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Abstract—We investigate the joint source-channel coding
problem of transmitting nonuniform memoryless sources over
binary phase-shift keying-modulated additive white Gaussian
noise and Rayleigh fading channels via turbo codes. In contrast
to previous work, recursive nonsystematic convolutional encoders
are proposed as the constituent encoders for heavily biased
sources. We prove that under certain conditions, and when the
length of the input source sequence tends to infinity, the encoder
state distribution and the marginal output distribution of each
constituent recursive convolutional encoder become asymptoti-
cally uniform, regardless of the degree of source nonuniformity.
We also give a conjecture (which is empirically validated) on the
condition for the higher order distribution of the encoder output to
be asymptotically uniform, irrespective of the source distribution.
Consequently, these conditions serve as design criteria for the
choice of good encoder structures. As a result, the outputs of our
selected nonsystematic turbo codes are suitably matched to the
channel input, since a uniformly distributed input maximizes the
channel mutual information, and hence, achieves capacity. Simu-
lation results show substantial gains by the nonsystematic codes
over previously designed systematic turbo codes; furthermore,
their performance is within 0.74–1.17 dB from the Shannon limit.
Finally, we compare our joint source-channel coding system with
two tandem schemes which employ a fourth-order Huffman code
(performing near-optimal data compression) and a turbo code that
either gives excellent waterfall bit-error rate (BER) performance
or good error-floor performance. At the same overall transmission
rate, our system offers robust and superior performance at low
BERs ( 10

4), while its complexity is lower.

Index Terms—Additive white Gaussian noise (AWGN) and
Rayleigh fading channels, joint source-channel coding, nonsys-
tematic turbo codes, nonuniform independent and identically
distributed (i.i.d.) sources, Shannon limit.
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I. INTRODUCTION

I N MOST OF the theory and practice of error-control
coding, the input to the channel encoder is assumed to be

uniform, independent, and identically distributed (i.i.d.); i.e.,
the source generates a memoryless binary stream ,
where . In reality, however, a substantial
amount of redundancy resides in natural sources. For example,
many uncompressed binary images (e.g., facsimile and medical
images) may contain as much as 80% of redundancy in the
form of nonuniformity (e.g., [1], [2]); this corresponds to a
probability . In this case, a source
encoder would be used. Such an encoder is optimal, if it can
eliminate all the source redundancy and generates uniform
i.i.d. outputs. However, most existing source encoders are sub-
optimal, particularly fixed-length encoders that are commonly
used for transmission over noisy channels; thus, the source-en-
coder output contains some residual redundancy. For example,
the 4.8 kb/s US FS 1016 CELP speech vocoder produces line
spectral parameters that contain 41.5% of residual redundancy
due to nonuniformity and memory [3]. Variable-length or
entropy codes (e.g., Huffman codes), which can be asymptoti-
cally optimal (for sufficiently large blocks of source symbols),
could be employed instead of fixed-length codes or in con-
junction with them. However, error-propagation problems in
the presence of channel noise are inevitable, and are some-
times catastrophic. Therefore, the reliable communication of
sources with a considerable amount of redundancy (residual
if compressed, or natural if not) is an important issue. This,
in essence, is a joint source-channel coding problem. Blizard
[4], Koshelev [5], and Hellman [6] are among the first few who
proposed convolutional coding for the joint source-channel
coding of sources with natural redundancy, where the source
statistics are used at the receiver. Specifically, the convolutional
encoding of such sources (Markov and nonuniform sources)
over memoryless channels, and their decoding via sequential
decoders employing a decoding metric that is dependent on
both source and channel distributions, were studied in [4] and
[5]. The computational complexity of such sequential decoders
is analyzed, and it is shown that for a range of transmission
rates, the expected number of computations per decoded bit is
finite. In [6], a lossless joint source-channel coding theorem
for convolutional codes is established. It is proved that for a
discrete memoryless source and channel pair, there exist con-
volutional codes of rate that can be used to perform reliable
joint source and channel coding (under maximum a posteriori
(MAP) decoding) as long as , where is the source
entropy and is the channel capacity. Recently, several studies
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(e.g., [1]–[3], [7]–[22], etc.) have also shown that appropriate
use of the source redundancy can significantly improve the
system performance.

Turbo codes have been regarded as one of the most ex-
citing breakthroughs in channel coding. The original work
by Berrou et al. demonstrated excellent performance of turbo
codes for uniform i.i.d. sources over additive white Gaussian
noise (AWGN) channels [23]. The work was later extended to
Rayleigh fading channels showing comparable performance
[24]. Recently, McEliece pointed out that turbo codes have
also great potential on nonstandard channels (asymmetric,
nonbinary, multiuser, etc.) [25]. However, the above papers
focus on uniform i.i.d. sources. In [26] and [27], the authors
considered using turbo codes for sources with memory. To the
best of our knowledge, the issue of designing turbo codes for
nonuniform i.i.d. sources has not been fully studied, except for
the recent work in [28] and [29], in which standard systematic
turbo codes (STCs) are considered, where each constituent
encoder is a recursive systematic convolutional (RSC) encoder.
Although the gains achieved by these codes are considerable
with respect to the original Berrou code, their performance
gaps vis-a-vis the Shannon limit, also known as the optimal
performance theoretically achievable (OPTA), are still rela-
tively big for heavily biased sources (e.g., with ).
Analysis on the encoder output reveals that the drawback
lies in the systematic structure, which results in a mismatch1

between the biased distribution of the systematic bit stream
and the uniform input distribution needed to achieve channel
capacity. As we will show in this paper, when some constraints
are satisfied, recursive nonsystematic convolutional (RNSC)
encoders can generate asymptotically uniform outputs, even
for extremely biased sources. But it is known that the capacity
of a binary-input AWGN or Rayleigh channel is achieved by
a uniform i.i.d. channel input. Furthermore, it was shown in
[30] by Shamai and Verdú that the empirical distribution of any
good code (a code with rate close to capacity and vanishing
probability of error for sufficiently long blocklengths) should
approach the capacity-achieving input distribution.2 Therefore,
we propose using RNSC turbo encoders. Simulation results
demonstrate substantial gains over STCs. The OPTA gaps for
heavily biased sources are, hence, significantly reduced.

This paper is organized as follows. In Section II, we illus-
trate the need to examine nonsystematic turbo codes (NSTCs)
instead of systematic codes for the transmission of strongly
nonuniform sources by evaluating the capacity loss incurred
when such sources are directly (e.g., via a systematic bit
stream) sent over binary phase-shift keying (BPSK)-modulated
AWGN or Rayleigh fading channels. In Section III, we give
two asymptotic properties (when the input sequence length

1A similar mismatch in the context of the design of scalar quantizers for
nonuniform memoryless sources over binary symmetric channels (BSC) was
also observed in [15] and [17], and addressed via the use of a rate-one convolu-
tional encoder. This method is, however, unsuitable for our problem, as it will
result in error propagation at the receiver due to our use of large data blocks in
an attempt to achieve the Shannon limit.

2More precisely, it is shown in [30, Th. 4] that for any discrete memoryless
channel, and for any fixed integer k > 0, the kth-order empirical distribution of
any regular good code sequence converges (in the Kullback–Leibler divergence
sense) to the k-product of the capacity-achieving distribution.

tends to infinity) of recursive convolutional encoders whose
input is a nonuniform i.i.d. source with arbitrary degree of
nonuniformity. Design criteria for good nonsystematic encoder
structures based on these two properties are introduced in Sec-
tion IV. The iterative decoding design for such NSTCs is also
addressed. Simulation results and performance comparisons to
the Shannon limit are presented in Section V. In Section VI,
we compare our joint source-channel coding system with two
tandem coding schemes that employ a nearly optimal source
code followed by Berrou’s (37,21) turbo code [23] (which
gives excellent waterfall bit-error rate (BER) performance),
or a systematic (35,23) turbo code (which gives a slightly
inferior waterfall BER performance but a lower error-floor
performance). Finally, conclusions are given in Section VII.

II. CAPACITY LOSS DUE TO CHANNEL-INPUT MISMATCH

In this section, we illustrate why systematic codes are not
well matched to symmetric channels (due to their systematic
bit stream) when the source is very biased ( ). This
is achieved by examining the capacity loss incurred in BPSK-
modulated AWGN channels and memoryless Rayleigh fading
channels with known channel state information (CSI) [24] under
such biased sources as input. The channel capacity is the largest
rate at which information can be transmitted (via a block code)
and recovered with a vanishingly low probability of error. For
discrete-input memoryless channels, it is well known that the
capacity is given by the maximum of the mutual information
between the channel input and output: ,
where the maximization is taken with respect to all input dis-
tributions . When the channel is symmetric, the capacity is
achieved by a uniform channel input distribution. For AWGN
channels, the capacity is

Similarly, for Rayleigh fading channels, the capacity is

Note that the average energy per channel symbol , and
is the variance of the AWGN. Therefore, both

and are functions of the signal-to-noise ratio
(SNR) .

When a nonuniform i.i.d. source (with distribution )
is directly fed into either channel, the channel input is obviously
nonuniform, and the capacity cannot be fully exploited since
the uniform distribution achieves capacity for such channels.
Therefore, the actual achievable capacity for AWGN channels
with such a biased input is
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TABLE I
ILLUSTRATION OF CHANNEL-INPUT MISMATCH FOR AWGN AND RAYLEIGH

FADING CHANNELS: C VERSUS C FOR p = 0:8; 0:9

and for Rayleigh fading channels, it is

As a result, if one transmits the nonuniform source directly, the
capacity cannot be fully realized, due to the mismatch between
the channel input distribution and the capacity-achieving dis-
tribution. This is numerically illustrated in Table I for various
values of SNR, where we note that in certain cases, can
be as low as 41.4%. This leads us to conclude that for the trans-
mission of very biased nonuniform sources, we should eliminate
the systematic bit stream in the encoder structure, and hence,
investigate the design of nonsystematic codes in our attempt to
avoid such mismatch-incurred performance loss.

III. ASYMPTOTIC PROPERTIES OF RECURSIVE ENCODERS

In this section, we prove two asymptotic properties of re-
cursive convolutional encoders when the input sequence is a
nonuniform i.i.d. source , with distribution and length
approaching infinity. Throughout this section, we assume that

and that . We first show that, regard-
less of the value of , when certain conditions are satisfied, the
parity output of the encoder is asymptotically uniform. Based
upon empirical observations, we also give a conjecture on the
condition when the encoder output has higher order asymptot-
ically uniform distributions (the joint distribution of
consecutive parity bits). We next show that, if the feedback tap
coefficient of the last memory element is unity, all of the en-
coder states will be reached with asymptotically equal proba-
bility. The conditions for the above two asymptotic properties
are both necessary and sufficient. These two properties offer per-
tinent design criteria, which will be used in the next section for
constructing good encoder structures of turbo codes for heavily
biased, nonuniform i.i.d. sources.

Fig. 1. General structure of a recursive convolutional encoder.

We first study the asymptotic distribution of a single parity-
check output of a constituent recursive convolutional encoder
(either systematic or nonsystematic, see Fig. 1). We begin by
quoting the following result from [33, Th., p. 1692] with
and [34, Lemma 3, p. 1855].

Lemma 1: Consider the sequence , where is a
stationary sequence of independent symbols from GF(2) with
probability , and is a deterministic
sequence containing an infinite number of nonzero terms. If

, where the summation is modulo-2, then

Using the above lemma, we can now establish the following
result.

Theorem 1: For a recursive convolutional encoder with feed-
back polynomial and feed-forward polynomial ,
the necessary and sufficient condition that the encoder output is
asymptotically uniform for a nonuniform i.i.d. source with dis-
tribution (regardless of the value of ) is that is not
divisible by in GF(2).

Proof:
Necessary Part: Suppose the source generates ,

and the encoder produces an output sequence of .
Denote the encoder input and output in polynomial forms as

and , respec-
tively. Also, define . Then for a recursive
convolutional encoder with feedback polynomial and
feed-forward polynomial , we have

Suppose that is divisible by in GF(2). Then
is a polynomial of with finite degree. Therefore, any

bit of the encoder output is essentially a modulo-2 summa-
tion of a finite number of bits from . However, a fi-
nite modulo-2 summation of nonuniform i.i.d. variables would
still be nonuniform; therefore, the encoder output is
nonuniform.

Sufficient Part: When is not divisible by in
GF(2), is an infinite polynomial of
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where is binary. Then

where summation is in mod

Letting , where . Since
is a rational polynomial fraction, when is

not divisible by in GF(2), is a periodic series. There-
fore, when , the number of ones in (and hence,
in ) also goes to infinity. From Lemma 1, we obtain that

.
In [30], Shamai and Verdú proved that for any fixed positive

integer , the th-order empirical distribution of any good code
(i.e., a code approaching capacity with asymptotically vanishing
probability of error) converges to the input distributions that
achieve channel capacity. The capacity of a binary-input AWGN
or Rayleigh channel is achieved when its mutual information is
maximized by an i.i.d. uniform input. Therefore, having higher
order uniform distributions (in addition to the first-order dis-
tribution) in encoder outputs is also desirable. A related re-
sult has been established by Leeper in [34], which states that
for any binary source (with unknown statistics), recursive con-
volutional encoders can produce a parity output whose first-
and second-order distributions can be arbitrarily close (within
a given value ) to uniform for an appropriately chosen large
value of the source sequence under the following conditions: 1)
the source is first passed through the equivalent of a BSC with
an arbitrarily small, but nonzero, error probability ; 2) the en-
coder’s memory size is greater than a certain value determined
by and . For our system, which does not satisfy the above
(rather stringent) conditions, we can state the following conjec-
ture based on extensive simulations.

Conjecture: Suppose a nonuniform i.i.d. source with distri-
bution is input to a recursive convolutional encoder with feed-
back polynomial and feed-forward polynomial . If

is in its minimal form, where is the degree of
, then the th-order distribution of the encoder output is

asymptotically uniform for any and .
A proof for the above conjecture with arbitrary and

is not obvious. However, the conjecture has been verified
by empirical estimations of all possible combinations of recur-
sive convolutional encoders with memory 4.

The above results indicate promising potential when RNSC
encoders are used as the constituent turbo-code encoders for the
transmission of nonuniform i.i.d. sources. However, in this large
family of candidate encoders, some structures offer inferior per-
formance. Consider a heavily biased nonuniform i.i.d. sequence
which is used as the input of a recursive convolutional encoder;
for some structures, with high probability the state transition is
confined within a few encoder states, while other states may
rarely or never be reached. This inefficient use of the encoder
memory would result in performance degradations. Therefore,
we next establish the condition for the asymptotic uniformity on
the distribution of the encoder states. This result will be a useful
design criterion in eliminating poor encoder structures.

Lemma 2: For a recursive convolutional encoder, as depicted
in Fig. 1, at time , each state can be reached from only

two distinct (state, input) pairs and ,

where the two states at time satisfy . The necessary
and sufficient condition for is .

Proof: The encoder state is determined by the content of
each memory element of the shift register. Let the state at time

be . By the shift register’s structure,
we have

(1)

(2)

where and the summation are modulo-2. Therefore, can
only be reached from two states which only differ at . Now
rewrite (1) as follows:

For both states, and , the summand produces the same
result. When , the input is independent of the
encoder state being or . When , different values
of require different values of .

Theorem 2: Consider a recursive convolutional encoder with
feedback , and let a nonuniform i.i.d. source
with distribution be its input. Then the encoder state distri-
bution is asymptotically uniform (as the source sequence length
tends to infinity), regardless of the value of iff .

Proof: The shift registers’ states form a fully connected
(irreducible) Markov chain when ; so the state distri-
bution will asymptotically converge to the steady-state distribu-
tion. Then it is equivalent to show that the uniform distribution
is or is not the steady-state distribution. From Lemma 2, there
are only two (state, input) pairs and
that may transit to state . Without loss of generality, denote
the possible encoder state as . Assuming that at
time the state distribution is uniform, i.e.,
for , then at time , if , we have

where the second equality is due to the independence of and
, and the last equality holds because by

Lemma 2. Therefore, yields that the uniform distribu-
tion is the steady distribution of the encoder states. On the other
hand, if , by Lemma 2, ; then

. Thus, when the source
is biased, the uniform distribution is not the steady-state distri-
bution when . In other words, when , biased
sources result in a biased distribution of the encoder states, and
the steady-state distribution is not equal to the uniform distribu-
tion. Hence, for any , , the encoder state
distribution is asymptotically uniform iff .
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Fig. 2. Nonsystematic turbo-encoder structure a).

Fig. 3. Nonsystematic turbo-encoder structure b).

IV. NSTCs

In most of the turbo-codes literature, the turbo-code encoders
are systematic; however, NSTCs were recently proposed by
Costello et al. [35], followed by a series of papers in [36]–[38].
The scenario in these papers is still for uniform i.i.d. sources.
The motivation for using NSTCs as an alternative to their
systematic peers is due to their larger code space; therefore,
there is a potential that better codes might be found. In [38],
Massey et al. construct an asymmetric NSTC that outperforms
Berrou’s (37,21) code by about 0.2 dB at the BER level
with a block-length size of 4096. For larger block lengths, we
expect that Massey’s code will still outperform Berrou’s code,
although it is not clear if the 0.2-dB gain would be maintained.

As illustrated in Section II, when nonuniform i.i.d. sources
get heavily biased, a possibly significant performance loss may
result, due to the systematic structure. Furthermore, in light of
Shamai and Verdú’s result [30], Theorem 1, and the conjecture,
we note that NSTCs seem to provide a suitable solution for the
source-channel coding of such sources.

A. Design of Good Encoder Structures

Figs. 2 and 3 show our proposed nonsystematic turbo en-
coders. In a), the first constituent encoder has two parity out-
puts and , while the second has only one parity output

, so the overall rate is 1/3. This structure has been exten-
sively used in [35]–[38]. In b), both constituent encoders have
two parity outputs, and the overall rate is 1/4. Structure b) can
achieve the same overall rate of 1/3 via puncturing. It is also
clear that structure a) is a special case of structure b), obtained
by completely puncturing ; therefore, a generally designed
decoder for structure b) can also be employed for structure a).

Ideally, good design criteria are analytically based on the
minimization of the error probability. However, to the best of
our knowledge, all available error bounds for turbo codes are
obtained by averaging over a code ensemble or by assuming
uniform interleaving and maximum-likelihood (ML) decoding,
while turbo codes in fact employ random interleaving, with each
constituent decoder adopting the Bahl–Cocke–Jelinek–Raviv
(BCJR) algorithm [39], which is a MAP decoding algorithm.

Furthermore, the bounds are useful only in the error-floor
region at high SNRs; they are not tight in the waterfall region
[40]–[42]. Since our goal is to obtain the best waterfall perfor-
mance, we revert to other methods to find good design criteria.

As in [28] and [29], we focus on symmetric 16-state encoders.
The feedback tap coefficients are { , , , , }. We always
have , since it provides the tap for the encoder input.
Denote the feedback polynomial as

, and the two feed-forward polynomials as
and , respectively. Then for such an RNSC encoder, there
are altogether possible
combinations; an exhaustive search over the entire code space
is clearly not feasible. However, the two asymptotic properties
studied in Section III serve as good design criteria to eliminate
poor encoder structures.

First, as proved by Theorem 2 in Section III, we choose to
have the last feedback tap coefficient to fully exploit
the encoder memory. For the feed-forward polynomials, having

or , where , yields
the same performance, since the only difference is a shift of
time delay. The same holds for having or

. Therefore, without loss of generality, we
can choose to fix the first tap coefficient of both feed-forward
polynomials to one. Furthermore, for obvious reasons, we do not
want the two feed-forward polynomials to be identical. Then the
total number of possible encoders in our search space is reduced
down to , which is still impractical
for an exhaustive search. Second, according to Theorem 1, we
should only consider the choices of and such that

is not divisible by . Furthermore, by our empirically
verified conjecture, given , the selection of relatively
prime and can guarantee that the encoder output
has an asymptotically uniform fourth-order distribution. Thus,
additional inferior candidate encoder structures can be elimi-
nated. Finally, again to avoid an exhaustive search, we take ad-
vantage of the optimization results found in STCs [29]; i.e., we
first find the best pair of and , and then search for
the best second feed-forward polynomial . The iterative
search procedure for (sub)optimal encoder structures, given a
source distribution, is implemented as follows.

1) Using an STC, fix the feed-forward polynomial
and search for the best feedback polynomial with

.
2) With the found in step 1), search for the best

among all remaining possible choices, with the condition that
the greatest common divisor of and is 1.

3) With the found in step 2), go back to step 1). If
coincides with the one obtained in step 1), go to step 4); oth-
erwise, proceed to step 2).

4) For an NSTC, fix the pair ( , ) found above and
search for the best second feed-forward polynomial .

B. Decoder Design

When RNSC encoders are used as constituent encoders, un-
like in STCs, the a posteriori log-likelihood ratio in the
turbo decoder [23], [43] can only be decomposed into two terms
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where the new extrinsic term involves two parity sequences. For
AWGN channels, we have

where the summations for and are both over all possible
states, and for

where is the encoder state at time , and and are the
noise-corrupted version of and , which are the parity bits
generated from the two feed-forward polynomials.

For Rayleigh fading channels, the extrinsic term needs to be
modified to appropriately incorporate the channel statistics. The
extrinsic term therefore becomes

where for

where and are the fading factors. When the source is
nonuniform i.i.d., is used as the initial a priori
input to the first decoder at the first iteration; then at
the following iterations, is used as the
new extrinsic information for both constituent decoders at each
iteration.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we present simulation results of our NSTCs
for uniform i.i.d. sources over BPSK-modulated AWGN and
Rayleigh fading channels with known CSI.3 In the following,
all NSTCs adopt the decoder discussed in Section IV-B, while
all systematic codes employ the BCJR algorithm with the mod-
ification proposed in [29].

A. Performance Evaluations

The performance is measured in terms of the BER versus
, where is the average energy per source

bit. All simulated turbo codes have 16-state constituent encoders

3It is assumed throughout that the decoder has perfect knowledge of the
source distribution p . Simulations on the effect of mismatch in p show little
performance loss if the value of p used at the decoder is within a reasonable
distance from the true p . For example, when the true distribution is p =

0.9 and the decoder assumes it is 0.8, the performance degradation is no more
than 0.1 dB. Furthermore, information on p can be sent to the receiver as an
overhead with negligible bandwidth loss. Finally, if no overhead information
is sent, p can possibly be estimated at the decoder (e.g., see [27] where the
source statistics are estimated at the receiver in the context of turbo decoding
of hidden Markov sources).

and use the same pseudorandom interleaver introduced in [23].
The sequence length is and at least
200 blocks are simulated; this would guarantee a reliable BER
estimation at the level with 524 errors. The number of it-
erations employed in the decoder is 20; note that additional it-
erations result in minor improvements. All results are presented
for turbo codes with structure b) encoders (see Fig. 3), as they
provide a better performance than codes with structure a) en-
coders. Simulations are performed for rates and

with and . From our simulations, for
both rates 1/3 and 1/2, the best found RNSC encoder structure
for and for both channels has each constituent en-
coder with feedback polynomial 35 and feed-forward polyno-
mials 23 and 25; this is denoted by the octal triplet (35,23,25).
For , the best structure is (31,23,27). Several other en-
coders give very competitive performance, such as (35,23,31)
for , (31,23,35) and (31,23,37) for . We
hereafter characterize all NSTCs by triplets as described above
(while their systematic peers are represented by the conven-
tional octal pair).

Fig. 4 shows the performance over AWGN channels of our
rate-1/3 NSTCs in comparison with their systematic peers inves-
tigated in [28] and [29], as well as with Berrou’s (37,21) code,
which offers the best waterfall performance (among 16-state en-
coders) for uniform i.i.d. sources. At the BER level, when

, our (35,23,25) NSTC offers a 0.45-dB gain over its
(35,23) systematic peer; when , our (31,23,27) code
offers an improvement of 0.89 dB over the systematic (31,23)
code.4 In comparison with Berrou’s (37,21) code performance,
the gains achieved by exploiting the source redundancy and en-
coder optimization are, therefore, 1.48 dB and 3.25 dB for
0.8 and 0.9, respectively.

Fig. 5 shows similar results over AWGN channels for rate-
1/2. In this case, the gains are generally more significant. In
comparison with the best STCs, at the BER level, for

0.8 and 0.9, the gains achieved are 0.69 and 1.56 dB,
respectively. Furthermore, the gains over Berrou’s code due to
combining the optimized encoder with the modified decoder
that exploits the source redundancy are 1.57 dB ( )
and 3.72 dB ( ).

Simulations over Rayleigh channels are also provided in
Figs. 6 and 7. For rate-1/3 codes, at a BER, when

, our (35,23,25) NSTC provides a 0.40 dB gain over
its (35,23) systematic peer; when , the improvement
is 1.01 dB with encoder structure (31,23,27). In comparison
with Berrou’s (37,21) code, the gains achieved by exploiting
the source redundancy and encoder optimization are 1.76 and
3.87 dB for 0.8 and 0.9, respectively. For rate-1/2, as
shown in Fig. 7, the gains are more pronounced. In comparison

4It should also be indicated that our nonsystematic joint source-channel turbo
codes maintain a similar level of performance gains over their systematic peers
when the sequence length is shorter than 262 144. For example, for a sequence
length of N = 128 � 128 = 16384, with p = 0:9 and the same rate
and channel conditions as in Fig. 4, our (31,23,27) nonsystematic code offers
around 0.9 dB gain over its (31,23) systematic peer; a similar gain is obtained
for N = 32 � 32 = 1024. These gains are interesting to note for practical
situations where delay may be limited.
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Fig. 4. Turbo codes for nonuniform i.i.d. sources, R = 1=3,N = 262144,
AWGN channel.

Fig. 5. Turbo codes for nonuniform i.i.d. sources, R = 1=2,N = 262144,
AWGN channel.

Fig. 6. Turbo codes for nonuniform memoryless sources, R = 1=3, N =

262144, Rayleigh fading channel.

with the best STCs, at a BER, for 0.8 and 0.9, the
gains are 0.77 and 1.84 dB, respectively. Furthermore, the gains
due to combining the optimized encoder with the modified
decoder are 2.01 dB (for ) and 4.71 dB (for ).

Fig. 7. Turbo codes for nonuniform memoryless sources, R = 1=2, N =

262144, Rayleigh fading channel.

To achieve a desired rate via puncturing, using different
puncturing patterns may result in different performances. For
example, when structure b) is used for an overall rate of 1/3, we
may choose to puncture 1/4 of each parity sequence according
to various patterns, or we may puncture half of two parity
sequences, and leave the other two sequences intact. Simulations
show the best puncturing pattern is to keep the parity sequence
generated by feed-forward polynomial 23 intact and puncture
half of the one generated by the other feed-forward polynomial.
The performance of this puncturing pattern is about 0.2 dB
better than other patterns; in particular, it is 0.3 dB better
than the performance offered by structure a). For an overall
rate of 1/2, structure b) is also better than a), and the best
puncturing pattern is to delete all even (odd) position bits of
the sequences generated by feed-forward polynomial 23, and
delete all odd (even) position bits of the sequences generated
by the other feed-forward polynomial.

In previous work on NSTCs for uniform i.i.d. sources, it
is verified via extensive simulations that most nonsystematic
codes show inferior performance to their systematic peers
[36]–[38], except for the one in [38] employing a nonsys-
tematic “quick-look-in” constituent code, which is basically
“close” to a systematic code. Also, it is pointed out in [37]
and [38] that at low values of , the initial extrinsic
estimates for the information bits provided by NSTCs are not
as good as those of STCs, due to the lack of received channel
values; this motivates their choice of a close-to-systematic
code in the nonsystematic family. However, as shown by our
results, STCs are not a suitable choice for heavily biased
nonuniform sources; therefore, close-to-systematic codes may
not be desired in this case. Another encoder structure called
“big-numerator-little-denominator” [35], which provides gains
over Berrou’s code for uniform sources, may also be unsuit-
able for nonuniform sources, since the denominator results in
nonuniform higher order output distributions.

In the scenario of nonuniform i.i.d. sources, there are two fac-
tors playing against each other, the a priori knowledge of
at the decoder, and the systematic structure. When the source
is heavily biased, systematic codes considerably underperform
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TABLE II
OPTA GAPS FOR STCS AND NSTCS IN E =N (DB) AT BER = 10

due to the distribution mismatch between the source and the ca-
pacity-achieving channel input. Furthermore, the knowledge of
a biased can give good initial extrinsic estimations of the in-
formation bits at the decoder, thus eliminating the need for the
systematic structure. This may explain why NSTCs, which do
not suffer from any distribution mismatch (at least asymptoti-
cally), offer superior performance over their systematic counter-
parts. On the other hand, when the source distribution is close to
uniform, the distribution mismatch due to a systematic structure
becomes minor. Furthermore, very little useful knowledge about
the information bits is provided from at the decoder, while a
systematic structure, even when its bits are received corrupted
at the receiver due to channel noise, provides more reliable ex-
trinsic estimations in the initial iterative decoding stages for low

. In particular, as pointed out in [36] and [37], when the
source is exactly uniform, there is no useful knowledge from
at all, and thus, the systematic structure plays a critically impor-
tant role. To investigate the role of the systematic bits for less
biased nonuniform i.i.d. sources, we also study the performance
of so-called “extended” STCs. The results are briefly summa-
rized in the following.

The encoder of an “extended” STC consists of one systematic
output and two RNSC encoders, each of which produces two
parity outputs. The overall rate is, therefore, 1/5. Higher rates
(e.g., 1/3 and 1/2) are obtained by partial puncturing of the sys-
tematic part and partial puncturing of the four parity sequences.
For 0.6, 0.7, and 0.8, and for 1/2 and 1/3, we
performed simulations using the following puncturing patterns.
Delete of the systematic sequence, where ,
and delete evenly the four parity sequences to maintain the de-
sired overall rates. Our simulations demonstrate that when

, starting from , the performance is improved as
increases up to , which yields approximately a 0.1 dB
gain in at the BER level over the system with
pattern . Then the performance degrades as increases
from four to eight. Therefore, when , puncturing half
of the systematic sequence yields the best performance. When

, we observe a monotonic performance improvement
as increases from zero up to eight, which indicates that purely
NSTCs should be preferred. When , we observe ex-
actly the opposite behavior: preserving all systematic bits gives
the best performance. These observations indicate, as remarked
in [35]–[38], that a systematic encoding structure is especially
important when not enough a priori knowledge about the source
is available at the decoder.

B. Shannon Limit

Shannon’s Lossy Joint Source-Channel Coding Theorem
states that, for a given memoryless source and channel pair5

and for sufficiently large source-block lengths, the source can
be transmitted via a source-channel code over the channel at
a transmission rate of source symbols/channel symbol and
reproduced at the receiver end within an end-to-end distortion
given by if the following condition is satisfied [32]:

(3)

where is the channel capacity and is the source rate-dis-
tortion function. For a discrete binary nonuniform i.i.d. source
with distribution , we have that (the BER) under the
Hamming distortion measure; then becomes

where , and
is the binary entropy function.

As seen in Section II, the capacity of an AWGN or Rayleigh
channel is a function of SNR , or equivalently,
(where ); therefore, the optimum value of
to guarantee a BER of , called the Shannon limit or OPTA,
can be solved using (3), assuming equality. The Shannon limit
cannot be explicitly solved for our BPSK-modulated channels
due to the lack of a closed-form expression, so it is computed
via numerical integration.

For the simulations of the above subsection, the OPTA values
at the BER level are computed. The OPTA gaps, which
are the distances between our system performance and the cor-
responding OPTA values, are provided in Table II. We observe
that the OPTA gaps are significantly reduced by NSTCs. For
example, for AWGN channels and , when

, STCs provide a performance which is 1.56 dB away from
OPTA; on the other hand, for our NSTCs, the OPTA gap is
0.87 dB. When , the OPTA gap is reduced from 2.61
to 1.05 dB.

VI. COMPARISON WITH TANDEM SCHEMES

Traditionally, source and channel coding are designed sepa-
rately, resulting in a so-called tandem coding scheme. That is,

5The above theorem also holds for wider classes of sources and channels with
memory (e.g., stationary ergodic sources and channels with additive stationary
ergodic noise) [31].
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the source is compressed first, and then channel coded. This is
justified by Shannon’s separation principle [44], which states
that there is no loss of optimality in such separation as long as
unlimited coding delay and complexity are available. However,
in practice, joint source-channel coding often outperforms tra-
ditional tandem coding when delay and system complexity are
constrained.

We next compare the performance of our joint source-channel
system with that of two tandem schemes for the same
overall transmission rate. Each tandem scheme consists of a
fourth-order Huffman code followed by a rate turbo
code. The overall rate for both tandem and joint source-channel
coding systems is source symbol/channel
symbol (in the joint coding scheme, and
since no source coding is performed). Therefore, the Huffman
code needs to be of rate code bits/source symbol.
Since the average rate of the Huffman code depends on the
source distribution, we need to find the value of which
renders the Huffman code rate (not the entropy)
code bits/source symbol with satisfactory accuracy. By using
the bisection method, we obtain that when ,
a fourth-order Huffman code has rate code
bits/source symbol. Therefore, simulations are performed for
this value of .

Berrou’s pseudorandom interleaver [23] requires the se-
quence length to be an even power of two; this inflexibility is an
obstacle in the design of the tandem scheme, since the Huffman
code is a variable-length code. The -random interleaver [45],
however, can take an input sequence of arbitrary length, and it
yields good BER performance. We thus adopt the -random
interleaver in the turbo code. We also do not terminate the
first constituent turbo encoder, because otherwise, errors in
the tail bits of the turbo-decoded sequence would introduce
irrecoverable errors in the Huffman-decoded sequence. For fair
comparison, our system also uses the -random interleaver,
and its first constituent encoder is not terminated.

The tandem scheme is implemented as follows: 1) the source
generates a nonuniform i.i.d. sequence with length , and

; 2) the Huffman encoder produces a compressed
sequence with variable length, whose mean is approximately

; 3) an -random interleaver is generated for this given
length; 4) the sequence is turbo encoded using the -random
interleaver generated in 3); 5) the sequence is BPSK modulated
and transmitted over a Rayleigh fading channel; 6) the sequence
is turbo decoded and then Huffman decoded.

Another issue is the choice of the source sequence length .
Due to error propagation in the Huffman decoder, a few errors
in the turbo-decoded sequence could result in a big percentage
of errors in the final Huffman-decoded sequence. Furthermore,
what matters is not only the number of errors in the turbo-de-
coded sequence, but also the positions of the erroneous bits. This
is due to the fact that an error occurring in the first few bits of the
turbo-decoded sequence has a much longer propagating effect
than an error occurring in the tail bits. Therefore, a sufficiently
large number of blocks is necessary to obtain a good average
performance. After several tests, we chose to use
and 60 000 blocks.

Fig. 8. Performance comparison of our system (R = 1,R = 1=2) with that
of tandem schemes (R = 2=3, R = 1=3), p = 0:83079, N = 12000,
Rayleigh fading channel.

For a given , the larger the “spread” of the -random in-
terleaver is, the better is the performance. However, in practice,
generating an -random interleaver with a large requires a
substantial amount of computing time, and sometimes such an
interleaver may not be successfully generated. Thus, in order
to reduce the computation time and to guarantee the successful
generation of -random interleavers of arbitrary size, is set to
equal 10.

Fig. 8 shows the performance of our system versus that of
two tandem schemes over Rayleigh channels. Twenty iterations
are used in the turbo decoder. In the first tandem scheme, the
turbo code with is Berrou’s (37,21) code, which
offers an excellent waterfall performance for uniform sources
among all 16-state codes. However, due to a relatively high error
floor provided by Berrou’s code, this tandem scheme suffers
from a high-BER performance caused by error propagation in
the Huffman decoder. Thus, we also evaluate a second tandem
scheme using the (35,23) turbo code, which has a significantly
lower error floor at the expense of a slight waterfall performance
loss. Although at very high BERs both tandem schemes are
better than our system, their error floors occur at high BERs
( for the (37,21) code, and for the (35,23) code).
Therefore, at low BER levels, our system offers superior per-
formance over both tandem schemes. Interestingly, most tradi-
tional joint source-channel coding schemes outperform tandem
schemes at high BER levels (e.g., [2], [3], and [7]), while in
the context of turbo codes, the opposite result is observed. Al-
ternative source-channel coding systems using jointly designed
Huffman and turbo codes have been recently proposed in [46]
and [47]. It would be interesting to make performance com-
parisons with these schemes. However, our system has lower
complexity, since the source encoding and decoding parts are
omitted.

VII. CONCLUSION

In this paper, the joint source-channel coding issue of trans-
mitting nonuniform memoryless sources via turbo codes over
AWGN and Rayleigh channels is investigated. Necessary and
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sufficient conditions are proved for recursive convolutional
encoders having an asymptotically uniform state and mar-
ginal output distributions, regardless of the degree of source
nonuniformity. Therefore, recursive nonsystematic turbo
source-channel codes are proposed, and the outputs of our
selected codes are suitably matched to the channel input as they
nearly maximize the channel mutual information. Simulation
results demonstrate substantial coding gains (up to 1.84 dB)
over STCs designed in [28] and [29], and the OPTA gaps are
significantly reduced. Finally, our system is compared with
two tandem schemes, which employ a near-optimal Huffman
code followed by a standard turbo code. Our system offers
substantially better performance at low BERs, and enjoys a
lower complexity.
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