Codes for Iterative Decoding from Partial Geometries

Sarah J. Johnson
School of Elec. Eng. & Comp. Sci.
University of Newcastle,
Callaghan NSW 2308, Australia
e-mail: sarah@ee.newcastle.edu.au

Abstract — This work develops codes suitable for iterative decoding using the sum-product algorithm. We consider regular low-density parity-check (LDPC) codes derived from partial geometries, a large class of combinatorial structures which include several of the previously proposed algebraic constructions for LDPC codes as special cases. We derive bounds on minimum distance and $\operatorname{rank}_2(H)$ for codes from partial geometries, and present constructions and performance results for two classes of partial geometries which have not previously been proposed for use with iterative decoding.

I. INCIDENCE AND DESIGNS

A design $\mathcal{D}=(\mathcal{P},\mathcal{B},\mathcal{I})$ consists of a finite non-empty set \mathcal{P} of points and a finite non-empty set \mathcal{B} of blocks, together with an incidence relation $\mathcal{I}\subseteq\mathcal{P}\times\mathcal{B}$. The incidence matrix N of \mathcal{D} is a $|\mathcal{P}|\times|\mathcal{B}|$ matrix indexed by the points and blocks of \mathcal{D} , with $N_{i,j}=1$ if point i is incident with block j. The adjacency matrix of \mathcal{D} is a $|\mathcal{P}|\times|\mathcal{P}|$ matrix A, indexed by the points of \mathcal{D} with $A_{i,j}=1$ if the points i and j are incident with the same block in \mathcal{D} . The adjacency matrix is said to be strongly regular if the number of other points with which a pair of points are both incident depends only on whether or not the pair of points are themselves incident.

In what follows we consider partial geometries, a class of designs with strongly regular A. For a partial geometry, $\operatorname{pg}(s,t,\alpha)$, each point p is incident with t+1 blocks and each block B incident with s+1 points, any two blocks have at most one point in common, and for any non-incident point-block pair (p,B) the number of blocks incident with both p and a point in B equals some constant α .

II. CODES FROM PARTIAL GEOMETRIES

We can take the incidence matrix N of a partial geometry as the parity-check matrix H of an LDPC code C with $|\mathcal{P}|$ parity-checks, length $|\mathcal{B}|$, column weight s+1, row weight t+1, and girth ≥ 6 . Using the properties of strongly regular graphs we can find the eigenvalues of A and then show that NN^T has eigenvalues (s+1)(t+1), $s+t+1-\alpha$, 0 with corresponding multiplicities

$$1, \frac{st(s+1)(t+1)}{\alpha(s+t+1-\alpha)}, \frac{s(s+1-\alpha)(st+\alpha)}{\alpha(s+t+1-\alpha)}.$$
 (1)

Using Tanner's bit- and parity-oriented bounds [3] we obtain the following

Lemma 1 The minimum distance of a code from $pg(s, t, \alpha)$ satisfies $d_{\min} \ge \max\{(t+1)(s+1-t+\alpha)/\alpha, 2(s+\alpha)/\alpha\}$.

Designs from two classes of partial geometries, balanced incomplete block designs, BIBDs ($\alpha = s + 1$), and generalized quadrangles, GQs ($\alpha = 1$), have been studied previously for

Steven R. Weller
School of Elec. Eng. & Comp. Sci.
University of Newcastle,
Callaghan NSW 2308, Australia
e-mail: steve@ee.newcastle.edu.au

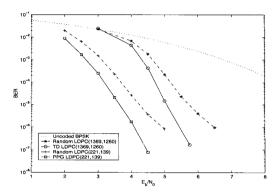


Figure 1: BER vs. E_b/N_0 for LDPC codes in an AWGN channel

use as LDPC codes (see e.g. [2, 4]). The minimum distance bounds from Lemma 1 are weak for the BIBDs, nets $(\alpha=t)$ and transversal designs, TDs $(\alpha=s)$, and a better bound is provided by Massey's bound $(d_{\min} \geq s+2$ in this case). However, for the proper partial geometry $(1 < \alpha < \min\{s,t\})$ and generalized quadrangle codes the bounds from Lemma 1 significantly improve upon Massey's bound to give a minimum distance bound of up to twice the column weight of H.

The excellent performance of the finite geometry codes [2] has been attributed to the highly redundant parity-check matrices of those codes [2, 4], motivating the search for other designs which give low rank parity-check matrices. A simple upper bound on the 2-rank of a code is the number of non-zero eigenvalues of HH^T which we know from (1):

$$\operatorname{rank}_2(H) \ \leq \ \frac{st(s+1)(t+1)}{\alpha(t+s+1-\alpha)} + 1.$$

Further, we use results from [1] to show that this bound is tight (within 1 of the actual rank) for the partial geometry codes with $\mu_2 = s + t + 1 - \alpha \equiv 1 \text{mod} 2$. We see that, with the exception of some BIBDs, every partial geometry produces a code with linearly dependent rows in H.

Fig. 1 shows the performance of LDPC codes derived from a TD(2, 36, 2) and a proper pg(12, 12, 9) compared with randomly constructed codes of the same rate and length.

References

- A. E. Brouwer and C. A. van Eijl. On the p-rank of strongly regular graphs. Algebra and Combinatorics, 1:72-82, April 1992.
- [2] Y. Kou, S. Lin, and M. P. C. Fossorier. Low-density parity-check codes based on finite geometries: A rediscovery and new results. *IEEE Trans. Inform. Theory*, 47(7):2711–2736, November 2001.
- [3] R. M. Tanner. Minimum distance bounds by graph analysis. IEEE Trans. Inform. Theory, 47(2):808–821, February 2001.
- [4] P. O. Vontobel and R. M. Tanner. Construction of codes based on finite generalized quadrangles for iterative decoding. In Proc. ISIT Washington, DC, June 24-29 2001.