
tainty models that can be adapted easily to the optical communications problem. A number of such solutions
are found in [17,20,21,22], and one of the most useful ones is discussed in the following section. It should be
noted that the reason this approach works here is because the statistical quantities A, and R, are real nonnegative
functions, and the constraints (30) and (31) are realistic physical constraints. These factors are not present in the
conventional matched filtering problem since the signal quantity there is possibly complex and negative, and

also since its energy is proportional to the integral of its squared value.
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V. AN EXAMPLE OF ROBUST OPTICAL MATCHED FILTER DESIGN

In this section we illustrate the approach outlined in Section IV B with a specific example of robust opti-
cal matched filter design. We assume the normalization (30) and (31). Many uncertainly models other than the
one given here can be treated in an analogous manner, and a variety of examples is found in the references
given above. In Section A we give the general form of the robust matched filter for our example model, and in

Section B we explore the performance in a specific case numerically.
A. Robust Filters for e-contamination Models

Suppose the functions specifying the statistical model (i.e., A, and R,), are known to lic in classes of the

following form:

A1) = (1-es) A(tHEsA(t) , OsIST 40

and

Ry() = (1-en)Ro(H+enR (1) 0<i<T, @én

where A, and R, represent a known, nominal model, A and R are arbitrary nonnegative functions "contaminat-
ing" the nominal model, and where gge [0,1] and exe[0,1] are constants that quantify the degree of uncertainty
placed on the nominal model by the designer. This type of model is known as an g-contamination model or ¢-
mixture model, and similar models for other statistical quantities have been used quite frequently throughout the
study of robust statistics and signal processing (see the survey [1] for many examples). This is the most com-

monly used model in this context.

Using the approach of Section IV B, we can obtain the least-favorable model (A, Rp) for this case from
the least favorables for the analogous hypothesis testing problem given by Huber in [17]. In particular, it fol-

lows straightforwardly from [17] and Proposition 4 that the least-favorables are

(-eshoD),  if A(D)Sa" R, (D)

1) = ,
ml (1-eg)Ro(Da”, if Ag()>a"Ro(®)

42)
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(1-en)Ro(D),  if Aq(D2aR(1)

R = ) )
(1-enAM)/a’, if A(t)<aRo()

43)

where a’<a” are constants chosen (uniquely) so that A; and Ry satisfy the energy constraints.

From Lemma 2, the robust filter for the signal and noise model of (40) and (41) is given by

he(t) = AL(T-t)/[AL(T-1) + Ry(T-0)], 0<t<T .

The form of this filter is particularly interesting for the case of €5 = €y, for which we have

b”,  if hy(t)<d’
hg(t) = {ho(), if b'<hy(O<b” 44)
b”, if ho(t)>b”

where hy(t) is the filter matched to the nominal model, i.e.,

ho(t) = A(T-t)/ [A(T-tHR(T-1)], 0<I<T , (43)

and where b’ = a’/(a’+1) and b” = a"/(a”+1). Thus, we see from (44) that the robust filter hg limits the response
of the nominal filter h, for those values of t for which h, is very small or very large. The limiting from above
desensitizes the filter to unexpectedly large noise contributions in regions where they would not be expected
under the nominal model, but where they may very likely occur due to the contamination. The limiting of the
impulse response from below prevents the filter from missing signal counts that might occur rarely in the nomi-
nal model but that are more likely under the uncertainty. (This might occur, for example, if the receiver timing
were slightly off). A similar interpretation can be given to hy for general g5 and €y, in which the above two

effects are more or less pronounced depending on the relative values of €5 and ey.

Note also that for any value of g5 and ey, if the original nominal filter was an integrate-and-dump (i.e.,
constant impulse response) type filter, then the robust filter is also of this type, but with possibly different gain.
(This follows from the fact that A, is proportional to R, in this case, which implies that A; will be proportional

to R;.) Since an overall gain factor is irrelevant in the detection problem (i.e., we need only adjust the decision
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threshold if the gain is changed), we see that for this particular case the nominal filter is itself robust against e-
contamination. This is a useful result since many systems operate with a nominally rectangular pulse waveform

and under the assumptions of constant dark current rate and thermal noise level. Under these conditions the con-

ventional integrate-and-dump receiver is robust against arbitrary €-contamination.
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B. Performance Analysis of a Robust Optical Matched Filter

The above example illustrates the structure of robust optical matched filters for one useful model for sta-
tistical uncertainty. In this section we analyze the design and performance of the robust matched filter for a
specific example of this model. Recall that the objective of our design is to provide near-optimal performance
under nominal operating conditions and to guard against undesirable performance degradion at operating points
away from nominal. The following numerical example illustrates the effectiveness of our design method in

achieving these goals.

Consider the situation in which we have a known constant dark current/thermal noise level,
Ry(t) = P,,0<t<T, and in which, nominally, we have a raised-cosine amplitude modulation on the optical source

so that the nominal signal rate is given by

Ao(t) = P[1—cos (2nv/T)], O<t<T. @é6)

The filter matched to the nominal model is thus (note that cos (2r(T-t)/T) = cos (2rt'T))

P,[1—cos (2=t/T)]
1) = B f1-cos QT+, " - “n
The nominal signal rate (46) and matched filter (47) are depicted in Figs. 2 and 3, respectively.

We now assume that the actual signal rate is known only to lie in an e-contamination neighborhood (40)

of the nominal rate (46). From (42) we see that the least-favorable signal rate is given by

AL = max(g’, (1-es)Ao(D)}, 0<I<T, (48)

with g’ = (1-¢,)P,/a”, where a” is from (42). This least-favorable signal rate is depicted in Fig. 4. Note that, as

€5 increases, the least-favorable signal rate becomes more like the background noise rate.

The corresponding robust filter impulse response, hr(t) = AL (T-t)/[AL(T-t)+P,], is depicted in Fig. 5. The

T
parameter g’ in (48) can be determined from the requirement that J; AL (t)dt = P,T. Referring to Fig. 4, we have

T | T2
PT = [ M()dt = 2¢'f dt+2P,(1-e5)| [1—cos mvT)}dt, (49)
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where t’ is as depicted in Fig. 4. Equation (49) reduces straightforwardly to

(1-gg) = 1+-7l;sin(1rx')—x’cos "), (50)

A=2t'/T is the fraction of the observation interval for which Ay is constant. Equation (50) can be solved

where x
for x” when €5 is specified. Note that a value of x” = 1 corresponds to a degree of contamination gg=%, and

thus, the least favorable signal rate for €= in this model is constant. Figure 6 shows x” as a function of &.

To examine the performance of the robust filter hg, we are interested in three quantities
pChg; AL, R,), plhg; Ao, Ro), and p(h,; A,, Ry). The first of these quantities is the worst-case performance of the
robust filter (i.e., the value of the maximin game), the second is the performance of the robust filter under nomi-
nal conditions, and the third is the performance of the nominal filter under nominal conditions. The first of

these three quantities, for example, is given by

T
p(he: Az, R = [ AZO/AL(+R(D)]de

1 2
= P (Yt (e, ;flllfc"-o‘-’:—(fn%?%l—]dx], 51)

where h’=g’/P, and r = P/P,. Since h’ and x” depend only on €5, we see from (51) that the saddle value of (11)
for this case depends only on these quantities: P,T, the average number of signal counts per observation interval;
€s, the fraction of uncertainty in the model; and r, the ratio of the signal level to the noise level - a measure of
input signal-to-noise ratio. Similarly, the other two performance measures of interest can be shown straightfor-
wardly to depend only on these three guantities.

Figures 7 and 8 show the behavior of the robust filter as a function of input signal-to-noise ratio for values

of &g of 0.1 and 0.3, respectively. The quantity P,T is set equal to 100 in these figures. Note that the maximin

filter does indeed achieve the desired performance goals in this case.
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Figure 8: Nominal Performance of the Nominal and Robust Filters and
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V1. SUMMARY

In this paper, we have considered the problem of designing optimum post-detection filters for optical
receivers operating under uncertain statistical conditions. We have given a general formulation of this problem
in terms of a maximin game on the output SNR of the receiving filter. In Section III we have shown that the
corresponding robust filter is the optical matched filter for the least-favorable statistics, a result analogous to
results for robust design in other statistical signal processing problems. Two general solution techniques have
been discussed in Section IV, with the solution for a specific uncertainty model being given in Section V. The
numerical example of Section V illustrates the effectiveness of the maximin filter in achieving the design goals
of near-optimum performance under nominal conditions and acceptable performance under worst-case condi-

tions.
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