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Efficient Weight Vector Representation for Closed-Loop Transmit Diversity
Keun Chul Hwang and Kwang Bok Lee

Abstract—For a closed-loop transmit (Tx) diversity, the Tx
weights are calculated at a receiver, and fed back to a transmitter.
As the number of Tx antennas increases, the potential gain of
closed-loop Tx diversity may be significant. However, the amount
of feedback information, which is the number of Tx weights
that should be fed back, linearly increases, and the performance
improvement of a closed-loop Tx diversity system may not be
as significant as expected due to delay in the feedback process.
Thus, an efficient Tx weight representation, which can reduce the
amount of feedback information, is needed. In this letter, a Tx
weight vector representation is presented, and its performance is
analyzed. Analysis shows that this weight vector representation,
referred to as basis selection, significantly reduces the amount of
feedback information with little performance degradation.

Index Terms—Antenna arrays, performance, transmit diversity.

I. INTRODUCTION

THE third-generation mobile communication systems
such as the universal mobile telecommunication systems

(UMTS) and interim standard 2000 (IS-2000) are currently
being standardized [1]. Due to the rapid increase of Internet
and multimedia service in wired communication, it is necessary
to increase the capacity of these third-generation systems,
especially, in downlink (base to mobile). Receive (Rx) diversity
with multiple receive antennas at the mobile terminal may
be applied to increase downlink capacity, but this may be
difficult because of the implementation complexity increase
and size limitation of the mobile terminal. Hence, a number
of transmit (Tx) diversity schemes have been proposed [2],
[3], and schemes using two Tx antennas, such as space–time
transmit diversity (STTD), space–time spreading (STS), and
transmit antenna array (TxAA), have been included in the
UMTS [4] and IS-2000 standard [5].

Tx diversity systems can be classified into open-loop or
closed-loop systems, depending on the existence of the feed-
back signal from the mobile. Open-loop Tx diversity systems
[2], [5], which operate without any feedback information from
the mobile, are known to offer diversity gain. As the number of
Tx antennas for these open-loop systems increases, the average
signal-to-noise ratio (SNR) does not change, whereas the varia-
tion of SNR in decibel scale decreases. This variation decrease
due to diversity gain brings about performance improvement.
In contrast to the open-loop systems, the closed-loop Tx

Paper approved by I. Lee, the Editor for Wireless Communication Theory of
the IEEE Communications Society. Manuscript received September 17, 2001;
revised May 6, 2002 and July 19, 2002. This paper was presented in part at the
IEEE International Conference on Communications, New York, NY, 2002.

The authors are with the School of Electrical Engineering and Computer Sci-
ence, Seoul National University, Seoul 151-742, Korea (e-mail: kchwang@mo-
bile.snu.ac.kr; klee@snu.ac.kr).

Digital Object Identifier 10.1109/TCOMM.2003.822146

diversity systems [4], [6], [7], which operate with feedback
information from the mobile, offer not only diversity gain
but also beamforming gain [8], [10]. As the number of Tx
antennas increases in closed-loop systems, the variation of
SNR in decibel scale decreases because of diversity gain, and
the average SNR increases due to beamforming gain. The
average SNR increases by 3 dB, as the number of Tx antennas
doubles [8]. Because of the average SNR increase and variation
decrease, the closed-loop Tx diversity systems offer potentially
more benefit than the open-loop Tx diversity systems.

Although the closed-loop Tx diversity provides potentially
significant gain as the number of Tx antennas increases, the
use of numerous Tx antennas may be impractical because of
the large amount of feedback information. For two Tx antennas
systems in UMTS, the relative weight of the second Tx antenna,
which maximizes the SNR, is calculated at a mobile station [4].
The direct extension of this two-Tx-antennas system to Tx
antennas requires the calculation of relative weights and
the transmission of these weights periodically to the base sta-
tion. The transmission of these weights takes nonnegligible time
because of the limited uplink channel allocated for feedback in-
formation. This feedback delay causes the performance degra-
dation. Thus, an efficient weight representation is desired to re-
duce the amount of feedback information.

There have been some research efforts on the practical as-
pects of closed-loop Tx diversity systems [7], [9]–[11]. In [7]
and [9], methods to reduce the amount of feedback informa-
tion have been described. In [10], the effects of feedback delay
on the performance of a closed-loop Tx diversity system have
been analyzed. The effects of weight digitization on the perfor-
mance of a closed-loop Tx diversity system have been discussed
in [11]. Recently, the authors have proposed a Tx weight repre-
sentation for closed-loop Tx diversity systems in the third-gen-
eration partnership project (3GPP) standardization for UMTS
[6]. In this letter, we describe this Tx weight representation
method, and analyze its performance. The remainder of this
letter is organized as follows. Section II describes a closed-loop
transmit diversity system. An efficient weight vector represen-
tation method is presented in Section III, and its performance
analysis is given in Section IV. The effects of weight digitiza-
tion and feedback delay are investigated in Section V. Finally,
conclusions are made in Section VI.

II. CLOSED-LOOP Tx DIVERSITY SYSTEM

For closed-loop Tx diversity, the Tx weights are calculated at
the receiver, and fed back to the transmitter. At the transmitter,
the data symbol is multiplied by these weights before transmis-
sion. In this letter, it is assumed that Tx antennas and Rx
antennas are employed for diversity. The baseband equivalent
system model of closed-loop Tx diversity to be considered is
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Fig. 1. System model.

shown in Fig. 1. The received signal vector
may be expressed as

(1)

where the superscript denotes the transpose, denotes the
total transmit power, is the binary data symbol with the prob-
ability , and

denotes the Tx weight vector. To maintain the
same transmit power for various , we normalize the weight
vector such that . In this letter,
the channels between Tx and Rx antennas are assumed to be
slowly time varying and frequency flat, and may be described
by the channel matrix , where

denotes the channel vector from
the th Tx antenna, and denotes the channel response from
the th Tx antenna to the th Rx antenna. The channel responses

’s are assumed to be independent and identically distributed
(i.i.d.) zero-mean circular complex Gaussian random variables
with , where is an expectation operation. The
vector denotes an additive white Gaussian
noise (AWGN) vector, whose elements are i.i.d. zero-mean cir-
cular complex Gaussian random variables with .

At the receiver, the received signal vector is coherently
combined with the maximal ratio combining (MRC) weight
vector , where the superscript denotes the
conjugate transpose [10]. Thus, the decision variable may be
expressed as

(2)

where the first term is associated with a desired signal and the
second term denotes noise. Note that , where

denotes the identity matrix. Thus, when and
are given, the variance of noise part of may be found to be

. Hence, the receive SNR (RxSNR) may be ex-
pressed as

(3)

where isan Hermitianmatrix,and
denotes the transmit SNR (TxSNR) [8]. In this letter, we assume

that is perfectly known at the receiver. With the channel matrix
, the receiver calculates the weight vector , which maximizes

the RxSNR in (3). This weight vector is periodically fed back
to the base station through the feedback channel. In real systems,
this feedback channel may be erroneous. However, for analytical
simplicity, we assume that the feedback channel is an error-free
channel. Therefore, the transmitter may be considered to use the
same that is calculated at the receiver.

III. EFFICIENT WEIGHT VECTOR REPRESENTATION

In this section, we investigate an efficient weight vector
representation scheme. In Section III-A, the optimum Tx
weight vector is derived. Based on approximation of optimum
Tx weight vector, an efficient weight vector representation is
developed in Section III-B.

A. Optimum Transmit Weight Vector

An optimum weight vector may be obtained by finding ,
which maximizes the RxSNR in (3). Hence, for a given ,
the optimum weight vector may be described as

(4)

Using eigenanalysis, one can easily show that the optimum
weight vector becomes the eigenvector associated with
the maximum eigenvalue of the matrix [10]. Thus, the
RxSNR with this optimum weight vector may be expressed as

(5)

where denotes the maximum eigenvalue of the matrix
.
For example, let us consider the case of . Using (4), the

optimum weight for the th Tx antenna element may be
obtained as

(6)
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where the superscript denotes the complex conjugate. With
these optimum weights, the RxSNR for this case may be
expressed as

(7)

From (6) and (7), the Tx weight vector element , associ-
ated with a small amplitude channel response, is found to have
a small magnitude and to contribute less to RxSNR than the
weights associated with a larger amplitude channel response. In
approximating the optimum Tx weight vector, the Tx weights
with small magnitude may be approximated as zeros without
decreasing RxSNR significantly.

B. Efficient Transmit Weight Vector Representation: Basis
Selection

A weight vector with elements may be represented as a
linear sum of basis vectors, which span an -dimensional space
[12]. For an -dimensional space, basis vectors are required
to span the whole -dimensional space. Let these basis vectors
be , which are vectors with .
With these basis vectors, the optimal weight vector may
be represented as

(8)

where is the complex coefficient associated with the basis
vector , and may be obtained as

(9)

If we assume that is the ordered according to its magni-
tude, i.e., , then the weight vector

may be approximated as

(10)

where is the basis vector corresponding to , and de-
notes the degree of approximation. The normalization factor

is needed to ensure that . Note
that this approximated weight vector may be viewed as the
projection of into -dimensional subspace [12]. Note also
that becomes accurate as increases, and when

.
To represent the weight vector for Tx antennas system,

the basis vectors , , should span the -di-
mensional space. A simple set of basis vectors may be obtained
from the Cartesian basis, e.g., for , and

for . For
simplicity, we will use these basis vectors from the Cartesian
basis for throughout this letter. For the set of basis vectors
from the Cartesian basis, only one element in the Tx weight
vector is not zero when . This means that only one Tx
antenna is used for transmission, and this case may be viewed

as a Tx antenna selection case. Besides the basis vector set from
the Cartesian basis, many other set of basis vectors may be con-
structed such as , ,

and
for . If this set of basis vectors is used, all Tx antennas
are used, even when . We refer to the above Tx weight
vector representation as basis selection. The general algorithm
for basis selection is as follows:

1) calculate ;
2) project to basis vectors, and calculate the cor-

responding coefficient ;
3) select the basis vectors with largest coefficients;
4) feed back the selected basis vector information and the

corresponding coefficients.
Note that the feedback information consists of the specification
of basis vectors in use and associated coefficients.

IV. PERFORMANCE ANALYSIS

In this section, we analyze the performance of Tx diversity
with basis selection for the case of ideal feedback: no weight
digitization and no feedback delay. The effects of weight digiti-
zation and feedback delay will be discussed in Section V. If we
use in (10) as the Tx weight vector, the RxSNR in (3) may
be expressed as

(11)

After some manipulation, the conditional bit-error probability
(BEP) for given may be expressed as [10]

(12)

where is a Gaussian tail integral defined as
[10]. Note that the RxSNR

is a random variable, since it is a function of . Thus, the
average BEP may be obtained as

(13)

where is the probability density function (pdf) of . In
the following subsections, we investigate for two cases:

and general .

A. When the Number of Rx Antennas is 1

When , the coefficient in (10) may be expressed as

(14)

where is the ordered according to its magnitude, i.e.,
. Hence, the weight vector

approximated by basis selection may be expressed as

(15)
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where for this case may be expressed as

. From (11), the RxSNR may be
expressed as

(16)

Note that is the sum of ordered random variables
. Using the order statistics in [13], the average BEP

may be expressed as [17]

(17)

where is defined to be 1 for . Note that this error

probability takes the same form as that of the hybrid selec-
tion/MRC for Rx antenna diversity system with Rx antennas
[13]. For high , the error probability in (17) can be approxi-
mated as

(18)

Since we assume that , there are independent fading
signals and the maximum achievable diversity order is . Note
that the BEP in (18) decreases inversely with the th power
of TxSNR , which implies that the basis selection offers full
diversity order of .

Fig. 2 shows the average BEP of Tx diversity with basis se-
lection as a function of TxSNR for various , when
and . The average BEPs of Tx diversity with optimum
weights and the Tx antenna selection are also
plotted for reference. From this figure, it can be seen that as
increases, the performance of Tx diversity with basis selection
improves and approaches that of optimum weights. Compared
with the Tx antenna selection at a BEP, the basis selection
provides 2.5-dB gain when , 3.8-dB gain when ,
and 4.6-dB gain when . Note that the performance im-
provement diminishes with the increase in . Note also that,

Fig. 2. Average BEP performance for various S as a function of TxSNR �,
when M = 8 and L = 1.

Fig. 3. Average BEP performance for various M as a function of TxSNR �,
when L = 1 and S = M=2.

at high , the slope of BEP curve becomes the same for all .
This verifies that the Tx diversity with basis selection does not
reduce the diversity order. Fig. 3 compares the average BEP of
Tx diversity with basis selection and that of optimum weights
for various , when and . When the degree
of approximation is half the number of Tx antennas, the basis
selection does not degrade the performance more than 1 dB.

B. When the Number of Rx Antennas is General (General )

For the general case, we may easily obtain in (13)
through Monte Carlo integration [14]. We obtain based on

independent realizations of the channel matrix . Fig. 4
shows the average BEP of Tx diversity with basis selection
for various when . Like Fig. 2 for case, this
figure shows that the performance of basis selection improves
and approaches that of optimum weights as increases. This
figure also shows that, at high , the slopes of BEP become the
same for all when is fixed. As increases, the slope of BEP
curves becomes steeper due to the increase in diversity order,
and the difference between the performance of Tx diversity
with basis selection and that of optimum weights decreases for
the same . For example, at a BEP, the difference between
the performance of optimum weight and that of basis selection
with is about 3 dB when , but decreases to 1.9
dB when . To investigate this performance difference,
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Fig. 4. Average BEP performance for various L as a function of TxSNR �,
when M = 4.

we consider the asymptotic behavior of basis selection when
approaches infinity. Since the eigenvectors of are the same
as those of the normalized matrix , the matrix

, instead of , may be used to investigate the asymptotic
behavior of basis selection. The elements of the matrix may
be expressed as

(19)

where denotes the element of at the th row
and the th column. Note that the diagonal elements

are the normalized coherent
sum of the channel responses, and the off-diagonal elements

, , are the normalized
incoherent sum. Thus, as approaches infinity, the off-diag-
onal elements become negligible compared with the diagonal
elements, and may be approximated as 0

(20)

where the approximation is made with the law of large numbers
[15]. Consequently, for large , the matrix may be approxi-
mated as a diagonal matrix of

(21)
Since the eigenvalues of a diagonal matrix are the diagonal ele-
ments, the maximum eigenvalue of may be approximated as

(22)

Moreover, since the eigenvectors of a diagonal matrix are
the column vectors of , the eigenvector associated with

is the th column vector of , where is
the index which maximizes (22). As mentioned previously,

the eigenvectors of are the same as those of . Thus, the
eigenvector associated with the maximum eigenvalue of , that
is, the optimum weight vector is also the th column
vector of . Note that this optimum weight vector consists
of elements with 0 and one element with 1. Hence,
from (10), the Tx weight vector by basis selection equals
the optimum weight vector, regardless of .
Consequently, as approaches infinity, the difference between
the performance of optimum weight and that of basis selection
decreases and becomes zero.

V. EFFECTS OF WEIGHT DIGITIZATION AND FEEDBACK DELAY

In this section, we investigate the effects of weight digitiza-
tion and feedback delay on the performance of Tx diversity with
basis selection.

A. Effects of Weight Digitization

Before transmitting feedback information to the transmitter,
the weight vector should be digitized. If we assume that bits
are required for digitizing each element of , then the total
number of bits for is bits. The reason for

, not , is that one of Tx antennas may be
viewed as a reference antenna, and the relative weights for other
antennas are needed. Currently, two different values of are
used for UMTS closed-loop Tx diversity with two Tx antennas.
In mode 1, is one bit, and two consecutive bits are used for
Tx weight. In mode 2, is four bits: one bit for gain and three
bits for phase. A detailed description of these two modes can be
found in [4] and [16].

If we use , instead of , for Tx weight vector, the se-
lected basis vectors should be specified. When the approxima-
tion is made in a -dimensional subspace, there are com-
binations in selecting basis vectors out of vectors, and the
required number of bits to specify the basis vector combination
is , where is the smallest integer greater than or
equal to . The required number of bits for digitizing the co-
efficients ’s may be expressed as . Thus, the total
required number of bits for may be expressed as

(23)

Table I shows the total required number of bits for digitizing
and , when bits. Compared to the optimum

weight vector , the use of a weight vector by basis selection
offers 42% reduction in the total required number of bits,

when and ; and 68% reduction when and
. Note that this reduction amount increases as the number

of Tx antennas increases.
To digitize the ordered coefficients ’s, we first calculate

the relative coefficients. If we set one of ’s to the refer-
ence coefficient, then additional feedback information about the
index of the reference coefficient is needed, since the feedback
information about the selected basis vector does not contain the
order information. To avoid this, we reorder ’s according to
their indexes: , where the indexes ’s are the as-
cent-ordered indexes of ’s. For example, if ’s are ,

, , and , then ’s are given as ,
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TABLE I
TOTAL REQUIRED NUMBER OF BITS FOR DIGITIZING www AND ~www (Q = 4 BITS)

, , and . If we set one of ’s to the refer-
ence coefficient, then there is no need to feedback the index of
this reference coefficient, since the transmitter can extract this
index from the selected basis vectors information. For example,
if we set the coefficient with the th index to the reference
coefficient, then the transmitter extracts this index by choosing
the th smallest number among the numbers indicating the
selected basis vectors. For simplicity, let be the reference
coefficient. Then the relative coefficients may be expressed

as , , where
and denote the relative amplitude and relative phase, respec-
tively. Note that and are not needed to be fed back since
they are always 1 and 0, respectively.

When is small, the relative amplitudes ’s vary over a
small range with high probability since the coefficients ’s
are associated with the largest amplitudes. For example, when

, , and , although can vary over ,
the probability that is less than two is as high as 0.988.
Unlike the relative amplitudes, the relative phases ’s vary
over with equal probability. Consequently, in this letter,
we consider a phase-only digitization scheme, with which the
relative amplitudes ’s are assumed to be the same and not
digitized, and only the relative phases ’s are digitized. A
candidate set for a digitized relative phase may be written
as , where denotes the number of bits
used to digitize one coefficient. A digitized relative phase for

is determined by choosing an element of nearest to .
Let the digitized relative phase for be . Then the digitized
Tx weight vector , which is referred to as the phase-only
digitized (POD) basis selection, may be expressed as

(24)

where is the basis vector corresponding to . Note that
when , becomes a POD optimum weight vector.

A bit representation for the digitized relative phase may be
obtained using a predetermined mapping table, in which el-
ements in are uniquely mapped onto combinations of

Fig. 5. Average BEP performance for various Q as a function of TxSNR �,
when M = 8 and L = 1.

bits. Similar mapping tables may be applied to obtain a bit rep-
resentation for the selected basis vectors. Along with the bits
for the selected basis vectors, the bits for the digitized rela-
tive phases are fed back to the transmitter. Using these bits and
two mapping tables, the transmitter generates the digitized Tx
weight vector , which is the same as that calculated at the
receiver. To investigate the effects of weight digitization alone,
let the feedback delay be zero. Then the RxSNR in (11) may be
modified to

(25)

Substituting for in (13) and using Monte Carlo integra-
tion, we can easily obtain the average BEP. Fig. 5 shows the av-
erage BEP of Tx diversity with the POD basis selection
when and . For comparison, the average BEP of
Tx diversity with the POD optimum weights is also
plotted. This figure shows that the performance of Tx diversity
with the POD basis selection improves as increases,
and the performance with bits is almost the same with
that without weight digitization. This indicates that the POD
is sufficient for coefficient digitization of basis selection with
small . For the POD optimum weights , however, even
the performance with bits does not approach that without
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weight digitization. Thus, an amplitude digitization as well as a
phase digitization is needed for digitizing the optimum weights.

B. Effects of Feedback Delay

In this subsection, we investigate the effects of feedback delay
on the performance of Tx diversity with the POD basis selection
described in Section V-A. In real systems, a feedback channel
is usually employed with the limited bit rates. For example, in
the UMTS, the feedback bit rate for closed-loop Tx diversity
is limited to 1500 b/s [4]. The limited feedback bit rate may
induce a feedback delay, which is the required time for updating

. Let the feedback bit rate in bits per second be , then the
feedback delay may be expressed as

(26)

where is given in (23). Note that the feedback delay
is proportional to . Thus, the feedback delay of the POD
basis selection is smaller than that of the POD optimum weights,
since for basis selection, as shown in Table I, is smaller
than that for optimum weights when is given.

When there is seconds feedback delay, the current Tx
weight vector is a delayed one that was calculated at seconds
ago. If we represent the current digitized Tx weight vector
calculated at seconds ago as , the RxSNR in (25) may
be modified to

(27)

Note that the current Tx weight vector was calculated
based on the previous channel matrix , which denotes the
channel matrix at seconds ago. Using a first-order Markov
model, may be expressed as [10]

(28)

where is the correlation coefficient between the elements of
the current channel and those of the previous channel ,
and may be expressed as , where is the
zeroth-order Bessel function and is the Doppler frequency
in Hertz [10]. The matrix denotes the uncorrelated compo-
nents between and , and consists of i.i.d. circular complex
Gaussian random variables of zero mean and unit variance.

The average BEP may be obtained using Monte Carlo inte-
gration with respect to and . Fig. 6 shows the average
BEP of Tx diversity with the POD basis selection as
a function of Doppler frequency when , ,
dB, and b/s. For comparison, the average BEP of
Tx diversity with the POD optimum weights is also
plotted. Due to the effects of feedback delay, the performance
of Tx diversity with the POD basis selection gradu-
ally degrades as Doppler frequency increases. For low Doppler
frequencies ( 1 Hz), the effect of feedback delay is negligible,
since the channel varies very slowly. Thus, the Tx diversity with
the POD optimum weights outperforms that with the POD basis
selection. As Doppler frequency increases, however, the perfor-
mance of Tx diversity with the POD basis selection becomes

Fig. 6. Average BEP performance as a function of Doppler frequency f ,
when M = 8, L = 1, � = 5 dB, and f = 1500 b/s.

better than that with the POD optimum weights. For example,
when bits, the Tx diversity with the POD basis selec-
tion outperforms that with the POD optimum weights when the
Doppler frequency is higher than 5 Hz. This is because the feed-
back delay of the POD basis selection is smaller than that of the
POD optimum weights for a given .

VI. CONCLUSIONS

In this letter, we have presented an efficient weight vector
representation which is appropriate for closed-loop Tx diversity
with numerous Tx antennas, and investigated its performance.
This representation, called basis selection, significantly reduces
the amount of feedback information with small performance
degradation. Performance analysis showed that when the degree
of approximation is half the number of Tx antennas, the perfor-
mance degradation by basis selection is less than 1 dB. It was
found that the Tx diversity with basis selection offers a full di-
versity order regardless of the degree of approximation. It was
also found that as the number of receive antennas increases, the
performance degradation due to basis selection decreases and
becomes zero. If four bits are used to represent each coefficient,
the basis selection offers 42% reduction in the total required
number of bits when the number of Tx antennas and
the degree of approximation ; and 68% reduction when

and . It was found that a POD is sufficient for
the coefficient digitization of basis selection with small . Due
to the effect of feedback delay, the performance of Tx diversity
with the POD basis selection gradually degrades as Doppler fre-
quency increases. Nevertheless, due to the reduction in the total
required number of bits, the Tx diversity with the POD basis se-
lection outperforms that with the POD optimum weights at high
Doppler frequencies.
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