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Error Analysis for Nonuniform Signaling Over Rayleigh Fading Channels
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Abstract—We investigate the error performance of a commu-
nication system where a nonuniform memoryless binary source
is transmitted via Gray-mapped M -ary phase-shift keying or
quadrature amplitude modulation over memoryless Rayleigh
fading channels, and demodulated via optimal maximum a pos-
teriori detection. Using recently derived upper and lower bounds
on the probability of a general union of events, which are tight
and can be efficiently computed, the system symbol-error (P;)
and bit-error ( P,) rates are evaluated for a wide range of channel
conditions. Since for nonuniform signaling, Gray mapping is not
necessarily optimal for minimizing P; or P, (as was recently
shown by Takahara et al.), we also evaluate the system perfor-
mance under the map obtained by Takahara ef al. and compare it
with a Gray-mapped system.

Index Terms—Bit and symbol error rates, Gray mappings,
lower and upper bounds, maximum a posteriori (MAP) decoding,
nonuniform sources, phase-shift keying (PSK) and quadrature
amplitude modulation (QAM) modulations, probability of a union,
Rayleigh fading channels.

1. INTRODUCTION

N recent work (e.g., [3], [11], [12], and [14]), important ef-

forts have been devoted to the error analysis of the trans-
mission of data sources over fading channels. Motivated by the
fact that many compressed or uncompressed data sources, such
as image or speech signals, are nonuniformly distributed (e.g.,
[1], [7], etc.), we focus our study on the error performance when
nonuniform M -ary signals are transmitted over Rayleigh fading
channels. If s, is the transmitted signal, the symbol-error rate
(SER) (Ps) under maximum a posteriori (MAP) decoding can
be written as

N N

Po=Y Plelsu)P(su) = Y P | [ w|su | Plsu) (D)
i#£u

where P(els, ) is the conditional probability of error given that
sy Was sent, and €,; represents the event that s; has a higher
MAP metric than s,, where s; # s,. However, the proba-
bility of a union of events is often difficult to compute explic-
itly, since, in general, it requires taking into account all com-
binations of event intersections. A common method to address
this issue is to employ the standard union upper bound (or vari-
ations of it) in estimating the error performance. Although the
union bound generally results in relatively simple expressions
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(depending on the communication system under analysis), it is
often loose for a wide range of channel-noise conditions, par-
ticularly for moderate or low signal-to-noise ratios (SNRs). An
attractive approach is, therefore, to investigate more sophisti-
cated bounds that yield accurate error estimates. Three such
bounds on the probability of a finite union of arbitrary events
P(Uf;1 A;) were recently studied in [8] and [9]: a lower bound
(the Kuai—Alajaji—Takahara (KAT) bound) [8], a practical al-
gorithmic stepwise lower bound [9] originating from Kounias
[6], and a greedy algorithmic implementation [9] of an upper
bound due to Hunter [5]. In this letter, we apply these bounds,
which are only expressed in terms of the individual event prob-
abilities P(A;) and the pairwise event probabilities P(A; N
A;), to estimate the performance of nonuniform signaling under
Gray mapping over memoryless Rayleigh fading channels. Fur-
thermore, it was recently shown in [15] that Gray mapping is
not necessarily optimal for minimizing Ps or the bit-error rate
(BER) P, when nonuniform sources are sent over additive white
Gaussian noise (AWGN) channels. It was indeed observed that
an appropriately constructed mapping (the M; map) can per-
form significantly better than the Gray map (with gains as high
as 3.5 dB in SNR for strongly biased sources). We thus inves-
tigate the error performance of our system under such a map.
As a byproduct of our results, we also validate the choice of
this map for the Rayleigh fading channel by noting that its per-
formance is nearly identical to that of the optimal map, which
minimizes the union upper bound of P; while keeping a minimal
average symbol energy. This paper is, in a sense, an extension
of [9] and [15], where nonuniform signaling over AWGN chan-
nels was investigated.

The rest of the letter is organized as follows. The problem
of bounding P, and P, for nonuniform signals transmitted over
Rayleigh fading channels (with known channel-fading informa-
tion at the receiver) used in conjunction with M -ary coherent
phase-shift keying (PSK) or quadrature amplitude modulation
(QAM) and symbol MAP decoding is investigated in Section II.
The system performance is then evaluated for various PSK and
QAM schemes in Section III. Finally, conclusions are stated in
Section IV.

II. NONUNIFORM SIGNALING OVER RAYLEIGH CHANNELS

Consider a nonuniform independent and identically
distributed (i.i.d.) binary source {X;} (with distribution
P{X = 0} = p) which is grouped in blocks of log, M bits
(we assume that M is a power of two). Each block is subse-
quently M-PSK or M-QAM modulated with mapping Gray
or My [15]. Then, the M-ary modulated signal sequence is
transmitted over a Rayleigh fading channel, and is decoded via
the optimal MAP criterion at the receiver. More specifically, if
one of the M two-dimensional (2-D) signals sy, s2,...,S57 1S
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sent, say s,, then the MAP decoder declares that s; was sent,
forj = 1,2,...,M and j # 1, if the MAP metric of s; is
bigger than the metric of s;; i.e., P(s;|r) > P(s;|r), where
T = as, + n is the received 2-D vector signal, « is a Rayleigh
distributed amplitude fading variable with second moment 252
(i.e., a is the square root of the sum of two squared independent
zero-mean Gaussian random variables, each with variance
0?), and n is a 2-D noise vector with zero-mean uncorrelated
Gaussian distributed components, each with variance Nj/2.
We also assume that «, s, and n are independent from each
other.

A. Symbol-Error Rate (SER)

In order to properly apply the bounds of [8] and [9] on (1),
we need to determine the P(e,;|s,,) and P(ey; N €yj]s,,) event
probabilities. Assuming that the fading variable o can be esti-
mated from the received signal without error, we can derive the
conditional individual and pairwise error probabilities, given the
channel fading and that s,, is sent

P(eyi|a, sy)
= Pr{f(r|si, ) P(si) 2 f(r|su, ) P(su)|er, su}
= Q(¢ui(a)) 2)
P(ewi Neyjloy, sy)
= Pr{f(r|si, ) P(s;) > f(r]su, ) P(s4),
f(rlsj, a)P(s;) = f(7]su, ) P(su)|a, su}

= \I}(puijﬁ (:bui(a)a ‘buj(a)) (3)
where f(r|-, -) is the conditional density function of the received
signal r

x) ex t2 2)dt 4
Q( = / p(—t7/2) ©)
(8i — Su,Sj — Su)
uij — 5
P = oy = sl Tlsg = sl ©
1
U(p,ab) = — ——
(p,a,b) o=
e (2 = 2pzy + 4*)
X exp|— dz dy
/a / p[ 201 ?) !
(6)
ad V2NoIn P(s,)/P(s;
Pui(e) = oln Llow) [P (M

(-, ) denotes the usual dot product, and d,,; = ||s; — s, || (Where
|I- || is the Euclidean norm). Note that (6) is valid for |p,;;| < 1.
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(which may occur in QAM constellations), U(pyi;,-,-) in (3)
reduces to the following expressions:

U(L, pui(ax), puj(a)) = Q(max(ui(a), duj(a)))
U(=1, ui(a), duj(@)) = [Q(bui(@)) = Q(=duj(@))]*
where [a]t = max(O. a). Therefore

P(Eui|su) =

(Eut|a Su)]

a?
/ Q(Pui( eXp( 5 2>da. 8)

By integrating the right-hand side (RHS) of (8) by parts, we can
show that

P(eui|5u) =

(1 — —) exp[ L (14 Tm-)] , if wy; >0 ©
1—— (1+—) exp[—“’;’ (l—Tui)] , ifwy <0
where  wy; = In[P(s,)/P(s;)] and 7y =

V(02d%, + 2Ng)/(02d?,). Note that, as shown by (9)
P(eyi|s,) admits a closed-form expression, unlike the case
when the channel is AWGN (with no fading). Furthermore, as
expected, when the signaling is uniform (p = 0.5), (9) reduces
to the familiar expression of P(ey;|s,) given, for example, in
[14, eq. (5.72)].

For ¢.i(a) > 0 and ¢,,;(a) > 0, we can use the result of
[13] to write (6) as

\I/(p, (,buz(a) ¢1tj(a))
1 [P(@ui(@)/duj(a)) |:
€

B qu(a)Z] JD

"o 2sin’ ®
1 [(Puj(@)/bui(a)) buj(a)?
27 sin?
where 9(r) = tan=(z\/1 — p2/(1 — px)) forz > 0,-1 <
p < 1.

If one or both of the second and the third arguments in the
¥(-) function (6) are negative, the equalities shown in (11) at
the bottom of the page can be used.

Therefore

P(eui N 6uj|su)
= Ea[P(em' N 6uj|a7 Su)]
o 2
:/0 \Il(puiﬁd)uz( ) ¢u]( )) - GX})(-%) der.
(12)

We can apply the KAT lower, stepwise lower, and greedy
upper bounds [9] on (1) to obtain two lower bounds and one

When |p,ij| = 1, i.e., when signals s,, s;, and s; are colinear upper bound on P, in terms of P(eu;|su), P(€wi N €uj|Su)
U(p,a,0)+ V(—p,a,0)—V(—p,a,—b) a>0,b<0
— \Il(p70/b)+\p(_p/07b)_\p(_p7 avb) a<07b20

\Il(p7a7b) B 1—‘1’(p70,—b)—\1/ _pao _b) (11)
—U(p,—a,0) — ¥ (—p,—a,0) + ¥(p,—a,—b), a<0,b<0
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and P(s,). Note that (12) can be efficiently computed via the
Gaussian quadrature method.

B. Bit-Error Rate (BER)

In many situations, the BER P, is a more useful performance
measure. Under the symbol MAP decoding criterion, P, can be
expressed as [9]

M
= Py(u)P(su)

where

Py(u) = E(# of bit errors|s,,)

log, M
1 M

= d my Wy Amu
logszzzl H(w /w) |

Ay = P(8m is decoded|s,,)

U €mi| Su

=1-P

where v = 1,..., M, w,, and w,, are the bit assignments for
signals s,, and s,,, respectively, dg (W, w, ) is the Hamming
distance between w,,, and w,,, and €,,; represents the event that
symbol s; has a higher metric than symbol s,,,.

As in the case of the SER, P(epmi|e,s,) and P(em; N
€mjla, su) can be expressed in terms of the Q(-) and W(-)
functions, respectively

P(emi|a, su)

=Pr{f(r]si, @) P(si) > f(r|$m, @) P(sm)|, Su}

= Q(Pumi(a)) (13)
P(emi N emjla, su)

= Pr{f(r|si, ) P(si) 2 f(r|sm,a)P(sm),

f(rlsj, a)P(s;) > f(7|sm, a)P(sm)|a, su}
= \I}(szg ‘buml(a) ¢um]( )) (14)
where
(Si — Sm» Sj — Sm)
P Ty — sl -l — s )

bumi(@) = V2Nowmi + ady,; _ ady,,

e 2ad V2Nodmi  V2Nodpmi

U(pmijs-,-) in (14) is given by (6) for |p,.j| < 1; otherwise,
we have

\I’(L ¢1Lmi(a)7 ¢umj(a)) =
\I’(—l, ¢um’i(a)7 ¢um](a)) =

Q(max(d)umi(a)? ¢umj(a)))
[Q(¢1Lmi(a)) -

Q(=Gum; ()]
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Therefore

Plemilsu) = Ea[P(emile, su)] = Ea[Q(¢umi(a))].  (16)

By integrating the RHS of (16) by parts, we can show (17) at
the bottom of the page, where

Vami = \J102(@2 — 2,,)?

If pymi(a) and ¢hym () are nonnegative, we can use the
result of [13] to write (6) as

\Il(pa (bumi(a)? (bum](a))

+ (2Nod3,;)]/ 0.

1 [9(@umi(a)/bum;i(a)) i 2
= — exp [—(’b () ] dd
21 2sin?
W pumj(@)/ Pumi(a)) 2
L exp[ (b"m] () ]dq)
27 2sin? @

(18)

Similarly, in the case where one or both of the second and
the third arguments in the W(-) function (6) are negative, the
equalities given in (11) can be used. Therefore

P(emi Nemjlsu)
= Eo[P(€mi N €mjla, su)]

(0%

= [ ¥z bumil). i) 5
0

2
Xexp< 2a2> da.

Applying the bounds of [9] to P(UU,,, €mi|s.) yields two
upper bounds and one lower bound on the BER P,

19)

III. NUMERICAL RESULTS

We apply the KAT, stepwise, and greedy bounds to estimate
P and P, for 8, 16-PSK/16, 64-QAM signaling with Gray
mapping over Rayleigh fading channels with p = 0.5 and
0.9. The results are shown in Figs. 1-4 in terms of the SNR
E, /Ny, where Ej, is the energy per information bit. To verify
the accuracy of the bounds, which were practical to compute,
we also provide simulations obtained by averaging 1000 trials
with 100 000 symbols each. For the results of the PSK constel-
lations, we use the standard Gray code bit mapping (the binary
reflected Gray code [4], [10]). For the QAM constellations,
we use the Gray mappings shown in [15, Figs. 8 and 9] for
16-QAM and 64-QAM, respectively.

For uniform signaling (p = 0.5) with Gray mapped M -PSK
and M-QAM, there exist exact or good approximations for
P; and P, (e.g., [10], [11]). Note that in this case, MAP
decoding is equivalent to maximum-likelihood decoding. Nev-
ertheless, as shown in Figs. 1-3, our bounds (particularly the
stepwise/greedy-based bounds) show excellent accuracy. For

P(emi|5u) =

1—%wq;é[ (42 — &2,

o [(2 = ) + o]  x (1 te)
) + Vumi]} X <1 + w) ’ lfwnn <0

v )>7 lfwmzzo

a7

Vumi
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Fig. 1. SER P, and BER P, for 8-PSK with Gray mapping.
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Fig.2. SER P, and BER P, for 16-PSK with Gray mapping.

nonuniform signaling, exact or approximate expressions for P
or P, are not available (to the best of our knowledge); hence,
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Fig. 3. SER P, and BER P, for 16-QAM with Gray mapping.
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Fig. 4. SER P, for 16, 64-QAM with Gray mapping and M1 mapping.

the need for accurate bounds is even more crucial. In Figs. 1-3,
P and P, performance curves with Gray mapping for p = 0.9
are also shown. Here also, the bounds provide an excellent
estimate of the error probabilities over the entire range of
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SNRs. The stepwise and the greedy bounds are particularly
impressive, as they agree with each other and the simulations
even during very severe channel conditions. The KAT lower
bound is weaker than the stepwise bound; but when p = 0.9, it
is noticeably tighter than when p = 0.5.

We also estimate P; for systems with p = 0.9 using the
heuristic M7 map constructed for 16-QAM (see [15, Fig. 8]) and
64-QAM (see [15, Fig. 9]) constellations. As shown in Fig. 4,
the bounds are very accurate, and the M; map considerably out-
performs the Gray map. For 5 x 107* < P, < 1072, gains
up to 1.5 and 3.3 dB in FE} /Ny are achieved for 16-QAM and
64-QAM, respectively.

Finally, equipped with the simple analytical closed-form ex-
pression derived in (9) for the conditional individual error-event
probabilities (or pairwise error probabilities) P(ey;|sy), we
study the merits of the mapping M; for the Rayleigh fading
channel and strongly nonuniform signaling. Specifically, we
search for the map that minimizes the union upper bound on
the SER, given by Zjuuzl P(su) iy P(€uilsu), over the
sets of maps with minimum average symbol energy. To satisfy
the smallest average energy constraint, we perform our search
according to the design criteria developed in [15]. We then
compare the performance of the M; mapping with that of the
optimal map yielded by the search. Typical results, obtained
for the case of p = 0.9 and 16-QAM, show that the best map
is very close to that of the M; mapping. This indicates that
the M7 mapping is indeed a very good choice for the Rayleigh
fading channel when used with nonuniform signaling. Note
also that the search is computationally efficient by virtue of the
simple expression for P(ey;|sy).

IV. CONCLUSION

In this letter, we derive the KAT, stepwise, and greedy bounds
for the error analysis of Rayleigh fading channels with nonuni-
form signaling and MAP decoding. The stepwise and greedy
bounds show excellent accuracy for both BER and SER in con-
junction with the Gray and M; [15] mappings over the entire
range of SNR values, even those corresponding to very severe
channel conditions. As a byproduct of our results, we use the
closed-form error expressions given by (9) to validate the choice
of the M mapping for the Rayleigh fading channel when the
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source is strongly biased. This is achieved by observing that it
performs nearly identically to the best map with smallest av-
erage symbol energy which minimizes the SER union upper
bound. It is important to mention that the bounds are general,
in the sense that they are independent of the properties of the
signal mapping and the geometry of the signaling constellation.
Future work includes the study of these bounds for multiantenna
space—time coded communication systems. Preliminary results
in this direction are reported in [2].
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