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Constant-Power Waterfilling: Performance Bound
and Low-Complexity Implementation

Wei Yu, Member, IEEE, and John M. Cioffi, Fellow, IEEE

Abstract—In this letter, we investigate the performance of
constant-power waterfilling algorithms for the intersymbol inter-
ference channel and for the independent identically distributed
fading channel where a constant power level is used across a
properly chosen subset of subchannels. A rigorous performance
analysis that upper bounds the maximum difference between
the achievable rate under constant-power waterfilling and that
under true waterfilling is given. In particular, it is shown that
for the Rayleigh fading channel, the spectral efficiency loss due
to constant-power waterfilling is at most 0.266 b/s/Hz. Further-
more, the performance bound allows a very-low-complexity,
logarithm-free, power-adaptation algorithm to be developed.
Theoretical worst-case analysis and simulation show that the
approximate waterfilling scheme is very close to the optimum.

Index Terms—Bit loading, duality gap, waterfilling.

I. INTRODUCTION

HEN a communication channel is corrupted by severe

fading or by strong intersymbol interference (ISI), the
adaptation of the transmit signal to the channel condition can
typically bring a large improvement to the transmission rate.
Adaptation is possible when the channel state is available to
the transmitter, usually by a channel-estimation scheme and a
reliable feedback mechanism. With perfect channel information,
the problem of finding the optimal adaptation strategy has
been much studied in the past. If the channel can be partitioned
into parallel independent subchannels, for example, when the
fading statistics for the fading channel is independent and
identically distributed (i.i.d.) or by a discrete Fourier transform
(DFT) in the case of an ISI channel, the optimal transmit power
adaptation scheme is the well-known waterfilling procedure. In
a waterfilling power spectrum, more power is allocated to better
subchannels with higher signal-to-noise ratios (SNRs), so that
the sum of data rates in all subchannels is maximized, where the
data rate in each subchannel is related to the power allocation
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by Shannon’s Gaussian capacity formula' (1/2) log(1+SNR).
However, because capacity is a logarithmic function of power,
the data rate is usually insensitive to the exact power allocation,
except when the SNR is low. This motivates the search for
simpler power-allocation schemes that can perform close to
the optimum.

Approximate waterfilling schemes often greatly simplify
transmitter and receiver design, and they have been the subject
of considerable study. In the multicarrier context, Chow [1]
empirically discovered that as long as a correct frequency
band is used, a constant power allocation has a negligible
performance loss compared with true waterfilling. The same
phenomenon is observed in the adaptive modulation setting [2].
There have been several performance bounds on constant-power
waterfilling reported in the literature. Aslanis [3] compared
the worst-case difference between a true waterfilling and a
constant-power waterfilling, and derived a bound based on
the SNR cutoff value. Schein and Trott [4] derived a different
bound, also based on SNR. This letter extends the existing
results in several directions. First, a worst-case performance
bound is derived using an approach based on convex analysis.
The upper bound derived is valid for any arbitrary SNR.
Second, it is shown that the new performance bound can be
used to design a low-complexity power-allocation algorithm
which is free of logarithm operations, and which has a bounded
worst-case performance. In particular, the algorithm is shown
to be at most 0.266 bs/s/Hz away from capacity on a Rayleigh
fading channel and often performs much closer to capacity
in practice.

In this letter, the primary focus is on power adaptation.
The bit allocation is allowed to vary, and is not restricted to
integer values. This approach is justifiable with the use of
channel coding. In this case, the Shannon capacity for channels
with perfect transmitter and receiver side information can be
achieved with a concatenation of a standard random Gaussian
codebook and a power-adaptation device [5]. In a related
work [6], schemes with both constant power and constant bit
allocation are investigated.

The rest of the letter is organized as follows. In Section II,
the waterfilling problem is formulated and the new upper bound
is derived. In Section III, a new low-complexity power-adap-
tation algorithm is proposed, and its performance analyzed. In
Section IV, the performance bound is applied explicitly to the
Rayleigh fading channel. Simulation results for both wireless
and wireline applications are presented in Section V. Conclu-
sions are drawn in Section VI.

In this letter, “log” is used to denote logarithm of base 2; “In” is
used to denote logarithm of base e.
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II. CONSTANT-POWER W ATERFILLING

A. Problem Formulation

We choose to formulate the problem in the adaptive modu-
lation framework because it is slightly more general than the
multicarrier setting. The communication channel is modeled as

= /(i) - X (i) + N(i) (1)

where i is the discrete time index, X () and Y (¢) are scalar
input and output signals, respectively, N () is the additive white
Gaussian noise (AWGN), which is i.i.d. with a constant variance
o2, and /v (i) is the multiplicative channel fading coefficient.
For simplicity, v (%), the squared magnitude of the fading coeffi-
cient, is assumed to be i.i.d. with a probability distribution p(v).
The capacity of this fading channel under an average transmit
power constraint when both the transmitter and the receiver have
perfect and instantaneous channel side information was char-
acterized by Goldsmith and Variaya [7]. They proposed a wa-
terfilling-in-time solution and proved a coding theorem based
on a finite partition of channel fading statistics, i.e., v is re-
stricted to take finite values vy, vs, ..., v,,, with probabilities

P1,P2, - - -, Pm- In this case, the maximization problem becomes
Sk Vk
maximize Z prlog | 1+ 2)
k=1
subject to Zkak <S 3)
k=1
Sk >0 )

where S is the average transmit power constraint, and the max-
imization is over all power-allocation policies S}, based on the
instant channel fading state vj. Putting pr = 1 reduces the
problem to the multicarrier setting. This optimization problem
has a well-known waterfilling solution. Our interest is in finding
approximate solutions with provable worst-case performance.

Note that Shannon’s Gaussian channel capacity formula
is used here, and a capacity-achieving Gaussian codebook
is assumed. In reality, where practical codes and modulation
methods are used, the achievable rate can be computed by
the same formula with the noise variance o2 increased by a
constant factor “SNR gap,” which denotes the amount of extra
coding gain needed to achieve Shannon capacity [8], [2]. (SNR
gap is called SNR,,o,1,, in [9].) Without loss of generality, the
SNR gap is assumed to be 0 dB for the rest of the letter, unless
otherwise stated.

B. Duality Gap

The optimization problem (2) belongs to the class of convex
optimization problems, where a convex objective function is to
be minimized subject to a convex constraint set. A general form
of a convex optimization problem is the following:

fo(z) ®)
subjectto  f;(z) <0 (6)

minimize
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where f;(z), i = 0,1,...,m are convex functions. fy(z) is
called the primal objective. The Lagrangian of the optimization
problem is defined as

L(z, A) = fo(x) + Mfi(2) + -+ Amfm(z) (D

where \; are nonnegative. The dual objective is defined to be

g(A\) = inf, L(z, A). Itis easy to see that g(\) is a lower bound
on the optimal fo(z)

fo(z) > fo(z) + Z Aifi(@ ®)

> inf (fo(z) + Aifz-(z)) ©)

= g(A)- (10)

So

g(A) < min fo(x). (11)
This is the lower bound that we will use to investigate the op-
timality of approximate waterfilling algorithms. The difference
between the primal objective fy(z) and the dual objective g(\)
is called the duality gap. A central result in convex analysis
[10] is that when the primal problem is convex, the duality gap
reduces to zero at the optimum under some general conditions
known as constraint qualifications (which are satisfied for the
problem considered in this letter). In other words, the optimal
value of the primal objective may be obtained by maximizing
the dual objective g(\) over nonnegative dual variables ;.
Thus, for convex problems, the lower bound is tight.

C. Lower Bound

The above general result is now applied to the waterfilling
problem. First, maximizing the data rate is equivalent to mini-
mizing its negative. The capacity is a concave function of power,
so its negative is convex. The constraints are linear, so they are
convex, as well. Associate dual variable A with the power con-
straint, and p, with each of the positivity constraints on Sy, the
Lagrangian is then

m

Sy,
L(Skv\;uk):Z—PklOg( + = k)

k=1
(Zpk5k> -S|+ Z pr(—Sk)-
k=1 k=1

The dual objective function g(\, piy) is the infimum of the La-
grangian over primal variables Sj. At the infimum, the partial
derivative of the Lagrangian with respect to S, must be zero

12)

5 =0 = + A (13)
28, PPy Seve In2 Pk = ok
from which the classical waterfilling condition is obtained
2 1 1

I/k:)\—%.m.

This condition, together with the constraints of the original
primal problem, the positivity constraints on the dual vari-
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ables, and the complementary slackness constraints, form the
Karush—Kuhn-Tucker (KKT) condition, which is sufficient and
necessary in this case. More specifically, the complementary
slackness condition states that the constraint for the original
primal problem is satisfied with equality if and only if the dual
variable associated with the inequality is strictly greater than
zero. In the waterfilling problem, this translates to the condition
that Sy, is greater than zero if and only if iy, is zero. Thus, when
a positive power is allocated in a subchannel, (i.e., S > 0,
i = 0), the sum of the signal power S} and the normalized
noise power o2 /v, in each subchannel must be a constant,
otherwise (i.e., when S; = 0 and pg > 0), the normalized noise
power must exceed the water level. The waterfilling condition
gives the following optimal adaptation strategy:

0'2 0'2

where the cutoff point v is determined by the average power
constraint and the fading distribution.

Substituting the waterfilling condition (14) into (12) gives the
dual objective

if v, > 1y

. (15)
if v, < g

Vi
=5 1
9(A, 1) Zpklog PE T

Pk

m 2

ag
_ Nor — ) -
E (Apk — 1) o

k=1

1
St g

(16)
The dual objective is always convex, and it is a lower bound to
the primal objective? for all nonnegative A and px. The lower
bound is, in fact, tight when A and . achieve the optimum of
the dual program. Finding the tightest A and puy is equivalent
to solving the original optimization problem, which is compli-
cated. However, if instead, the dual variables associated with
the primal variables are chosen via (14), then a simple bound
emerges. In this case, the duality gap, defined as the difference
between the primal objective and the dual objective, and denoted
as I', has the following form:

o 1 - 1
I'= — AS — —. 17
Zpk SH-"2 et In2 an
To express the gap exclusively in primal variables Sy, a suitable
) needs to be found. A small )\ is desirable, because it makes
the duality gap small. Since

1 1
—  — = = (18)
Sk + % In2 Pk
and recall that A and uj need to be nonnegative, the smallest
nonnegative A is then

2g(X, pr) is a lower bound to the minimization problem. So —g(A, ) is
an upper bound to the rate-maximization problem. To avoid notational inconve-
nience, the rest of the letter will use the term “duality gap” only.
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Assuming that the approximate waterfilling algorithm satisfies
the power constraint » w PrSkr < S with equality,® the above
gives the following:

1 Sk Sk
=5 XMk : |- o

2\ min{SjJrZ—z} Skt i
J J

The preceding development is summarized in the following the-

orem.

Theorem 1: For the optimization problem (2), if S > 0 is
a power-allocation strategy that satisfies the power constraint
with equality, then the achievable data rate using Sy is at most
I" b/s/Hz away from the optimal waterfilling solution, where I"
is expressed in (20).

This bound applies to all approximate waterfilling algorithms
in general. For example, it can be used to bound the performance
of power-allocation strategies with an integer-bit constraint.* It
is clear that if exact waterfilling is used, i.e., when Sy + o2 iz
is a constant whenever Sj, > 0, the gap reduces to zero. There-
fore, the cost of not doing waterfilling is in the decrease of the
denominator in the second term. The simplicity of the above ex-
pression makes it quite useful in deriving new results, as it shall
soon be seen.

D. Constant Power Adaptation

‘We now turn our attention to the particular class of constant-
power adaptation algorithms. As mentioned before, log(1 +
SNR) is more sensitive to SNR when SNR is low. So, it makes
sense that the critical task in waterfilling should be to ensure
that low SNR subchannels are allocated the correct amount of
power. In particular, those subchannels that would be allocated
zero power in exact waterfilling should not receive a positive
power in an approximate waterfilling algorithm, for otherwise,
the power is mostly wasted. This intuition allowed Chow [1]
to observe that a constant-power allocation strategy, where the
transmitter allocates zero power to subchannels that would re-
ceiver zero power in exact waterfilling, but allocates constant
power in subchannels that would receive positive power in exact
waterfilling, is often close to the optimal. In this section, this in-
tuition will be made precise using the gap bound derived before.

Consider the following class of constant-power allocation
strategies, where beyond a cutoff point vy, all subchannels are
allocated the same power

_ S07
S = {07

Here, the subchannels are assumed to be ordered so that v, > v
whenever k£ < [. If the same cutoff point v is used as in exact
waterfilling, we have

if v, > 1y

if v, < vp. @0

. o2 o?
So+ min [ — ) < —.
vi2vo \ Vi 120}
3When the power constraint is not satisfied with equality, S must be used in
the second sum in (20) instead of > px Sk.
4Equation (20) can be used to show that integer-bit restriction costs at most
1/1n 2 b/s/Hz by noticing that an integer bit-allocation algorithm essentially

doubles Sy + o2 /vy, in allocating each additional bit. Unfortunately, this bound
is rather loose.

(22)
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The inequality holds because in the transmission band (i.e.,
when v, > 1p), the constant-power allocation is a suboptimal
strategy, therefore, the minimal sum of power and (normalized)
noise is less than the water level, which is 0% /1. Equation (22)
ensures that

0'2 0'2
min{Sk—l——}:Sg—{—min{—}. (23)
k Vi k Vi
In this case, (20) becomes
s S, S,
In2.I'= Zpk - 2 - a?
k=1 SO + IIliIlj {z—]} SO + e
k=1 (So + %) (So + min; {%})
m* 0_2
<> <—) (24)
k=1 So + Vi

where m™* denotes the number of channel states with positive
power allocation. Note that an immediate constant bound can
be obtained by replacing (02/v1,)/(So + o2 /vy) with 1. In
this case, ' < 1/In2 = 1.44 b/s/Hz is an upper bound to
the maximum capacity loss for constant-power allocation algo-
rithms. But this bound is usually too loose to be of practical
interest. Instead, we can simplify the notation using the fact
that the number of bits allocated in each subchannel is given
by log(1 + Sovi./0?). In this case, I" can be written in a partic-
ularly simple form

P< oY pa 2s)
k=1

where by, is the number of bits allocated in each subchannel.
Note that by are not restricted to integer values in the above
bound. Also note that the crucial assumption for the bound to
hold is ming{ Sy + 02 /v } = Sy + ming{o? /vy }. Having the
same cutoff point as in exact waterfilling is sufficient, but not
necessary. Thus, we have the following theorem.

Theorem 2: For a constant-power allocation strategy of the
form (21) that satisfies the power constraint with equality, if
IninkiSk + 02/up} = So + ming{o?/vy}, then it is at most
(X, pr - 27 /1n 2) b/s/Hz away from the waterfilling op-
timal, where the sum is over all m* subchannels that are allo-
cated Sy amount of power, and by, is the number of bits allocated
in subchannel k, i.e., by, = log(1 + Sovr/0?).

Fig. 1 illustrates the theorem graphically. As long as the level
A in Fig. 1 is lower than the level B, the achievable rate is
bounded by (25). Note that subchannels with low SNRs (and
hence, low bit allocations) are precisely those contributing most
to the bound, thus confirming the intuition that low SNR sub-
channels are the most sensitive to power misallocation.

III. Low-COMPLEXITY ADAPTATION

The crucial condition in Theorem 2 is ming{Sy, + 02 /vy } =
So+ming{o? /v }. This condition states that the bound is valid
only if not too few subchannels are used. The condition is triv-
ially satisfied, for example, by putting equal power in all sub-
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Fig. 1. Constant-power waterfilling.

channels. In that case, 27 will be nearly 1 for many subchan-
nels, and the duality gap becomes large (although still bounded
by the constant 1.44 b/s/Hz.) It is therefore of interest to use as
few subchannels as possible without violating the condition, so
as to simultaneously make the number of terms in the summa-
tion small, and make each individual term small (since fewer
subchannels implies larger Sy, which, in turn, implies smaller
27b%). This suggests that a simple power-allocation strategy
which sets the cutoff point to be the largest m* that satisfies
So + 0%/v1 < 0%/Vm+41 is close to the optimal. Graphically,
an algorithm that tries to find the smallest m* so that level A is
less than level B has the smallest duality gap. This fact is used
to devise the following algorithm.

Algorithm 1: Assume that the channel gain v} s are ordered
so that 1 > vo--- > v,,. Let vy be the cutoff point, so that a
constant power Sy is allocated for all vy > vg. Let m* be the
largest k, such that v > 1. The following steps find the m*
with the smallest duality gap.

1) Setm* = m — 1. i

2) Compute Sy = 5/ 37", pr-

3) If 02 /vmey1 > So + 02/vy, set m* = m* — 1, and
repeat step 2. Otherwise, set m* = m* + 1 and go to the
next step.

4)  Compute b, = log(1 + Sov/0o?) fork = 1,...,m*
Set R = Zzlzl pkbk-

Theorem 3: The low-complexity constant-power algorithm
produces a rate R that is at most (3", px - 27% /In 2) b/s/Hz
from capacity.

The proof of the theorem follows directly from the develop-
ment in Section II. Two properties of this algorithm make it at-
tractive. First, unlike most previous low-complexity bit-loading
methods (e.g., [1]), where the boundary point is found by finding
the cutoff point that gives the highest data rate, this algorithm
finds the optimal cutoff point without actually computing the
data rate achieved in each step, and is therefore free of loga-
rithmic operations. The most expensive operation in this algo-
rithm is the single division in each step, thus making its com-
plexity very low. Second, this algorithm has a provable worst-
case performance bound, as given by Theorem 3. Note that the
algorithm is designed to minimize the duality-gap bound, which
is not the same as maximizing the actual data rate. There are ex-
amples where the two criteria give quite different cutoff points.

The presentation of the above algorithm has been simplified
using a linear search. In practice, a binary search for m* can
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easily be implemented, thus further increasing its efficiency.
However, the asymptotic algorithmic efficiency is bounded by
the sorting of the subchannels, which is O(m log(m)).

The simplicity of the algorithm also points to the possibility
of easy adaptive implementation when the channel distribution
is not known in advance. Since the power allocation is parame-
terized by the single cutoff point 1, an adaptive algorithm can
set an initial cutoff point, then adjust vy based on the resulting
power consumption. Hence, it is possible to approximately wa-
terfill without estimating the exact channel distribution in ad-
vance, and therefore, without the sorting operation.

IV. RAYLEIGH CHANNEL

The bound developed previously can be explicitly com-
puted if channel-fading statistics are known. In particular,
for a Rayleigh fading channel, it can be shown that the con-
stant-power adaptation strategy is only a small fraction of one
bit away from capacity.

In a wireless channel where a large number of scatterers
contribute to the signal at the receiver, application of the central
limit theorem leads to a (zero-mean) complex Gaussian model
for the channel response. The envelope of the channel response
at a given time instant has a Rayleigh distribution, i.e., the
square magnitude of the channel gain is exponentially dis-
tributed: p, (v) = 1/Q - e~/ where €, the average channel
gain, parameterizes all Rayleigh distributions.

Fixing 2, the constant-power control strategy is determined
by the average power constraint, or alternatively, by the cutoff
value (. The low-complexity power-allocation algorithm states
that the constant power allocated in each state Sy should be such

that
2 2
So —}—min{a—} =2
v 1%}

The Rayleigh distribution has a nonzero probability for arbi-
trarily large amplitudes of v, so the above reduces to Sy =
o2 /vy. Interestingly, the constant-power allocation algorithm
allocates a constant power Sy to all subchannels that can sup-
port at least 1 b/s/Hz with Sy.

Now, using the gap bound (24), the spectral efficiency for
an optimal constant-power allocation with cutoff v is bounded
within the following constant from capacity:

2
1 [ s 1
(VO) 1n2./’/0 (ﬁ‘l‘ﬁ) Q

vo v

(26)

A 2 27

By a change of variable ¢t = v/ (and also ty = v /), define

f(to) = / ey, (28)
O ), t+to
the duality gap can be expressed as
1 1Z0)
rw) = f () (29)

The authors are not aware of a closed-form expression for the
integral (28). Numerical evaluation reveals that it has a single
maximum occurring at about o = 0.39, and the value of the
maximum is about 0.1840. The duality gap is largest when the
power constraint is such that the cutoff point vy = 0.39€2. In
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Fig. 2. Spectral efficiencies of exact waterfilling and constant-power
allocation on a Rayleigh channel.

this worst case, the average data rate is 1.3631 b/s/Hz, and the
duality gap is 0.1840/ In 2 < 0.266 b/s/Hz away from capacity.
The following theorem summarizes the result.

Theorem 4: For a flat i.i.d. Rayleigh fading channel with
perfect side information at the transmitter and the receiver,
assuming infinite granularity on the channel state, a con-
stant-power adaptation method should allocate Sy to all
subchannels that could support at least one bit, where Sy is
determined from the power constraint. In this case, the resulting
spectral efficiency is at most 0.266 b/s/Hz away from capacity.

V. SIMULATION RESULTS
A. Wireless Rayleigh Channels

The performance of the power-adaptation algorithm is
simulated on a Rayleigh channel. The low-complexity con-
stant-power adaptation is used. The power transmission level
is determined by the instantaneous channel gain. The average
channel gain (2) is chosen to be —10 dB. In Fig. 2, the av-
erage spectral efficiencies of the exact waterfilling and the
low-complexity constant-power allocation are plotted against
the average power constraint, together with the duality-gap
bound. The average power constraint shown in the figure is the
normalized value with noise power spectral density level set
to 02 = 0 dB. It is seen from Fig. 2 that the true waterfilling
and the low-complexity algorithm give indistinguishable re-
sults. The capacity upper bound for the low-complexity power
allocation as computed by (29) is also plotted in Fig. 2. As it
can be seen, the true capacity lies well within the upper bound.
However, while the capacity bound may be loose, the con-
stant-power allocation method designed using the performance
bound nevertheless works very well.

B. Digital Subscriber Line Channels

The performance of the proposed low-complexity con-
stant-power waterfilling algorithm is also simulated for the
very-high-speed digital subscriber line (VDSL) application.
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Fig. 3. Achievable rates for VDSL lines at various line lengths.

VDSL 26-gauge transmission lines are simulated at various
distances. VDSL twisted-pair cables are severe ISI channels.
VDSL transmission can potentially use 4069 tones, with each
tone occupying 4.3125 kHz bandwidth. A mix of alien crosstalk
signals are also included. A moderate combined SNR gap and
margin of 12 dB is assumed. The data rates achievable with the
low-complexity constant-power waterfilling algorithm and that
with true waterfilling are plotted as a function of line length in
Fig. 3. At distances shown in Fig. 3, between 700-3000 tones
are typically used. Clearly, constant-power waterfilling has
negligible rate loss, compared with true waterfilling.

VI. CONCLUSIONS

In this letter, we investigate low-complexity power-adap-
tation algorithms for both the wireless fading channel and
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the wireline ISI channel. Our main contribution is a rigorous
performance bound for the constant-power waterfilling algo-
rithm based on the duality-gap analysis in convex optimization.
Furthermore, the duality-gap analysis allows a very-low-com-
plexity constant-power adaptation method to be developed. The
low-complexity algorithm has the desirable properties of having
a provable worst-case performance and being logarithm-free.
The performance bound is applied to Rayleigh fading channels.
It is shown that constant-power adaptive modulation is at most
0.266 b/s/Hz away from capacity. Simulation results suggest
that the actual gap is even smaller.
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