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Abstract—The signal-to-interference-plus-noise-ratio perfor- in this paper. The performance analysis of various multistage
mance of the multistage linear parallel and successive interference interference cancellers has been conducted by researchers for
cancellers (LPIC and LSIC) in a long-code code-division mul- long-code and short-code systems [4]-[9]. The analysis carried

tiple-access system is analyzed with a graphic approach in this outin previous work was either under some invalid assumotions
paper. The decision statistic is modeled as a Gaussian random utin previous work w. ! u invall umpt

variable, whose mean and variance can be expressed as functions of4], [, [8], or for only one stage of interference cancellation
moments ofR for the LPIC and L for the LSIC, respectively, where  [6], [7], [9]. In the former case, the invalid assumptions include:

R isthe correlation matrix of signature sequences andl isthe strict  cancelled interferences from different users are uncorrelated;
lower triangular part of R. Since the complexity of calculating - 5q cancelled interferences and Gaussian noise are uncorrelated

these moments increases rapidly with the growth of the stage index, . . o .
a graphical representation of moments is developed to facilitate [7]. Inthe latter case, since the simplifying assumptions were not

the computation. Propositions are presented to relate the moment €mployed, the signal model became so complex that most pre-
calculation problem to several well-known problems in graph Vious analysis was performed for one interference cancellation

theory, i.e., the coloring, the graph decomposition, the biconnected stage. In particular, the formula of the conditional mean of the
component finding, and the Euler tour problems. It is shown that  gecisjon statistic was derived up to the second stage of the PIC
the derived analytic results match well with simulation results. o voiver in [6]. The conditional variance of the decision statistic
Index Terms—Code-division multiple access (CDMA), linear \yas also calculated up to the second stage in [7] for the PIC.
parallel |nterference cancellatlon_(LPIC), Ilne_ar successive inter- In this paper, the correlation effect among all terms in the
ference cancellation (LSIC), multiuser detection. . . : . . :
received signal is carefully examined via matrix algebra, and the
closed-form expressions for the conditional mean and variance
I. INTRODUCTION of each user’s decision statistic in each stage are derived accord-

EVERAL multiuser detection algorithms [1] have beetiun.gly' The performance of LPIC and LSI.C receivers d‘?pe”ds on
Sproposed to address the multiple-access interference (MR' h-orqler mo”?e”ts .(R andL, respectlvely, wher&_{ is the
problem and the near—far effect in a direct-sequence code-d rrelation matrix of signature sequences hnslthe strict lower

sion multiple-access (DS-CDMA) system in the past deca gangular part ofR. In this paper, propositions are presented

Among them, the parallel interference cancellation (PIC) [ relaie the moment calcu]atlon problem to fou_r well-known
and the successive interference cancellation (SIC) [3] sche égblems in graph theory_, 1€, the vertex coloring, the Euler
have received much attention recently due to the feasibili# ur, the graph decomposition, and the biconnected component
of their practical implementation. The basic idea is to adopt ding problems. Consequently, graph theory can be employed

matched-filter bank to estimate transmitted signals of intel calculate high-order momentsBiandL to study the perfor-

fering users. The estimated interferences are then subtracteg;N ce of LPIC and LSIC receivers. Furthermore, even though

parallel or serially from the received signal. This procedure ¢ ° prope_rtles of LPIC and LSIC receivers are understood
be repeated several times to yield a satisfactory result. 0 a certain degree today, our research provides a complete

The performance of the multistage linear PIC (LPIC) an uantitative study of the signal-to-interference-plus-noise ratio

SIC (LSIC) detectors in long-code CDMA systems is analyz INR) performancg of LPIC and LSIC. receivers with an
arbitrary number of interference cancellation stages.

The rest of the paper is organized as follows. The system
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Il. SYSTEM MODEL I1l. CALCULATION OF CONDITIONAL MEAN AND VARIANCE

Let us consider a synchronous DS-CDMA system with By assuming the equakiori probability ofby, i.e.,Pr(by =
users. For théth user, a binary data symbal, € {+1,—-1}, 1) =Pr(by = —1) = 0.5, the output SINR of usek at themth
with the symbol duratiori” is spread by the binary randomstage,SINRﬁ), x € {p, s}, is given by
signature rectangular waveform(¢) with chip durationT.., ' E2( 7™
spreading ratidvV = 7'/T., and the amplitude of;(¢) equal to SINR™) — (2 1x] ) ©)
++/2/T. The spread signal is modulated by a carrier and then ok Var[Z;?;)lbk]
transmmgd over a wireless channel. The received signal at thg, goal of this section is to obtain the conditional mean
base station can be expressed as and variance of decision statistic, i.eE[Z;f',?|bk] and

K Var[ZX’,z)|bk], for arbitrarym, k, andx € {p, s}.

t) = E;b;a;(t) cos(wet + 6;) +n(t
rlt) = 3 VEbieu(t)cos(uct +00)+ n(0) A LPIC
) The recursion in (1) can be expressed as a one-shot matrix
where E; and¢; are the received energy per symbol and thg;e,
random carrier phase of userespectively, and(t) isthe addi- 9 =11 (1)
tive white Gaussian noise (AWGN) with the single-sided powefr =~ = I+@T-R)+(I-R)’+--+(I-R)"]z

spectral densityVo. Itis assumed throughout this paper thatuser = F{™z{! (4)

k is the user of interest. (m) m i1 -1
(m) (m) . - hereF,” = Y (I-R) "' =I-(I-R)"JR™ =
LetZ, andZ, ;" be the decision statistics of the LPIC gncg_l[l —(I—R)™]. By (4), we have the conditional mean and
LSIC receivers, respectively, of uskrat themth stage. Simi- variance of2™ as shown in (5) at the bottom of the page
larly, we usez{™ andz{™ to denote the decision statistic vec- Pk page.

tors of the LPIC and LSIC receivers, respectively, at where we h(z:\l/)e .
{X = Eg,[(R=D™)ii]

stage, i.e.zl™ = [Zf:{) e Zi’f}()]T, x € {p, s}. The recursive
relations of the LPIC and LSIC are given by [10], [11] Yp(f,?) =Eg, [(R-=I)"W?(R - 1)) ]

(m) W (m—1) Since each componentBfis a random variable of signature se-
z,") =z, +(I-R)z, , (LPIC) (1) quence crosscorrelation and carrier phase differeﬁg;g,) and
Yp(’,’j) are obtained by averaging over these two random variable

(6)

and sets. Detailed derivations of (5), (6), and the results presented in
T+ =y Section 1I-B can be found in [12].
Sm B ’ m— (2)
{ I+L)z™ +L7z{" ™V =y, m > 1, (LSIC) B. LSIC

. . . . . . By definingM = (I+L)~'LT, the recursion in (2) leads to
wherel is the identity matrixR; ; is equal tacos ; ;p; ; with a one-shot matrix filter [11]

8; ; = 6;—0; andp, ; € [—1, 1] being the normalized crosscor- 1
relation ofa;(t) anda,;(t), L is the strict lower triangular part of (m) _ CM)I+ L)1y — F™ 7
R, and the superscrift denotes the matrix transpose operator. “s Z( JI+L)"y <Y %

i=0
The first-stage decision statistic vecmﬁ) in (1) andy in (2)

whereF(™ = S (-M){(I+L)~! = [I - (-M)™]R",

are given b
v y From (7), we have (8), as shown at the bottom of the page, where
7 =y =RWb+n XU = o [(M™)el,
Y = B (M W2N™) ] ©)

whereW = diag{\/E1-~~\/EK}, b = [b1~~-bK]T, n = (i,m) i Clntm
[é1---€k]T, and¢; is the AWGN output at the uséis matched Vor " = Eo o (M(T+L)7 N"™)j 1]
filter. withN = M.

E[Z o] = VErbi[l — (-1)" X[
VarlZ0 o] = (82) SSPL_1)ix© — (1 x4y _ (JErx ) ©)
E‘LI‘[ p,k | k] ( 2 )Z’L=O ( ) [ p,k ( ) p,k ]+ p,k k p,k
E1Z0bx] = v/Exb [1 - (—1)mX§f,§>] o
i i, m i,m m m 2
VarlZP I = (5) S5 OIS - (omv ST+ v Y - (VEXTR)
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As given in (5) and (8), we note tth[Zi’f,ﬂbk] and
Var[ZifZ,)|bk], x € {p,s}, are determined by the moments of J
matrices composed bR — I), W, M, N, and(I + L)~! as / \ / \
presented in (6) and (9).

In the following, we useX;f’;) gndXs(:Z) as examples to iI—. t to, 4 s
lustrate our strategy in computing their values. By expandir
matrix muItipIications,XI()",;) can be written as t t] t

K K K 1 1
XW=3"% 3 BR-Diy(R-T),, @ (b)
ti=1t=1 trm_1=1 t, t,
X (R‘ - I)twn—27tnl—1 (R - I)t,,1717k]
K K K t, t, t)ts
= Z Z e Z E [cos .+, cosby, 4, -
t1=1 to=1 tm—1=1 ]
t1#£k taFty tm—1Ftm—2,k 1
X cos O, k) E [prt it Pto_y k] - (10) | Lt,
R
Similarly, XS(Z;) can be expressed as t1():03_—() 4
) K K K s
X = Z Z Z E[My ¢, My, 4, - -

(©)
Fig.1. Graphinterpretations 6f'"; andY,"’}". (a) Graphical representation
of X;:’;_). (b) Graphical representation Mp(,’z‘”. (c) Four evolved graphs of

ti=1t>=1 tym_1=1

My, ¢ th,l,k]- (11)

m—1

Since L is a strict lower triangular matrix(I + L)~! =
Zfi‘ol(—L)i and the(r, s)th element iM can be given as

K-1

M, = 3 (~D(ELT),.,
i=0
K-1 K K

[
>
™

K
’ E : LT7j1le;jz T

=0 j1=172=1 Ji=1
T
X Lj771,.1 Lji,s
K-1 K K K
= (=1) § § § (Prji Pir s " Piis,s)
i=0 ji=1 jo=1 ji=1
J1<r j2<j1 Ji<ji—1
Ji<s

X (cos B, j, cosbj, j,---cosbj, ). (12)

By plugging (12) into (11), we obtain the expression)qu‘",z)

in terms ofp; ;'s andcos 6, ;'s. ’
Thus, we observe that the Computation)qﬁj) requires the

grouping of indexes;’s according to index values and the cal

culation of the expected cosine and crosscorrelation terms

each grouping. FOKS(TZ), besides grouping df’'s and expec-

4
X

An edge with two end vertices andv is denoted byu, v). A
directed grapfé = (V, A) consists of a finite set’ of ver-
tices and a setl of ordered pairs of vertices called arcs. An
arc fromu to v, whereu,v € V, is denoted by(u, v). Exam-
ples of undirected and directed graphs are shown in Figs. 1(a)
and 2(a), respectively. For definitions of other terminologies in
graph theory, we refer to [13].

For simplicity, we useyraphfor an undirected graph ardi-
graph for a directed graph throughout the paper. Graphs and
digraphs provide excellent tools for the analysis of LPIC and
LSIC receivers, respectively, as discussed below.

A. LPIC

The two graphs in Fig. 1(a) and (b) are the graphical represen-
tations of X ]S",z) ande(’Z‘), respectively, where except for vertex
1, the remaining vertices; , to, . . ., represent summation vari-
ﬂg]es, e.g.,in (10) foXZ()f’;). Each of them takes an integer from
1to K, while vertex 1 always takes the intege(the index of
the desired user). Besides, there is a constraint, i.e.,, adjacent

tation calculations, we need one more step of grouping values

forindexes;’s, ! € {1,..., 1}, according to the inequality con-

’ ’

straints imposed at the last equality of (12). These observatiq
. As the complexity for
of grouping and expectation calculation grows rapidly with the

also apply toYXZ'), z € {p,s} andVg(f};m)

increase of stage index and the number of usets, we in-

troduce a graphical representation to facilitate the evaluation

Xi",z) YT(’,’;) z € {p,s}, andVS(f};m) in Section IV.

IV. GRAPHICAL APPROACH TOMOMENT CALCULATION
An undirected grapltr is a pair of sets denoted ¥, F),

vertices cannot take the same integer. This is the same as the

clg?straint in the coloring problem, e.g., [13], where we attempt
ofind a mapping: V — {1,2,..., K} such that(u) # c(v)
every edgdu,v) € E.

Our task is to determine all possible ways in coloring the
%rfelph. This problem can be solved in two steps. The first one,
performed by computer search, is to find all possible groupings
of vertices such that adjacent vertices are not in the same group.

The second step is to draw vertices in one group with the same
color such that the color for each group is different. In the cur-

rent context, we should find out all possible ways of merging

whereV is the finite vertex set of7, and its elements are callednonadjacent vertices in the graphical representation. Then, an
vertices F isthe edge set @, and its elements are called edgesnteger from 1 taK is assigned to each merged vertex, such that
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Fig. 2. Graphical representation éf(m> Y™ and V™. (a)—(c) Macro representations ﬁf("‘) Y} m> ,andV. (l ™) respectively. (d)—(f) Detailed
representations of the afe, s) of the macro representatlons in (a)—(c), respectively.

the integer for the merged vertex where vertex 1 is locatedlasver left, and the lower right evolved graphs, re-

k, and the assigned integer is different for every merged vertapectively. Similarly, E¢(G.) is equal to E¢(G.1) =

A graph, yielded by the mergence of verticesfis called an  E[cos 0y, y(¢,) €08 Oy z,),(t2) €08 B (45) () COS O (1))

evolved graphof G. Eg(GS72) = E[cos2 O, (tr) €OS% Oy (1y) ()]s EQ(G573) =
Fig. 1(c) shows four possible evolved grapth#) ory, () E[cos® Ok yi(1,) €08% O (1)), @nAEg (Ge,4) = Elcos . 1))

The upper left one corresponds to the case that none of vertlfrﬂsevolved graphs in the same order Then, the valuﬁ’ﬁf

1,t1,t2, andts are merged together. Since vertex 1 always takesgiven by

integerk, the total number of methods in assigning vertices with

integers from 1 taX is equal to( K — 1)(K — 2)(K — 3). For XU = (K = 1)(K = 2)(K - 3) - B, (Ge1)Fo(Ge 1)

the upper right one, vertices _andtg are merged, and there are + (K = 1)(K = 2)-E,(Gen)Eg(Ger

(K — 1)(K — 2) ways of assigning integers. For the lower left

one, vertices 1 anty are merged together, and the total number + (K =~ (K = 2) - Ey(Ge3)Eo(Ge 3

of assignment i$K — 1)(K — 2). For the lower right, there are + (K = 1)-Ey(Gea)Eo(Ge,a)-

two vertices in the evolved graph, which are merged via pairs

(t1,t3) and(1,t2). There ard K — 1) possible assignments. However, if the current representati6ris forY(’:), the com-

Let () denote the integer assigned to vemaxhenX(m) putation is somewhat different. As shown in (6) there is an en-
ergy matrixW? in the expression oY]fk), which contributes
a factor of Ey4,,). Therefore, in the computation, we can di-
vide all the evolved graphs into two groups. The first group is
E[cos Oy (t,) €08 Oy (1) (k) * + €08 Oup(t,,_1) k] for the evolved graphs with vertices 1 ahg merged together,
B[k (t2) Pt ) b (82) = Pt 1), k] while the second is for those in which vertices 1 a@pdare
not merged. For example, in Fig. 1(c), the two lower graphs be-
for each evolved grapliz. of G. Let E4(G.) and E,(G.) long to the first group, while the two upper ones belong to the
denote the first and the second expectations, respectively.sbtond group. The contribution of the evolved graphs from the
Fig. 1(c).E,(G.) isequal tdE,(G.,1) = Elpr y(t,) Py (1)) first group is equal to
Pis(t2),6(83) P (t3) ks Ep(Ge2) = E[Pi,w(tl)pw(tl)w(b)]!
E (Ge 3) = E[Pk #)(fl)pk b (13)]1 and EP(GF’ 4) = L (K - 1)(K - 2) 'EP(G€,3)E9(G9,3)
Elp} s for the upper left, the upper right, the +E- (K —1)-E,(Ge4)Eo(Ge.q).

andY;’f) can be obtained by calculating
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The contribution from the second group is equal to 2 %
K +
> Eute) - (K = 2)(K = 3) - E,(Gea)Eo(Gea)
d)(tg):1 -
1

b(to)#k
' X @ (b)
+ Y By (K =2)-Ey(Ge2)Eg(Ge 2)
L”/‘(tf_)):l
p(t2)#k

The reason for counting factof& — 2)(K —3) and(K —2) is
that vertex 1 is assigned with the fixed integeand the integer

taken by vertex,, is a summation variable. @ @ @ @
B. LSIC

Digraphs used to interpreX ’Z), Y(’,?), and V “m) are
glven in Flg Z(a) (C) Identical to the case m LPIC eXFlg. 3. (a) Macro representation ﬁfﬁz,z.(b) Complete representation of (a)
cept for vertex 1, the remaining vertices, o, ... represent \nenx — 3. (c) Nine subrepresentations of (b).
the summation variables, e.g., in (11) fdfs(’z). Each of

them takes an integer from 1 t&, while vertex 1 always ) o )
takes the integek. In Fig. 2(a), arcs represent elements iff'acro representation, the complete representation is equivalent
matrix M. In Fig. 2(b), arcs{(1,#1),...,(tm—1,tm)} and to the summation of{™ subgraphs, which have only one path

{(tms b1 )s - s (tam-1,1)} represent elements ML andN, between eaclir, s). TheseK™ subgraphs are called subrepre-
respéctively. - Fo 2@{(1 1)seees (firs 1)} (i tien), sentations. Each subrepresentation has a sign associated with i,
ANG{(tis1.t11a), .. (tism, 1)} are elements i, (I +L)+ which is the multiplicity of the signs of paths within it. Fig. 3

and N, respectlvely More specifically, argr, s) represents shows examples of the macro representation, the complete rep-

the (44(r), (s))th element in the corresponding matrix. Thd€sentation, a(nd subrepresentations. Fig. 3(a) is the macro repre-

reason that digraphs are used here is becAdisél + L)~! sentation ofX ", . Fig. 3(b) is the complete representation when

andN are not symmetric matrices. K =3, obtamed by replacing two arcs in Fig. 3(a) with the di-
An arc (r,s) in Fig. 2(a)—(c), signifying elements iM, graph in Fig. 2(d). Fig. 3(c) shows™ = 3? subrepresentations

N, and (I + L)~!, can be represented by detailed digraptf Fig. 3(b) with th(e ?lgn<s |§1d|cated(at ')[he center.

in Fig. 2(d) and (e) and a detailed mixed graph in Fig. 2(f), The values ofX_;”, Y_,”, andV, % can be obtained by

respectively. Fig. 2(f) is a mixed graph since it contains orfdimming up the contrlbutlon of allsubrepresentatlons The con-

edge. Let us take Fig. 2(d) as an example. It can be seen frijfution of a subrepresentation can be computed via the fol-

(12) that each path from vertex to s represents a specific loWing steps.

value ofi (0 < 7 < K — 1). The rightmost path corresponds Step 1) Find out all possible ways of vertex mergence in

to i = 0, while the leftmost one correspondsite= K — 1. the subrepresentation under the constraint that the
There is a sign associated with each path, which comes from two end vertices of an arc shouhdtbe merged to-
the factor tern{—1)¢ in (12). Also, the directions of arcs reflect gether and the two end vertices of an edge should be
the constraints on the summation variablgs jo, ..., j;- merged togethér.Note that an edge is degenerated
Each vertex in Fig. 2(d)—(f) takes an integer from 1 Aa to a vertex after mergence, i.e., , there is no self loop.
An arc (u,v) in Fig. 2(d)—(f) represents thé&p(u),(v))th Each digraph yielded by vertex mergence is called an
element inL, which is equal t0py(u),y(v) €08 Oy (u),p(v), if evolved digraph of the subrepresentation.
w(u) > (v), and 0, otherwise. Thus, the direction of arc Step 2) Evaluat&,(G. ;) andE,(G. ;) formed by the un-
(u,v) in Fig. 2(d)—(f) indicates that)(u) should be larger derlying graprGw of each evolved digrap&;i.
than(v) to yield a nonzero value for this arc. On the other Step 3) Let {Gen1,GennyeoosGetny } and
hand, the edge in Fig. 2(f) represents the identity mainx {Ge21,Ge22,...,Gean,} denote the set of
(I+L)™' =I-L+---4(-L)X~!. Thus, the edge has value evolved digraphs of the subrepresentation with
1,if ¢(r) = 9(s), and O, otherwise. vertices 1 andt,, of the macro representation
Digraphs in Fig. 2(a)—(c) are called macro representations of being merged and not being merged, respectively.
XS(’Z), stk), and‘/sfz,m) since their arcs represent elements in For G..1.'s, compute the total number of valid
M, N, and(I + L)~!. The complete representationsf”;’, integer assignments’(Ge i, K,[k  —  w])

v ™ andv "™ can be obtained by replacing each arc of these of Gea,; with the following rule: except that

macro representatlons with the corresponding detailed dlgrapQA () " () = (v), and an edgéu. v) |
n arc(u, v) is equal to zero it)(u) = ¥(v), and an edgéu, v) is equal
or mixed grgph in Fig. 2(d)—(f). For each are s_) ina MACTO 1, Jerg ifeh(u) # 1(v).
representation, there alé paths betweer.] verticesand 5.1n 3Since vertices connected by edges are merged together, there are no edges
its complete representation. Therefore, if thereram@cs in a after vertex mergence.
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the vertex corresponding to vertex 1 (amgl) parent vertex withw and lie in the right side of. The right

of the macro representation is assigned witkiblings of the root vertex ofi; are defined as the root vertices

the integer k, assign each vertex a uniqueof @j’s (i < j < n). The descendant number of a vertex is

integeri, where{l < 7 < K,i # k} such the number of descendaftof the vertex. The right-sum

that 1)(u) > <(v) if there exists an arc from descendant number of a vertex is the sum of the descendant

vertex u to v. For Geh s, compute the total numbers of the vertex itself and its right siblings.

number of valid integer assignments 615,21, Proposition 1: Let e(u) and YT(u) denote the descendant

P(Ge,zl K,[k — v1],[¥(tm) — v, ]), for each number and the right-sum descendant number of a verfex

Y(tnm) € {1 ,K}\Ek with the same rule as respectively. Also, IetP(G K)5 denote the chromatic poly-

above, except that both vertices 1 ahg of the nomial, which represents the number of coloring methods for

macro representation are assigned with the integérgorestG using K colors with the following two constraints:

k and+(t,,), respectively. each vertex: should be assigned with a distinct color or integer
Step 4) The contribution of the subrepresentation is given by(u) € [1, K]; and(u) should be larger thag(v) if there

exists an ar¢u, v) in G. Then,P(G, K) is given by

(Z o P(Geniy K, [k — 01))Ep(Ge,1,:)Eo(Ge,n,i) B e T(u)
e - () () 9
* ; ':/)(1%:1 Gottm) - P(Geir K [k = v, where\,, is the number of vertices i&'. ) B
G (tm )£ Proof: Let us assume tpat there aralitreesGy,...,G,
from left to right in the fores@. Since there ard/,, vertices, we
[ (tm) — vtm])EP(G&QYZ{)EQ(GE’N)) (13) first selectV, colors fromK colors, which hag {} ) methods.
Letr; denote the root oﬁL We divideN,, colors inton ditrees

wherec is the sign associated with the subrepresesuch that; is givene(r;) colors. Note that(r;) is equal to the
tation, (Ck. Cy(4,,)) = (1,1) if the current subrepre- number of vertices iitz;. There are

sentation is forXsz,) or X[szm), and(Ci, Cyt,.)) = T () T ()
(Ek, {?Wm)) if the subrepresenta’iion is féfs?,?). H e(ri) = H e(r;)
Note thatP(G. 1., K,[k — v]) and P(Ge 2, K, [k —

i=1 i=1
v1], [ (tm) — vy,,]) in Step 3 above are different from the commethods for the division. Then, for ditre&;, the root vertex
putation in the LPIC case, where we dealt with the undirectedis assigned with the largest color or integer amongethg)
evolved graphs whose vertex was assigned an integer differeslors to satisfy the second constraint on the coloring method.
from those of all others. On the other hand, in the current coiroot vertexr; hask childrenuv, . . ., v;, from left to right, the
text, the integer assigned to a vertex should not only be distin@gmaininge(r;) — 1 colors are further divided inté groups
but also satisfy the constraints given by arc directions. The calith the number of colors in thith group equal te(v; ), which
culation of valid integer assignment is equivalent to finding thﬁelds]‘[ T(va methods. Then, in each group, the largest
chromatic polynomial of a digraph, where the coloring problegor is as&gneJ to the highest vertex Similarly, all vertices
foradigraph?? = (V, A) isdefinedtobe’: V. — {1,2,..., K} in the forest can be colored by recursive application of the di-
such thatf(u) > f(v) for every arc(u, v) € A.In SectionV, yision and the assignment of the largest color. Therefore, the
we introduce an approach for computing the chromatic polyngumber of coloring methods for the forest is given by (14

mial of any digraph. As shown in these examples, it is easy to obtain the chro-
matic polynomial of a forest. The following proposition, which
V. CHROMATIC POLYNOMIAL OF A DIGRAPH is a generalization of Birkhoff's Reduction Theorem (see, e.g.,

The chromatic polynomial of a digraph or mixed graph wad-3]), enables us to obtain the chromatic polynomial of any di-
discussed in the literature, e.g., [14] and [15], with various de3taph by decomposing the digraph into several forests.
initions of coloring problems. Here, we propose an approachProposition 2: Let a; be the arc obtained by inverting the
suitable for our application. Before describing the computatighrection of arau;, G — a; be the digraph obtained by removing
of the chromatic polynomial of an arbitrary digraph, let us staf from a digraphZ, andG — a; + a; be the digraph obtained
with a specific type of digraphs: forests composed of direct& inverting the direction of; in G. Then, we have
trees. A directed tree (or ditree) is a connected acyclic digraph = _
with each vertex having in degree, at most, one. The root of a P(G’K) = PG —a;, K) - P(G — ai+a, K).
ditree is the vertex with in degree equal to zero. For simplicity,  prgof: Let a; = (u,v). The coloring for@ has the con-
unless otherwise stated, a forest indicates a forest composed;pfint thaty(u) > (v). For G — a;, both P(u) > P(v)
ditrees below. Also, a ditree is considered as a forest with one
component. 4A vertex is a descendant of itself.

Definition  1: Assume that there aren ditrees, SUnlike P(G, K, [k — u]) andP(G, K, [k — 1],[¢(tm) — vi,])
= = having one and two vertices being a55|gned with predetermined integers, re-
G1,Go, ..., Gy, from left to right in a foreStG The right spectively, in the calculation aP( G K'), none of the vertex i is specified

siblings of a nonroot vertex are vertices that share the samaeith a fixed integer.
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o (D)
= JoOv
®

ég

Fig. 4. lllustration of successive applicationRioposition 2, whereG,, G,., G; are equivalent t67,,, G., G, respectively.

andy(u) < (v) are allowed. FoilG — a; + a;, the con- CoroIIary 1: Let G be a forest composed qf ditrees

straint is¢(u) < (v). As a result, we obtaitP(G,K) = Gi,...,G, with roots ri,...,r,. The first n roots
P(G-a;,K)— P(G—a;+70a;,K). m r,...,7, (n < p) are aIready assigned with colors
Fig. 4 shows the application &roposition 20 decomposing 1/1(T1),...,1/}(Tn) such thaty(r) < -+ < (r,). If

a digraph into forests. By applyingroposition 2to a, in the there areK available colors, then the number of coloring

d|gratha, the chromatic polynomlaP(G ,K) is given by methods forG under this constraint, called the constrained-

P(Gb,K) P(G., K). Note that ara is removed i3, and  chromatic polynomial of7, is given by

G., since the inequality relations imposed &y anda; make

as redundant in the computation of the chromatic polynomiaj> ( U Gi, K — Z e(r; )

Also, a3 of G is removed because of, a3, anda. SmceGb imm 1

is still _not a forest Proposmon 2|s applied again to decom- n i1

poseGb into two forestsGd and G.. Consequently, we have % Hp G, — i (i) — 1 — e(rj) (15)
P(Ga,K) = P(G,. K) = P(Gh. K) = P(Gi, K). Itis given /

by (72 — 30 — 10) - (%) =32 (). B
The decomposition procedure in Fig. 4 can be representetiere P(H K) is the chromatic polynomial of digrapi’

with sequence notations Wy, = (G, G.) = (G4, G.,Gs). usingK colors, and(r;) is the descendant numberf

A sequence whose element is a forest or a digraph containing a Proof: Forl < i < n, the number of available colors for

directed cycle is called educed sequencblote that we need G; —r; ist(r;) — 1 — Z;_ll e(r;). As aresult, the total number

not decompose a digraph containing a directed cycle, Slncedﬁcolormg methods fold,;’s is 1, (G risp(ri) — 1 —

chromatic polynomial is 0. By [12], any digraph can be decomz ;). ForGyis,m +1 < i < p, the total number of

posed into a finite reduced sequence by applyngposition 2 colonng methods i () et G, K — Z, _e(r;)). Hence,

successively.
As shown in (13), we have to consider the chromatic polyng)he constrained- chromatic polynomlal of'is given by (15).

mials of digraphs with one or two of the vertices assigned wi
fixed integers. The chromatic polynomial of a digraph is called
the constrainedr chromatic polynomial, if there arefixed as-
signed values. To obtain the constraineghromatic polyno-  As shown in Section V, we require the computatiorfef-)
mial, Proposition 2can be employed iteratively to make verandE,(-) to obtain the matrix moments. In this section, we in-
tices with fixed colors the root vertices, and apply the followingroduce an approach for computitiy(-) andE,(-) based on
corollary. some well-known problems in graph theory. Several definitions

=1

V1. COMPUTATION OF EXPECTATIONS ONGRAPHS
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and propositions are presented below to facilitate the evaluatis
of E¢(G.) andE,(G.). For simplicity, we us&7 to represent
G. in the following discussion.

Definition 2: An Euler tour of a connected, undirected grapt o &

G is a cycle that traverses each edge&oéxactly once. Let us ‘
denote the number of vertices and edge&iby NV, andN., e () () e
respectively. Vertices it are labeled from 1 td/,,, and edges oq b@
are labeled from 1 taV.. The Euler tour vector corresponding

to an Euler tour is a vectadr, wheret(7) = 0 if the ith edge is Ve ®
traversed from a lower-label vertex to a higher-label vertex, anu

t(i) = 1, otherwise. Two Euler tours are said to be equivalent if @) (®)
their Euler tour vectors are the same.

It is obvious that the simple cycle in Fig. 1(a) has two Euler
tours. Furthermore, the evolved graphs of a simple cycle have at O o—o0O
least two Euler tours.

Proposition 3: If there aret i distinct Euler tours fot7, then
EQ(G) = tE/QN‘“.

Proof: Let#;; andd; » denote the random carrier phases
associated with the lower-label and the higher-label vertices o—©O o—oO
connected by théth edge ofG, respectively. Theily (G) can
be written as

(V)

Qs

(©)

N,
EQ(G) =E HCOS(Hi 1—6; 2) Fig.5. (a) A graplG. (b) All the even decompositions for the lower subgraph
pale} ’ ’ of G in (a). (c) Supergraphs for the four even decompositions in (b).
Ne 1
1 T : ; f: Let ¢; de; denote the signature se-
- _—_.F exp (j(=1)% (6 1 — 0; Proof: Let ¢; 1(n) an cz,z(n) g
2N 21;[“2:: ( (=1)"(6ia ’2))] quences of the lower- and the higher-label vertices ofithe
11 1 edge inG, respectively. If the lower- or the higher-label vertex
- L Z Z Z of theith edge is thegth vertex inG, its signature sequence is
IN. d ' . .
f=0to=0  tx.=0 enoted also by;(n). Then,E,(G) is given by
Ne Ne 1 X
x K exp <J Z(_l)m(gi,l - 912))] . (16) EP(G) =K H (N Z ci,l(ni)cm(ni)>]
i=1 i=1 n;=1
We haveS™ (—1)% (6.1 — f,5) = 0 if and only if t — LSS m e e
(t1,ta,...,tr. ) forms an Euler tour. Thus, if there arg dis- NN Z Z Hcl,l(m)cl,z(m)
tinct Euler tours foi;, Eg¢(G) = tg/2N-. n m=l - myve=l Li=l
Definition 3: A graph@ = (V, E) is said to be decomposed R NN
into p subgraphs; = (Vi, Ey), G2 = (Va, Ey), ---, G, = - NN Z Z HE[aj(n)] (17)
(Vp, Ep), it Y, E; = E,andE; " E; = O fori # j,andV; = m=l nve=ti=l
{v € V:vis one of two vertices of anedgec £} fori = wheren = (ni,n2,....nn.), a;(m) = [, cp, aj(ni),
1,...,p. An even decomposition is a decomposition such thahd L; is the index set of edges that are incident on vertex

the number of edges incident on each vertex of each subgrgpiThe incident index seL; is called paired when indexes

is an even number. The supergraph for the decompositiéh ofare divided into partitions according to values, and each

is a graph formed by replacing each subgréhh(1 < i < p) partition has an even number of elements. For example,

with a vertex. Two vertices in the supergraph are connected by = {ni,n2,n3,n4,n5,n6} is paired, whem; = no, and

an edge, if the corresponding two subgraphs are connectethin= n, = n; = ng. Note thatkl [«;(n)] = 1 if and only if the

G. Subgraphgy; andG; of G are said to be connected@if incident index sef; is paired. Otherwises [a;(n)] = 0.

they share at least one vertexéGh ThereforeE,(G) can be obtained by counting the number of
Fig. 5(b) shows examples of the graph decomposition. Lats such that allL;’s are paired, and dividing it bywVe. All

us assume the upper left one to be the original. Then, there &rés are paired, il is evenly decomposed into subgraphs, and

four even decompositions, including the original graph itseléll edge indexes within each subgraph are assigned the same

The corresponding supergraphs are shown in Fig. 5(c). value between 1 and/. This is equivalent to drawing vertices
Proposition 4: If there are; even decompositions for a graphof the corresponding supergraph with colors. Thus, the cal-

G, andS;, denotes the supergraph for thth even decomposi- culation ofE,(G) is translated into counting the number of col-

tion, then, we havé,,(G) = (1/N"<) S27_, P(Sk, N),where oring methods for all supergraphs. We should, however, restrict

P(Sk, N) is the number of coloring methods féf, with N adjacent vertices in each supergraph to be drawn with different

colors (which corresponds to the spreading ratio) such that alors, to avoid duplicated counting among supergraphs. Con-

jacent vertices irf;, have different colors. sequently, we havE,(G) = (1/NN<) 3 1_ P(Sk,N). =
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Fig. 6. Analytic and simulated results for ﬂOfmaliZE{lZ;’_’i)lbl = 1] and Fig.7. Analyticand simulated results of the LPICs BEP for a different number
\"ar[Zz(,"i)|b1 = 1] of the LPIC at the first to fifth stages when SNR10 dB of users with SNR= 10 dB for the desired user and = 31. (a) From the first

for the desired user amdl = 31. (a)E[ZI(J'_’I)Ibl =1 (b)Var[ZIS_”{)|b1 =1 to the third stages. (b) From the fourth to the fifth stages.

One more property shows that if graphis disconnected by ‘ZD; dl(s:n(;t EUI?; t;)u:as )for(;;z. Zheg 2r'e((2e4;e3;,e9,(:5,26,
articulation points intg biconnected component, ..., G,, ' 48,59, 55, 57, C6)y 154,58, %6, &5, 59, B7) - 155, £9,

_ TTP . _ TP ) €6, €7, €8, 64)' (657 €9, €7, €g, €8, 64) and(667 €y, €4, €7, €9, 65)'
thenk, (G) = [T, E,(Gi) andEy(G) = [[i_, Bo(G:). The By Proposition 3 E¢(G,) = 6/26 = 3/32. As a re-

proposition and its proof can be found in [12]. - - 6 7
Using these propositions, one can obt&ifG. ) andE, (G.) sult, B,(G) = B, (G)E,(Gy) = 3/N° — 2/N', and
. ; : E¢(G) = E¢(G1)E¢(G2) = 3/128. Without these proposi-
for an evolved grapky. with tools in solving the Euler tour, the ; A ;
i : . tions, it is difficult to directly computé&E,,(G) = E[p1,2p2,3
graph decomposition, the coloring, and the biconnected compo- 9 | and Ee(G) = Elcosd o5 o
nents finding problems. For example, let us compiyéG) and 5(3;73153’453é60p4’6€2§2pg’5 cos d "COS O - cos 0 ] 1,2+552,3
Ey(G) for the graph3 in Fig. 5(a). The grapl¥ in Fig. 5(a) can 31 3.4 3,6 ¥TR V4,6 5,3 6,51
be divided into two biconnected components by an articulation

pointvs. LetG, andGs denote the upper and lower components, VIl SIMULATION RESULTS

respectively. We havB,(G) = E,(G1)E,(G2) andEy(G) = Numerical simulations were performed under an environment
E¢(G1)Ee(G2). SinceG1 is a simple cycleEq(G1) = 1/4 of synchronous transmission, coherent detection, random sig-
andE,(G1) = 1/N? by Propositions 3and4. nature waveforms witlv.= 31 and the AWGN channel. The

Fig. 5(b) shows all even decompositiong®f, and Fig. 5(c) power levels for all users were fixed. To fully demonstrate the
shows the corresponding supergraphs. Byoposition 4 properties of LPIC and LSIC, we present two different power
E,(G2) = (N +3N(N —1))/N% = 3/N*—2/N>. There are distributions for these two receivers.
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Fig. 8. Analytic and simulated results for normalizBZ(";’|b, = 1] and Var[Z{""|b. = 1] of the LSIC when SNR= 10 dB for the first user.
@ E[Z{]b; = 1] (the first user). (BE[Z(T)

s LK /2] 41

[bl k241 = 1] (the middle user). (CE[Z{|bi = 1] (the last user). (dVar[Z’

@) Var[Z) 5 i1 bircs2y 4 = 1] () Var[Z[bre = 1.

A. LPIC the stage number is even, and positive when it is odd. The bias
Since all users in LPIC were equivalent in the LPIC simulagrows with the numbeK of users in the system. As analyzed

tion, we chose user 1 as the desired user. In this environmeént]6], the bias effect comes from the fact that the decision sta-

K, = |K/2] users had the same received energy per symhitics of interferers (hence, the estimates of interfering signals)

as that of the desired usél;, and the remainingd — K, users are correlated with the desired user’s power and information bit.

had the energy level equal 6, /2. When these estimates are used to construct and remove the in-
Fig. 6(a) compares analytic and simulated results for the negrference, the bias effect appears.

malizedE[ZI(f’f) |by = 1] from the first to the fifth stages. In this  Fig. 6(b) compares analytic and simulated results for the nor-

test, the signal-to-AWGN-noise ratio (SNR) is equal to 10 dehalizedVar[Z{"|b, = 1] from the first to the fifth stages. As

for the desired user. The normalization is performed by dividingefore, SNR is equal to 10 dB for the desired user. The nor-
E[ZI(:I')IM = 1] with a factor\/E . It can be seen that analyticmalization is done with a factoE;. When the stage index is
results match well with simulation results. As given in (5), thiarger than two, the variance tends to increase as the stage index

bias ofE[ZI(:’f)|b1 = 1] from E[Z](),l1)|b1 = 1] is negative when goes up, which indicates that interference cancellations at higher
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Fig. 9. Analytic and simulated results of the LSICs BEP from the first to third stages when=SNR dB for the first user. (a) First user. (b) Middle user.
(c) Last user.

stages are not effective when the number of users is larger tlzano, and the BEP at the fourth stage is almost 0.5, which leads
a threshold. The divergence effect occurs when the spectralt@almost zero channel capacity.

dius of the matrix(I — R) in (1) is greater than one, which Itis also observed that the BEP performance depends mainly
is very likely when random signature sequences are employed.the ratioK /N, which indicates that large-system results can
The divergence effect of the PIC receiver has been experimée-very useful in many cases of interest.

tally investigated by researchers [16], which leads to the study

of the partial PIC receivers [10], [17], [18]. In this paper, wgs | g|C

give an exact analysis of the divergence effect. The analytical ) ) ) )

formulas for the mean and the variance of the decision statisticdJsers were assigned with three different received energy

will be useful in the determination of partial cancellation factor§Vels £1, £1/2, and 5, /4 in the simulation of the LSIC re-
in partial PIC receivers, which were found empirically or witf€iver. Since the LSIC receiver sorts users in a descending order
adaptive methods [6], [10], [18]. according to their received powers; was assumed to be as-

In Fig. 7(a), we present analytic and simulated bit-error profignedtousers 1tak'/3]; F, /2touserd K /3] + 1to[2K/3];
ability (BEP) performances from the first to the third stages witf"d£1/4 to user§ 2K/3] + 1to K. The BEP performances of
SNR= 10 dB. The analytic BEP is obtained using the metholf€ first, the middle (| K/2] + 1)th), and the lastK'th) users
presented in [19, App. E], i.e., inserting the data of Fig. 6(a) afti€ analyzed and compared with experimental results.

(b) into (3) and plugging into thé)(-) function. It can be seen Fig. 8(a)—(c)<co)mpare analytic and simulated results for the
that, when the stage index is larger than one, analytic and sild@malizedE[Z, "|b, = 1], k = 1, [K/2| + 1, K, at three
lated BEPs do not match well if the number of users is less thaf9€S- The SNR for the highest power users is set to 10 dB,

15. The discrepency between simulated and analytic resulté”%d the normalization is done by a factork. In this test,

i S ot >
due to the breakdown of the central limit theorem (CLT). AI.Ehe second-order approximatioff, + L)~ ~ I - L + L*,

though CLT proves the convergence of the decision statistic'{ (lfns)Ed fpr the detailed represgntaﬂoanwhen computing
é;l . It is observed that analytic and simulated results match

distribution to a Gaussian function, the Gaussian assumption ag-*
each other well.

tually leads to inaccurate results, especially at low BEP. This . . .
y P y Also, note that there is no bias effect for the conditional mean

was explained well in [1]. . ) g o . o
In Fig. 7(b), we show simulated and analytic BEP results 18{ the first user’s decision statistic, while the conditional means

the fourth and fifth stages with SNR 10 dB for the desired or the medium and last users are negatively biased from 1. This

ith frogi?) 3 th Its f can be seen from (8). Let us take Fig. 3(c) as an example. In all
user. Compared with cases fraff!] to z,), the results for subrepresentations &f(2, k), the out degree of vertex 1 is larger

Z;()41) and Z,()Of are less accurate. It is observed from Fig. 7(ahan 0. But, vertex 1 is constrained to be colored with the smallest
and (b) that the convergence speed is inversely proportionakisior index 1 when computing . Therefore X = 0.

the stage index. Also, based on (5), the user number should bgig. 8(d)—(f) compare analytic and simulated results for the
constrained such that- (—1)™ X (m) is larger than zero. Oth- normalizedVar[Zi_’Z b, = 1], k = 1, |[K/2] + 1, K, at
erwise, the sign of the decision statistic is inverted from that giie first three stages when SNR 10 dB for the first user.

the actual data. This limit can be observed from the curve of the second-order approximation is used for the inverse matrix

fourth stage in Fig. 7(b). I > 40, 1 — X (4) is smaller than (I + L)~!, if there are less than or equal to four arcs in the
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Fig. 10. SINR performance comparison of LPIC and LSIC receivers whea 31 andK = 5 to 25. (a) First user of the LPIC. (b) Middle user of the LPIC.
(c) Last user of the LPIC. (d) First user of the LSIC. (e) Middle user of the LSIC. (f) Last user of the LSIC.

macro representation. Otherwise, the first-order approximationin Fig. 9, we present analytic and simulated BEP results when
that(I+L)~! =~ (2a — a?)I — o®L with o, listed in [12]. In SNR = 10 dB for the first user. It is seen that analytic and
this way, the total number of vertices is restricted to no greatsimulated BEP match well, except for the last user iitk= 25,
than 12 to alleviate the computational complexity. The normand the first user at the second and third stages. The former case
ization is performed using the factél,. We see that, except forjs due to the inaccurate analytic result WF[ZS(?')MK =1]
the cases ok™ = 251in Fig. 8(f), analytic results matchwell with when k' = 25. The latter case can be explained in the same
simulated ones. In this case, the discrepancy comes from {ig a5 the LPIC receiver in Fig. 7. Moreover, the accuracy of
approximation error of the matrix inversion. Since only tWo Of,¢ analytic BEP for théth user at thenth stage depends on the
e oSt s are Seected ATt o1 1 el copvergence speedaf . Tne convergenc speed s nversely

' oportional to the stage index due to the structure complexity.

; Coor
K. Moreover, becausg theréam%re two arcs 'e‘f’“"”g verte>_( Lin & erefore, the accuracy of BEP at the first stage are better than
co(m)plete representation &f, *, the chrom)anc pol(yn)omlal Of those at the second and the third stages. Also, the number of
Y, x Yields a larger value than those Xy, © and /o)1~ terms withinZ(}” is less than those iﬂiﬁ}qzjﬂ and 2"}

It follows thatYs(? has the largest approximation error. for m = 2, 3. Hence, analytic BEP for the first user at stages
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two and three are not so accurate as those for the middle and the]
last users, because a smaller number of terms results in sIow[?
convergence.

At last, the SINR performance of the LPIC and LSIC is com-[15]
pared. To conduct a fair comparison, the power assignment of
the LPIC is set to be the same as that of the LSIC, i.e., thregg)
different received energy levels;, E/2, andE; /4 for users
1to|K/3], | K/3] +1to|2K/3]|,and|2K /3] + 1t0 K, re- [17]
spectively. Itis shown in Fig. 10 that the SINR of the LSIC is ho
smaller than that of the LPIC for a user of the same stage index,
which indicates, in a long-code CDMA, the LSIC outperforms[
the LPIC in terms of SINR. Moreover, the SINR curves of the
LSIC increase with respect to the stage index, while those of thid®]
LPIC are in fluctuation.

A

VIIl. CONCLUSION

The performance of the multistage LPIC and LSIC receive
in a synchronous long-code DS-CDMA system was analyzed
this paper. It was shown that the decision statistic is related to
moment of the matrixR — I) for LPIC, and(I + L)~ 'L and
(I + L)~!forLSIC. We developed a graphical approach to faci
itate the calculation of these moments, and showed that they |
be obtained usingtools arising from four well-known problemsi
graph theory, i.e., the coloring, the graph decomposition, the bi-
connected componentfinding, and the Euler tour problems. Sim-
ulation results were performed to verify the correctness of o
theoretical derivation of the mean and the variance of the decis
statistic. With the Gaussian approximation, the estimated B
performance was obtained by plugging the conditional me
and variance of decision statistics into ¢ ) function.
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