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Antenna-Diversity-Assisted Genetic-Algorithm-Based Multiuser
Detection Schemes for Synchronous CDMA Systems

K. Yen and L. Hanzo

Abstract—A spatial diversity reception assisted multiuser
code-division multiple-access detector based on genetic algorithms
(GAs) is proposed. Two different GA-based individual-selection
strategies are considered. In our first approach, the so-called
individuals of the GA are selected for further exploitation, based
purely on the sum of their corresponding figures of merit evaluated
for the individual antennas. According to our second strategy, the
GA’s individuals are selected based on the concept of the so-called
Pareto optimality, which uses the information from the individual
antennas independently. Computer simulations showed that the
GAs employing the latter strategy achieve a lower bit-error rate
as compared to the former strategy. For a 15-user GA-assisted
system employing a spreading factor of 31, a complexity reduction
factor of 81 was achieved at a performance identical to that of the
optimum multiuser detector using full search.

Index Terms—Antenna diversity, genetic algorithms, multiuser
detection, synchronous code-division multiple access (CDMA).

I. INTRODUCTION

I T IS WELL KNOWN that the optimum full-search-based
multiuser detector proposed by Verdú [1] has a compu-

tational complexity that is exponentially increasing with the
number of users. Hence, it is impractical to implement. This
limitation led to numerous so-called suboptimal multiuser
detection proposals, highlighted by Verdú in his monograph
[2] and in the references therein. The suboptimum detectors
sacrifice performance for the sake of a reduced complexity.

Multiuser detection based on genetic algorithms (GAs) [3],
[4] has been proposed by Junttiet al. [5] and Wanget al. [6],
where the analysis was based on the additive white Gaussian
noise (AWGN) channel without using diversity techniques. The
proposal by Ergünet al. [7] utilized the GA as the first stage of
a multistage multiuser detector, in order to provide good initial
guesses for the subsequent stages. Its employment in Rayleigh
fading channels was considered by Yenet al. [8], [9] in the ab-
sence of diversity techniques.

In this letter, we present a novel approach to the problem of
multiuser detection in direct sequence code-division multiple
access (DS/CDMA) over Rayleigh fading channels assisted by
antenna diversity [10] based on a GA innovation. The antennas
are assumed to be sufficiently separated such that the received
signals at the antennas are faded independently, resulting in an
independent log-likelihood function (LLF) [1] for each antenna.
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This poses a problem to the optimization process due to the fact
that while a specific -bit vector representing the current bit of
the users supported may be deemed optimum on the basis of
the LLF of one antenna, the same bit sequence may not neces-
sarily be deemed optimum in terms of the LLF of the other an-
tenna. In order to resolve this dilemma, two different GA-based
individual-selection strategies are considered. In our first ap-
proach, the individuals of the GA [3], [4] representing the-bit
vector of the users are selected for further exploitation, based
purely on the sum of their corresponding LLFs or figures of
merit based on the two antennas. This approach is analogous to
invoking the conventional LLF for diversity reception [11]. Ac-
cording to our second strategy, the individuals associated with
the GA are selected based on the concept of the so-called Pareto
optimality [3], which uses the information from the antennas
independently.

This paper is organized as follows. Section II describes our
synchronous CDMA system communicating over uncorrelated
nonfrequency-selective fading channels using two antennas.
Section III describes the GAs used to implement our proposed
detector in conjunction with diversity reception. Our simulation
results and complexity issues are presented in Section IV, while
Section V concludes the letter.

II. SYSTEM DESCRIPTION

We consider a -user symbol-synchronous CDMA system,
where the receiver, shown in Fig. 1, consists of two antennas
separated spatially, such that the signals received are statisti-
cally independent. At each antenna, a bank of filters matched to
the corresponding set of the users’ signature sequences is sam-
pled at the end of each bit interval. Hence, the outputof the
matched filter bank at theth diversity antenna is given by the
vector

(1)

where is the cross-correlation matrix
of the users’ signature sequences,
is the signature sequence vector for the users, and

is the diagonal matrix of
the received bit energy for the users. Furthermore,

is the channel impulse
response (CIR) matrix describing the frequency-nonselective
slowly Rayleigh fading channel of each of the users,

is the current transmitted bit vector of
the users, and is the zero-mean complex additive white
Gaussian noise (AWGN) with independent real and imaginary
components, each having a double-sided power spectral density
of .
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Fig. 1. Block diagram of the receiver model.

Based on the observation vector given in (1), it can be
shown that the LLF for theth antenna is given by [12]

(2)

The decision rule for the optimum multiuser detector associated
with the th antenna is to choose the bit vector, which maxi-
mizes the LLF given in (2). Hence, the estimated transmitted bit
vector of the users is given by

(3)

Since the channel characteristics for each antenna are statisti-
cally independent, we have typically for the
LLFs of the two antennas. In certain scenarios, such as during
deep fades, the above inequality implies that

(4)

or vice versa. This creates a so-called multiobjective optimiza-
tion problem, since the optimization of both LLFs may lead to
two possible -bit solutions. Nevertheless, for optimum detec-
tion, the LLFs corresponding to the two diversity antennas are
combined according to [11]

(5)

where
, , while

and denotes a Hermitian
matrix. The decision rule is then to find the estimated trans-
mitted bit vector that maximizes in (5).

In the next section, we will highlight the GA developed for
multiuser detection with emphasis on our individual-selection
strategy contrived for detecting the users’ transmitted bits.

III. GA-B ASED MULTIUSER DETECTION WITH

DIVERSITY RECEPTION

GAs [3], [4] can be invoked in robust global search and op-
timization procedures that are well suited for solving complex
optimization problems. In this letter, we will employ GAs in
order to detect the estimated transmitted bit vector, where the
required objective function is defined by the LLF of (2) for the
two antennas.

GAs commence their search for the optimum-bit solution
at the so-called th generation by randomly creating

legitimate -bit solutions, or so-calledindividuals in
GA parlance, where theth individual is expressed here as

. The mechanism behind efficient
GA-based optimization is to select potential-bit candidate
individuals from these legitimate individuals and then exploit
these selected individuals in the subsequent generation, in order
to find the optimal -bit solution. The selection of the -bit
individuals is vital in determining the quality of optimization by
the GA [14]. Hence, two different individual-selection strate-
gies are evaluated here, in order to determine which individuals
of a -bit population are selected for future exploitation.

In our first strategy, each -bit individual is associated with a

fitness value denoted as , which is a function
of the LLF of (5). Individuals having the highest fitness values
in the population, where , are then selected and
placed in the so-calledmating pool. Hence, the selection of in-
dividuals in the GA-aided optimization employing this strategy
is based on the conventional LLF-assisted diversity reception of
(5) [11].

Our second individual-selection strategy of the GA-as-
sisted multiuser detection is based on the concept of
the so-called Pareto optimality [3]. This strategy favors
the so-called nondominated individuals and ignores the
so-called dominated individuals. Here, theth -bit in-
dividual is associated with three fitness values denoted as

, where the first two
fitness values are functions of the LLF of (2), while the third
fitness value is a function of the LLF of (5). Then theth -bit
individual is considered to be dominated by theth individual
iff [13]

(6)

If an individual is not dominated in the sense of (6) by any
other -bit individuals in the population, then by definition
it is considered to be nondominated.According to our second
individual-selection strategy, all the nondominated-bit in-
dividuals are selected and placed in the mating pool. Hence,
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TABLE I
COMPUTATIONAL COMPLEXITY COMPARISON IN TERMS OF THE NUMBER OF MULTIPLICATIONS AND ADDITIONS

INV DENOTES THECOMPUTATION FOR THEINVERSECORRELATION MATRIX

the value of 1 in this case is not fixed, since it
depends on the number of nondominated individuals. Observe
that the latter strategy uses the LLF-based figure of merit in-
formation from both antennas independently in order to decide
which individuals are placed in the mating pool. By contrast, our
former -bit individual-selection strategy based its decisions
on a single entity by combining the antenna-specific figures of
merit according to (5). We shall denote the-bit individuals in

the mating pool as for .
Two -bit individuals in the mating pool are then selected

asparentsbased on their corresponding figure of merit
in (5) according to a probabilistic function known assigma
scaling [4]. Under sigma scaling, the parents-selection proba-

bility of an individual is a function of its own fitness in
the sense of (5) as well as that of the mating pool’s mean fitness
and its associated standard deviation, as formulated below [4]

if
if

(7)

where

(8)

The antipodal bits of the -bit parent vectors are then ex-
changed using the so-calleduniform crossover[15] process,
in order to produce two -bit offspring. Uniform crossover
invokes a so-calledcrossover mask, which is a sequence
consisting of randomly generated ones and zeros. Antipodal
bits are exchanged between the pair of parents at locations
corresponding to a one in the crossover mask. The selection
of -bit parents from the mating pool is repeated, until a new
population of offspring is produced in order to perform the
crossover process.

Themutationprocess refers to the alteration of the value of
an antipodal bit in the offspring from 1 to 1 or vice versa,
with a probability . Finally, underelitism [4], we identify
the lowest-merit -bit offspring in the population and replace
it with the highest-merit individual from the mating pool. This
will ensure that the highest-merit individual is propagated
throughout the evolution process.

The GA terminates after number of generations.The
individual corresponding to the highest scalar fitness value in

1If there is only one nondominated individual in the current population be-
fore the termination criteria is met, the next nondominated individuals will be
selected, so that there will be more than one individual in the mating pool.

Fig. 2. BER performance of the GA-based multiuser detector employing
the individual-selection strategies of S1 and S2 with population sizes of
P = 20; 30;40 using binary random signature sequences of length 31 and
supportingK = 10 andK = 15 users. The average received energy at the
antennas was assumed to be equal, i.e.,E[� ] = E[� ] = 0:5. The GA
parameters used are the probability of mutation specified byp = 0:1 and
p = 0:07 for K = 10 andK = 15, respectively, and the evolution was
terminated afterY = 10 generations.

(5) is the detected number of users’ bit vector associated with
the bit interval.

A. Complexity Issues

Table I compares the computational complexity of our pro-
posed multiuser detector against several conventional multiuser
detectors, namely, that of the single-user correlator [12], the
decorrelator [1], and the optimum multiuser detector [1], in
terms of the number of multiplications and additions required
to detect bits for a single-antenna scenario. The number of
computations involved in finding the inverse matrix for the
decorrelator is on the order of . In contrast to the decorrelator
and the optimum multiuser detector, we can clearly see that the
complexity of the GA-based multiuser detector is indirectly
related to . We have seen that our proposed GA-based
detector is capable of achieving a near-optimum performance
in Fig. 2 up to a certain target bit-error rate (BER), depending
on the values of and for a given number of users. Hence,
the values of and can be adaptively selected, in order to
find a tradeoff between the computational complexity and the
performance. Furthermore, the results shown in Table I for the
GA-based multiuser detector are based on computing the LLF
for every -bit individual in the population at every generation.
Hence, the fitness of some individuals is computed more than
once. If the detector has sufficient memory, then these repeated
computations can be avoided. Our simulations showed that on
average, the total number of LLF computations for a single
antenna is .
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IV. SIMULATION RESULTS

In this section, computer simulations are presented based on
evaluating the BER performance of the GA-based multiuser de-
tector employing the above two GA-based individual-selection
strategies highlighted in the previous section. The strategy based
on (5), i.e., on the sum of the figures of merit from both antennas,
will be denoted as S1, while the strategy based on the Pareto op-
timality of (6) will be denoted as S2. The processing gain of the
signature sequences was , and the sequences were ran-
domly generated. Perfect power control and CIR estimation was
assumed.

Fig. 2 shows the BER performance against the average
signal-to-noise ratio (SNR) for the GA-based multiuser
detector employing individual-selection strategy S1 and S2
with equal average received energy at the two antennas, i.e.,
for . The single-user bound, which
assumed equal average received energy at both antennas, was
computed using the following equation [12]:

(9)

For the sake of comparison, the BER performance of a decor-
relator and the conventional single-user matched filter is also
shown. An error floor is observed for the results shown in the
figure. This is due to the limitations of the GA associated with
the particular set of and values, not due to the multiple
access interference (MAI). It is seen in Fig. 2 that the BER per-
formance for improved when the population size was
increased from to . However, this also in-
creased the computational complexity. Hence, the value of
can be selected, in order to find a tradeoff between computa-
tional complexity and performance. More importantly, we also
see from Fig. 2 that the GA employing S2 performs better, ex-
hibiting a lower error floor than S1. Nevertheless, both strate-
gies were capable of matching the single-user bound perfor-
mance up to dB and dB for and

, respectively. Furthermore, a gain of about 2 dB can be
achieved by the GA-based multiuser detector over the decorre-
lator, before encountering an error floor. When the number of
users is increased, the near-optimum single-user performance
can be maintained by increasing the population size. This is
evident in Fig. 2, where a near-optimum performance is main-
tained up to SNR dB for , when is increased to
40. Although not explicitly shown here, we found that a similar
performance can be achieved for when . Re-
ducing from 40 to 25 resulted in a complexity reduction by a
factor of , when supporting users. On the
other hand, the complexity of the conventional optimum mul-
tiuser detector would be a factor of higher for
than for .

Fig. 3 shows the BER performance of the proposed detector
employing strategy S2 at 20 dB for different number of users

and for different population sizes. We can clearly see that
when increases, must be increased in order to maintain
near-single-user performance. As seen in Fig. 3, the plateau area
at BER of about is only achieved for sufficiently high
values. Furthermore, the required increase inis nonlinearly

Fig. 3. BER performance of the GA-based multiuser detector employing
the individual-selection strategies of S2 with various population sizes and
number of users, using binary random signature sequences of length 31.
The average received energy at the antennas was assumed to be equal, i.e.,
E[� ] = E[� ] = 0:5. The GA parameters used are the probability
of mutation specified byp = 0:1 and the evolution was terminated after
Y = 10 generations.

Fig. 4. Relative near–far resistence of the GA-based detector employing
individual-selection strategies S1 and S2 with population sizesP = 20; 30
using binary random signature sequences of length 31 at�
 = 16 dB and
supportingK = 10 users. The average received energy at the antennas were
assumed to be equal. The GA parameters used are the probability of mutation
specified byp = 0:1 and the evolution was terminated afterY = 10
generations.

proportional to the increase in . Nevertheless, the increase in
that led to a higher computational complexity is substantially

lower than the exponential increase in the complexity required
by the optimum multiuser detector [1].

Finally, the near–far resistence of the GA-based multiuser
detector is shown in Fig. 4 in terms of the desired user. The
average energy-to-noise ratio of the desired user is set to
16 dB, while the energies of all other users were varied in the
range of 0–12 dB higher than that of the desired user. We can
see that at a population size of , the BER performance
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deterioriates slightly, as the interfering users’ energy becomes
higher relative to the desired user. On the other hand, the BER
performance for remains almost the same, even when
the interfering users’ energy is 10-dB higher, than that of the
reference user.

V. CONCLUSION

In conclusion, we developed a suboptimal multiuser detector
based on GAs in order to circumvent the complexity problem
faced by the optimum multiuser detector [1]. To mitigate the
effects of fading, dual-antenna diversity techniques were used.
Two individual-selection strategies were highlighted for the
GAs. In our first solution in (5), the mating pool was formed
based on the sum of the LLFs derived from the diversity
antennas, and we had a fixed mating pool size. According
to our second strategy in (6), the LLF statistics were treated
independently, in order to select the nondominated individuals
to form the mating pool. Hence, the mating pool size was not
fixed. We have shown that GAs employing the latter strategy
always exhibit a lower BER compared to those employing the
former strategy. We have also shown that the BER performance
can be improved by increasing the population size. While the
complexity of the GA-based multiuser detector is higher than
that of the decorrelator used for our comparison, the proposed
scheme is capable of achieving a near-optimum performance
at a lower complexity as compared to the optimum multiuser
detector [1]. Our future work will attempt to extend these
advances to a tree search-based multiuser detector, as well as
to invoking space–time coding.
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