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maximization, assuming that only the long-term channel statistics, instead of the instantaneous 
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I. Introduction 

MIMO (Multiple-Input Multiple-Output) systems have recently attracted tremendous interest due 

to their ability in providing great capacity improvements [1-2]. In particular, a new technology 

denoted by layered space-time for MIMO systems (BLAST) has been proposed in [3]. Such scheme is 

shown to achieve unprecedented capacities that grow linearly with the number of transmit and receive 

antennas, when all signals undergo independent fading. However, the deployment of multiple 

antennas would require the implementation of multiple RF chains that are typically very expensive. 

Dealing with this issue, [5] firstly proposed to select only the most useful antennas for further signal 

processing, namely, only L out of N antennas are effectively deployed, and only L RF chains are thus 

required. In [5-6], a system known as Hybrid Selection/Maximum ratio combining is proposed in 

which the antennas are selected to maximize the achieved diversity gain as well as minimize the 

obtained error rates. However, all of these previous studies are based on the multiple-input 

single-output (MISO) channel or the single-input multiple-output (SIMO) channel. [7-10] further 

applied the antenna selection to MIMO links and showed that in a multiple-antenna fading channel, 

antenna selection can also provide diversity advantage. Various criteria for receive antenna selection 

or transmit antenna selection were proposed aiming at minimizing the symbol error rate [7] or 

maximizing the capacity bounds [8-10].  

The above stated results hold unfortunately only when the channel is rich enough. In such case, 

the transmitted data is split into several streams and transmitted in parallel over individual and 

independent channel links so that spatial multiplexing gain can be obtained. In fact, such assumption 

is generally not realistic and channel links usually present spatial correlation1 due to the lack of 

spacing between antennas, or to the existence of small angular spread. Both cases lead to a 

diminishing diversity and multiplexing gain, and this will significantly affect the capacity and error 

probability performance [11]. Particularly, when BLAST is applied in correlated channels, the 

performance is severely degraded to an unacceptable level since there are not enough independent 

dimensions supporting the simultaneously transmitted streams. Therefore, some processing at the 

transmitter must be done to combat this harmful effect. In this paper, we will show that in the 

correlated scenario, proper transmit antenna selection can not only be used to decrease the number of 

                                                        
1 Throughout this paper, the term “correlation” shall refer to “spatial correlation”. 
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RF chains, but also as an effective means to improve the performance. 

We consider a narrow-band communication system with M transmit and N receive antennas over a 

slowly varying flat Rayleigh fading correlated channel. We propose to select only tL  out of M 

transmit and rL  out of N receive antennas for further signal processing. We present the optimal 

antenna selection criterion for capacity maximization assuming that only the long-term channel 

statistics (LT-CS) are available. These statistics only change with the antenna position patterns or the 

surrounding environment, and thus remain invariant for long time intervals. The proposed selection 

process is not, hence, updated for each channel instance as those presented in [7-10], which are all 

based on the exact instantaneous channel state information (IC-SI). Moreover, since LT-CS are given 

by the correlation matrices at both ends, no feedback channel is necessary for transmit antenna 

selection. Therefore, our proposed algorithm, which we shall refer to as correlated selection algorithm 

(CSA) has the advantage of introducing further complexity reduction than that using IC-SI which we 

refer to as instantaneous selection algorithm (ISA).  

Unlike the work in [13-15] which focus on the selection criterion for minimizing the average error 

probability, here we demonstrate that for capacity maximization, the transmit (receive) antenna subset 

should be chosen to maximize the determinant of the transmit (receive) correlation matrix. To do so, 

we derive the capacity upper and lower bounds, and show that they converge to the same limit. By 

maximizing both bounds, we maximize the capacity and obtain the optimal selection criterion. 

Simulation results are used to further confirm our analysis and show that with our proposed CSA, 

significant gain can be achieved over the random selection scheme, especially at the transmitter side. 

Besides, comparison with ISA will indicate only slight capacity degradation. This implies that in 

correlated channels, antenna selection can be based on LT-CS instead of IC-SI while keeping capacity 

levels nearly unchanged. We also consider the case of the conventional system2 and find that CSA can 

even achieve better performance thanks to its optimal transmit selection.  

As for the joint antenna selection at both communication ends, we show that such a process can be 

decoupled with CSA and significant complexity reduction is consequently obtained at satisfying levels. 

For a large M or N, however, CSA still involves high computational complexity levels due to the 

required exhaustive search for the global optimal antenna set. To deal with this issue, we propose a 

                                                        
2 Throughout the paper, the “conventional system” shall refer to the system that uses all the M transmit and N receive antennas without 
selecting any antenna subset.  
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new low-complexity selection algorithm, denoted by L-CSA. It consists of iteratively searching the 

local optimal antenna subset at each stage. Significant complexity reduction as well as very close 

performance to CSA, are shown to be achieved. 

This paper is organized as follows. In Section II, we provide the system model and the various 

notations used throughout the paper. In Section III, we derive the antenna selection criterion for 

capacity maximization based on LT-CS. Section IV presents the details of our selection algorithm, 

CSA, and the complexity analysis. Another low-complexity antenna selection algorithm, L-CSA, is 

also proposed. Section V shows the capacity performance of both CSA and L-CSA. Comparison 

results with ISA, as well as, the conventional system are also provided in this section. Finally, Section 

VI summarizes and concludes this paper. 

II. System Model 

We consider in this paper the transmission of tL  signals through M antennas ( tM L≥ ), which 

undergo a slowly Rayleigh fading correlated channel to reach a receiver with N antennas. The 

received signals are next multiplexed into rL  ( rL N≤ ) RF chains so as to reduce the receiver cost 

and complexity. For simplicity, we assume in the following a perfect channel knowledge at the 

receiver side only, through the use of training sequences. We also assume that the channel is constant 

within a frame of T symbols. 

Let H  denote the N M×  channel matrix and '
1 2[ , ,..., ]Mx x x=x  denote the transmitted signal 

vector, where ix  is the transmitted symbol from the ith antenna and '( )⋅  refers to the transpose 

operator. Assuming perfect symbol synchronization at the receiver as well as equal transmission 

power at the transmitter side, the discrete model of the received complex signal vector can be written 

as 

= +y Hx n           (1) 

where n  denotes a complex Gaussian N-vector noise with covariance 2σ ×N NI .  

Following the channel model provided in [11,12], the channel matrix could be written as 

1/2 1/2
r w tH = R H R                                 (2) 
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where wH  is an N M×  complex matrix of i.i.d. zero-mean, unit variance complex Gaussian entries. 

tR  and rR  denote the M M×  and N N×  antenna correlation matrices at the transmitter and 

receiver side, respectively. It is also noted that these matrices have unit diagonal entries. 

We define the selected transmit antenna subset and selected receive antenna subset as tΛ  and 

rΛ , respectively, which are both unordered sets with tL  and rL  selected antennas. Let y! , x! , and 

n!  be the receive signal, transmit signal and noise vector after selection, respectively. Let also 
rΛ

R  

and 
tΛ

R  denote the cross-correlation matrix of those rL  and tL  selected antennas, respectively. 

These matrices can be obtained by eliminating the columns and rows of the non-desired antennas from 

rR  and tR , respectively. We assume here that tL  and rL  are selected to satisfy that 
tΛ

R  and 

rΛ
R  are both full ranks. Finally let H!  represent the r tL L×  channel gain matrix between tL  

selected transmit and rL  selected receive antennas. Then, 

r t

1/2 1/2
Λ w Λy = Hx + n = R H R x + n! !! !! ! !  .       (3) 

Throughout this paper, we denote by *( )⋅ , det( )⋅ , ( )trace ⋅  and ( )rank ⋅  the complex conjugate 

transpose, the determinant, the trace and the rank operators, respectively. ×m n0  represents an m n×  

zero matrix. For an arbitrary matrix A , ija  refers to its element at the ith row and the jth column, 

( )iλA  to its ith eigenvalue3, and ( )n n×
A  to its n n×  principal submatrix. When A  is a Hermitian 

non-negative definite matrix, we shall write it as ≥A 0 . We also write A  as ( )iidiag a  when it is a 

diagonal matrix. Finally, a set S  with elements is , 1, 2,...,i n= , will be represented by 

{ }1 2, ,..., ns s s  with its length denoted by S . 

III. Antenna Selection Criterion 

In the following derivation, we highlight the effect of correlation on the capacity, so as to obtain a 

selection criterion that is related only to 
rΛ

R  and 
tΛ

R . To do so, we start by applying Singular 

                                                        
3 The eigenvalues are all assumed to be sorted in a descending order throughout this paper. 
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Value Decomposition (SVD) to 
rΛ

R  and 
tΛ

R . We then obtain 

r

*
Λ r r rR = U Q U ,  

t

*
Λ t t tR = U Q U        (4) 

where rU  and tU  are both unitary matrices whose columns are the eigenvectors of 
rΛ

R  and 
tΛ

R , 

respectively. rQ  and tQ  are both diagonal matrices whose diagonal entries are eigenvalues of 
rΛ

R  

and 
tΛ

R , respectively. The channel matrix, H! , is thus re-written as 

= =
r t

1/2 1/2 1/2 1/2 *
Λ w Λ r r w t tH R H R U Q H Q U! ! ! .      (5) 

From [4], we know that the capacity satisfies 

2 2

2

log det[ ] log det[ ]

log det[ ]

t t

t

C
L L

L

ρ ρ

ρ

∗
× ×

×

= + = +

= +

r r r r

r r

1/2 * 1/2 *
L L L L r r w t w r r

*
L L w t w r

I HH I U Q H Q H Q U

I H Q H Q

! ! ! !

! !
  (6) 

where ρ  is the mean SNR per receive branch. 

In order to select the optimal set of antennas that maximizes the above capacity expression, we 

distinguish three cases: r tL L= , r tL L>  and r tL L< . Actually, the r tL L<  case is similar to 

r tL L>  since rQ  and tQ  can be swapped with no effect on capacity as (6) shows. Therefore, in 

the following we will focus on the first two cases. 

In the first case where r tL L= , the capacity is found to be equivalent to 

2

2 2 2 2

log det[ ]

log log det[ ] log det[ ] log det[ ]

t

t
t

C
L

L
L

ρ

ρ

≈

 
= + + + 

 

*
w t w r

*
w w t r

H Q H Q

H H Q Q

! !

! !
  (7) 

at high values of ρ . Consequently, it is clear that to maximize the capacity, we should maximize the 

determinants of 
tΛ

R  and 
rΛ

R . In other words, the optimal transmit (receive) antenna set tΛ  ( rΛ ) 

in terms of capacity maximization should be selected to maximize the determinant of the 

corresponding correlation matrix 
tΛ

R  (
rΛ

R ). In the second scenario, however, it is difficult to obtain 

a closed form of the exact capacity expression. Thus, we propose to derive both a lower and an upper 

bound for the capacity so as to obtain the optimal selection criterion. 
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A. Capacity Lower Bound 

From (6), we have 

2log det[ ]
t

C
L
ρ

×= +
t t

*
L L t w r wI Q H Q H! !        (8) 

given that det( ) det( )=I + AB I + BA . Let HU  denote an r rL L×  unitary matrix whose columns are 

the eigenvectors of *
w wH H! ! , and ˆ

rQ  the t tL L×  principal submatrix of *
H r HU Q U . It follows that 

2

2 2 2

log det[ ]

log log det[ ] log det[ ]

t

t
t

C
L

L
L

ρ

ρ

>

 
= + + 

 

*
t w r w

*
t w r w

Q H Q H

Q H Q H

! !

! !
 

2 2 2 2
ˆlog log det[ ] log det[ ] log det[ ]t

t

L
L
ρ 

= + + + 
 

*
t w w rQ H H Q! !    (9) 

Next, let { }( )

{1.. }r

j
r j L

q
∈

 denote the sorted eigenvalues in descending order of 
rΛ

R . Since 

*
H r HU Q U  is Hermitian, from [18], we know that ( )( )

ˆ
r tL L iiλ λ − +≥ *

r H r HQ U Q U
, 1,..., ti L= . As a result, we have 

( )
2 2

1

ˆlog det[ ] log
r

r t

L
i

r
i L L

q
= − +

> ∏rQ  .        (10) 

By substituting (10) into (9), we have 

( ) ( )
2 2 2 2 2 2

1 1 1

ˆlog det[ ] log det[ ] log det[ ] log log log
t t r

r t

L L L
i i

t i r
i i i L L

q d q
= = = − +

+ + > + +∏ ∏ ∏*
t w w rQ H H Q! ! , (11) 

where { }( )

{1.. }t

i
t i L

q
∈

and { } {1.. }t
i i L

d
∈

 are the sorted eigenvalues in descending order of 
tΛ

R and *
w wH H! ! , 

respectively. Furthermore, it is easy to note that 

( ) ( ) ( )
2 2 2

1 1 1

log log log
r tr r

r t

L LL L
i i i

r r r
i L L i i

q q q
−

= − + = =

    
= −          

∏ ∏ ∏ .     (12) 

With the definition of 
rΛ

R , we know ( )

1

r tL L
i

r r
i

q L
−

=

<∑  given that ( )

1

rL
i

r r
i

q L
=

=∑ . Hence, by applying 

Jensen’s inequality, we obtain 

( )

( ) 1

1

r tr t

r t
r t

L LL L
i

L LL L r
i i r

r
i r t r t

q
Lq

L L L L

−−

−−
=

=

 
    ≤ <  − −   
 
 

∑
∏ .     (13) 
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Using (11), (12) and (13), we have 

2

( ) ( )
2 2 2 2 2

1 1 1

log det[ ]

log log log log ( ) log
t t r

t

L L L
i i r

t i t r r t
i i it r t

C
L

LL d q q L L
L L L

ρ

ρ

×

= = =

= +

        
> + + + − −         −       

∏ ∏ ∏

t t

*
L L t w r wI Q H Q H! !

. (14) 

We thus obtain a lower bound, LC , for the capacity that is given by 

( ) ( )
2 2 2 2 2

1 1 1

log ( ) log log log log
t t rL L L

i ir t
L t r t i t r

i i it r

L LC L L L d q q
L L
ρ

= = =

        −= + − + + +        
       

∏ ∏ ∏ . (15) 

B. Capacity Upper Bound 

 We begin by presenting the following lemma: 

Lemma 1: Assume that A is an arbitrary n m×  matrix with non-negative eigenvalues and B is an 

m m×  non-negative definite diagonal matrix with m n≤ . Then, ( ) (1) ( )i iλ λ λ∗ ≤ * BABA A A
, 1,...,i m= . 

Proof: See Appendix I. 

 Next, we note that  

det[ ] det[ ] det[ ]
t tL L

ρ ρ
× × ×+ = + = +

t t r r r r

* *
L L t w r w L L r w t w L L rI Q H Q H I Q H Q H I Q W! ! ! !   (16) 

where 
tL

ρ= *
w t wW H Q H! ! . Then, by applying the above lemma to W , we have ( ) (1) ( )i i

tL
ρλ λ λ≤ * tw w

W QH H! !
 or 

( ) ( )
1

i i
t

t

d q
L
ρλ ≤W , 1,..., ti L= .  

Now consider the r rL L×  diagonal matrix ( )iidiag z=Z  with 

( )
1 1,..

1 1,..

i
t t

tii

t r

d q i L
Lz

i L L

ρ == 
 = +

.        (17) 

Clearly, we have ( )i
iiz λ≥ W , 1,..., ri L∀ = . Then, we can write the following 

( )

1

det[ ] det[ ] (1 )
rL

i
r ii

i
q z× ×

=

+ ≤ + = +∏r r r rL L r L L rI Q W I Q Z .    (18) 

Finally, since 
rΛ

R  is of full-rank, we have at high values of ρ , 
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( ) ( ) ( )
1

1 1 1

(1 )
t

tr r
t

L LL L
Li i i

r ii t r
i i it

q z d q q
L
ρ

= = =

 
+ ≈  

 
∏ ∏ ∏ .      (19) 

The capacity is thus upper bounded by UC  where 

( ) ( ) ( )
2 2 1 2 2

1 1

log log log log
t rL L

i i
U t t t r

i it

C L L d q q
L
ρ

= =

     
= + + +     

   
∏ ∏ .   (20) 

C. Lower & Upper Bound Convergence 

We will now show that the lower and upper bounds, LC  and UC , converge to the same limit. To 

do so, we assume that tL  and rL  can increase without bound at the same rate, such that rL → ∞  

and tL → ∞  with t

r

L r
L

→ , as in [17]. Obviously r satisfies 0 1r≤ < . We then show that 

01lim ( ) 0
r

r
U LL

r

C C
L

→

→∞
−  → . 

Using the expressions of LC  and UC  given in (15) and (20), respectively, we have 

( ) 2 2 1 2
1

1 1lim lim log log log
t

r r

L
r t r

U L iL L ir r r t r

L L LC C r d d
L L L L L→∞ →∞ =

 −− = + − − 
∑  

( )2 2 1 2
1

1lim (1 ) log (1 ) lim log log
t

r r

L

iL L ir

r r r d d
L→∞ →∞ =

 
= − − − + − 

 
∑ .  (21) 

 Now consider the limit of 2 1 2
1

1log log
tL

i
ir

r d d
L =

 
− 

 
∑  in (21) when rL → ∞ . To do so, let 

1

tL
= *

w wS H H! ! , whose ith eigenvalue satisfies ( ) ( )1 1i i
i

t t

d
L L

λ λ= =*
w w

S H H! !
, for any 1,..., ti L= . According to 

[16], these eigenvalues satisfy 
( ) 2

{1.. }
lim max (1 )
r t

i

L i L
rλ

→∞ ∈
→ +S .        (22) 

In addition, they have an empirical distribution function, denoted by ( )
rLF x , given by 

lim ( ) ( )
r

r
L rL

F x F x
→∞

→           (23) 

where 
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2 2 2 21 ( (1 ) )((1 ) )( ) (1 ) (1 )( ) 2
0

r
r

x r r xdF x r x rf x rx
dx otherwise

π
 − − + − − < < += = 


  (24) 

Using the above results, we obtain 

2

2

2
2 1 2 2 2

1 1

2
2 2

1

(1 )
2

2 2
(1 )

1 1lim log log log (1 ) lim log

1log (1 ) lim log

log (1 ) log ( )

t t

r r

t

r

L L
i

i t tL Li ir t t

L
i

L it t

r

r
r

dr d d r L r r L
L L L

dr r r
L L

r r r x f x dx

→∞ →∞= =

→∞ =

+

−

     − = + − ⋅         
 

= + −  
 

= + − ⋅

∑ ∑

∑

∫

 

2
2log (1 ) ( )r r r rη= + −         (25) 

where 
2

2

(1 )

2
(1 )

( ) log ( )
r

r
r

r x f x dxη
+

−

= ⋅∫ . We note that ( )rη < ∞ , for 0 1r≤ < . 

Finally, by substituting (25) into (21), we get  

( )2
2 2lim (1 ) log (1 ) log (1 ) ( )

r

U L
L

r

C C r r r r r
L

η
→∞

− = − − − + + −    (26) 

Clearly, when 0r → , we have lim 0
r

U L
L

r

C C
L→∞

− → , implying that when r tL L" , the capacity lower 

and upper bounds converge to the same limit.  

D. Optimal Antenna Selection 

From the closed form expressions of LC  and UC  given in (15) and (20), respectively, we clearly 

distinguish the channel correlation effect on the capacity from the instantaneous channel effect given 

by wH! . We can then proceed with antenna selection based on the LT-CS given by 
tΛ

R  and 
rΛ

R . 

Clearly, the antenna selection criterion that maximizes LC  has to maximize the term 

( ) ( )
2 2

1 1

log log
t rL L

i i
t r

i i
q q

= =

   
+   

  
∏ ∏  in (15). The resulting antenna set, thus, needs to be selected so as to 

maximize the determinant of 
tΛ

R  and 
rΛ

R  at the transmitter and receiver side, respectively. 

Furthermore, a closer look at Eqn. (20) indicates that UC  is maximized according to the same 

selection criterion. It follows that the selected antenna subset that maximizes the upper bound also 
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maximizes the lower bound simultaneously. Moreover, according to Section III.C, LC  and UC  

converge to the same limit when r tL L" . This implies that the antenna subset that maximizes both 

bounds also maximizes the capacity and is hence optimal. 

 So far, we have shown that to maximize the capacity, the antennas should be selected to 

maximize the determinant of the corresponding correlation matrix in both scenarios: r tL L=  and 

r tL L> . Let 

( )

1

tL
C i

t
i

qξ
=

=∏tΛ
  and ( )

1

rL
C i

r
i

qξ
=

=∏rΛ
.       (27) 

Then, the capacity maximization criterion for joint transmit and receive antenna selection can be 

described as follows. 

Proposition 1: For a given tL  and rL , the optimal selected transmit antenna subset *
tΛ  and 

receive antenna subset *
rΛ  that maximize the capacity are given by 

arg max Cξ=
r

r

*
r ΛΛ
Λ , and arg max Cξ=

t
t

*
t ΛΛ
Λ  

where Cξ
rΛ
and Cξ

tΛ
 are given by (27). 

 As mentioned before, the above derivation is based on the assumption that both 
tΛ

R  and 
rΛ

R  

are of full rank (See Section II). Actually, this assumption can be relaxed. Using extensive simulations, 

we found that even when 
tΛ

R  and 
rΛ

R  are singular, the criterion is also applicable if we substitute 

tL  and rL  in (27) by ( )rank
tΛ

R  and ( )rank
rΛ

R , respectively. In other words, when the number 

of antennas to be selected, tL , is larger than ( )rank
tΛ

R , the selected tL  set of antennas should 

include those who maximize 
( )

( )

1

rank
i

t
i

q
=

∏
ΛtR

. Selection at the receiver side is similar. 

IV. Antenna Selection Algorithms for Correlated Channels 

We describe here a selection process according to Proposition 1, which we shall denote by 

Correlated Selection Algorithm (CSA). This algorithm consists of creating all possible tL
MC  ( rL

NC ) 
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antennas sets tΛ  ( rΛ ) with tL  ( rL ) out of M transmit (N receive) antennas. The corresponding 

Cξ
tΛ
 ( Cξ

rΛ
) are computed and the one with the best measure, as described in Proposition 1, is selected. 

For simplicity, we only take the example of transmit selection. The description of CSA for receive 

selection is similar. 

ALGORITHM I 
CORRELATED SELECTION ALGORITHM  (CSA) 

 

 

 

 

 

 

 

 

 

Clearly, transmit and receive antenna selection are decoupled with CSA. Therefore, only 

t rL L
M NC C+  comparisons are needed with CSA instead of t rL L

M NC C×  with the full exhaustive search 

algorithm. The latter consists of considering all possible antenna sets at both ends simultaneously in 

couples, ( tΛ , rΛ ). Nevertheless, at either communication end, CSA employs an exhaustive search for 

the optimal antenna set, which will incur prohibitive computational complexity for a large M (or N). 

For instance, assume that M = 20 and tL =8, then a total of tL
MC =125970 comparisons are needed, 

which is still considerably computationally high. 

To further reduce the complexity, we propose to apply a sub-optimal sequential selection 

approach instead of the exhaustive one used in CSA. This is briefly described as follows in the case of 

transmit selection. We begin by considering all the M transmit antennas. Antenna selection is then 

performed in stages. In the ith stage, all possible antenna subsets ( ) ( )j itΛ  are obtained by removing 

only one antenna each time from the original set ( 1)i −*
tΛ  of the previous ( 1i − )th stage. For each 

Given tL , let tL
MK C= , and generate all possible tΛ ’s: (1)

tΛ , (2)
tΛ , …, ( )K

tΛ . 
Initialization: 

0Cξ = , ×=
t

*
t L 1Λ 0 ,  

Recursion: 
For 1m = : K  

Compute ( )m
Cξ

tΛ
 for each ( )m

tΛ . 
If ( )m

C Cξ ξ≥
tΛ

  Then  
( )m∗ =t tΛ Λ , ( )m

C Cξ ξ=
tΛ

. 
End if. 

End loop 
Output ∗

tΛ . 
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( ) ( )j itΛ , we compute its corresponding determinant given by 

( )

( )

( )
( )

( )
1

j

j

i
C k

ti
k

qξ
=

= ∏
t

t

Λ

Λ
.         (28) 

For ease of reference, we will refer to the above determinant as the metric of each antenna subset 

( ) ( )j itΛ . Then, the optimal antenna subset with the highest metric, ( )i*
tΛ , is selected. All other 

sub-sets are then removed and the search will continue as described above until only tL  antennas are 

left. For instance, consider transmit selection with tL =2 and M =6, as shown in Fig. 1. We label the 

transmit antennas as 1, 2, … , 6.  In particular, the notation {i, j, …, k} represents the selection of 

Antenna i, j, and k from the set of the M transmit antennas. It can be seen that four stages of search are 

required. In the 1st stage, 5 transmit antennas are selected according to the metric as described in (28). 

In the 2nd stage, the best 4 antennas are chosen out of the already selected optimal antenna subset in 

the first stage. This process is continued until we obtain the best selected transmit antenna set with 

tL =2 antennas. This sequential search algorithm shall be referred to as low-complexity correlated 

selection algorithm (L-CSA) and is described below in the case of transmit selection. 

ALGORITHM II 
LOW-COMPLEXITY CORRELATED SELECTION ALGORITHM  (L-CSA) 

 

 

 

 

 

 

 

 

 

 

 

Let ( )i*
tΛ  denote the optimal selected antenna set at the i-th stage, and label the transmit 

antennas as 1, 2, …, M.  
Initialization:  

L M= ,  i = 0, (0)*
tΛ = {1, 2, …, M} 

Recursion: 
While ( tL L> ) 
a) i = i + 1; 
b) For  j = 1 : L  

( ) ( )j itΛ  = ( 1)i −*
tΛ - {j}; 

( )

( )

| ( )|
( )

( )
1

j

j

i
C i

ti
i

qξ
=

= ∏
t

t

Λ

Λ
. 

End 

c) ( )( )

*
( )( )

( ) arg max jj

C
ii

i ξ=
tt

t ΛΛ
Λ ; 1L L= − . 

End While. 
Output ( )i*

tΛ . 
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The optimal selected receive antenna set *
rΛ  can be obtained in a similar way. Clearly, L-CSA 

requires much fewer comparisons than CSA. Specifically, only 
1 1t r

M N

i L j L

i j
= + = +

+∑ ∑  comparisons are 

needed instead of t rL L
M NC C+  with CSA. To further demonstrate the amount of complexity reduction 

obtained with L-CSA, we provide in Table I the number of required comparisons to find the optimal 

antenna set using both CSA and L-CSA. For instance, to select 8 out of 20 transmit and 12 out of 30 

receive antennas, CSA needs about 78 10×  comparisons, while with L-CSA only 561 comparisons 

are needed. Nevertheless, despite its low complexity, L-CSA may not provide the optimal set that 

maximizes the capacity. As shown in Fig. 1, two sets in the first stage have the same value of the 

largest metric. That is, the sets inside the solid and dashed line boxes. In this case, L-CSA chooses the 

first found set. However, note that a better capacity may be obtained if the other set is considered. In 

this paper, we consider the simplest form of L-CSA, which always selects the first found set that 

maximizes the metric as described in (28) at any given stage, to provide the lowest possible 

complexity. 

V. Simulation Results and Discussions 

In this section, we present simulation results that validate the selection criterion derived previously. 

We also compare the performance of CSA with both ISA and the conventional system. Performance is 

evaluated in terms of capacity averaged over 50000 frames. We consider uplink transmission and 

adopt the correlated channel model described in [11,12].  Linear arrangement of the antenna array is 

assumed at both the receiver (base station side) and transmitter (mobile side) with the antenna 

separation being 4 and 1/2 wavelengths, respectively. We also assume the “broadside” case as defined 

in [11], and that the incoming waves are uniformly distributed in the angular spread r∆ ( t∆ ) [12].  

A. Theoretical Results Validation 

To confirm the optimality of our criterion, we compare the CSA selection to the exhaustive search 

one. The latter is obtained by using Monte Carlo simulations to find the best tL ( rL ) antennas that 

should be selected on the transmitter (receiver) side. To do so, we compute the corresponding capacity 
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for each possible antenna subset tΛ ( rΛ ), and choose the one with the best performance. Table II 

presents a sample of the comparison results for receive selection under different receive angular 

spreads r∆  and different number of selected receive antennas rL . Correlation is assumed to be 

existent only at the receiver side. We note that in some cases, two different ( )i
rΛ  and ( )j

rΛ  could 

have ( ) ( )i j
C Cξ ξ=

r rΛ Λ
, such is the case with (1)

rΛ  = {1, 2, 6} and (2)
rΛ  = {1, 5, 6} when o10r∆ =  and 

3rL = . In this particular case, both subsets are optimal in terms of capacity maximization and *
rΛ  is 

thus not unique. We evaluated their corresponding capacity using Monte Carlo simulations and found 

a difference of the order of 1%. As a result, both selections are assumed optimal and we list both of 

them in the fourth column of Table II. Similar results are also obtained for the transmitter side. 

However, we do not include them for space limitations. Based on these results, it is obvious that the 

CSA selection results coincide very well with the simulation results. Thus, we conclude that our 

selection criterion, as derived in Section III, is indeed optimal.  

B. Selection Gain 

We compare the capacity of our proposed CSA and the random selection algorithm which we refer 

to as RSA so as to see how much gain can be obtained with the optimal selection. In particular, with 

RSA, we randomly select rL  receive antennas or tL  transmit antennas for each channel realization. 

Fig. 2 shows the comparison results under different values of rL , tL , r∆  and t∆ . We first consider 

the capacity gain at the receiver side. Particularly, we assume that correlation only exists at the 

receiver and for a system of N = 6 and M = 2, we select 3 receive antennas randomly or according to 

our proposed CSA. From Fig. 2, it can be seen that the optimal receive antenna selection using CSA 

can achieve a gain of at least 1 bit/s/Hz for 90% outage capacity when o35r∆ =  and SNR = 20dB. 

As for the transmit antenna selection, we consider a system of M = N = 6 and assume that correlation 

only exists at the transmitter side. A gain of 3 bit/s/Hz at 90% outage capacity is observed with CSA 

when o90t∆ =  and SNR = 20dB.  

We further investigate in what follows the capacity gain achieved with CSA compared to RSA 

with different values of rL  and r∆ . To do so, we evaluate here such gain as 
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( ) /CSA RSA RSAC C C− ×100%, where CSAC  and RSAC  denote the 90% outage capacity obtained by CSA 

and RSA, respectively. Fig. 3 provides the gain results for o o[5 ,75 ]r∆ ∈  and 2,rL = 3 and 4. A 

closer observation of this figure indicates that CSA exhibits significant gain compared to RSA only 

for an angular spread, i.e., o o[10 ,60 ]r∆ ∈ . In fact, when r∆  is relatively small, i.e., o10r∆ < , the 

correlation matrix tends to be singular with a unit rank. No matter what antennas are selected, there is 

only one independent dimension for the whole channel and thus the capacity gain obtained with CSA 

is very low. A similar observation is also noticed for a relatively large angular spread, i.e., o60r∆ > . 

In this case, however, the correlation between different antennas tends to be zero implying that 

×r N NR = I . Antenna selection does not, hence, affect the capacity. As a result, we can conclude that 

CSA presents a significant gain compared with RSA when the channel links are neither independent 

nor severely correlated. Besides, Fig. 3 indicates that such gain decreases with an increasing rL . This 

is because the larger the antenna set to be selected, the higher the chances that RSA would select the 

same antenna set as CSA. Similar results can be obtained for transmit selection. However, we do not 

include them here for space limitation. 

C. Performance Comparison with Instantaneously Selected System 

We compare here the capacity performance of CSA and ISA. Recall that antenna selection in ISA 

is performed according to the exact channel state information per channel instance. For every 

realization of the channel matrix H , a complete set of all the possible matrices Ĥ  is created by 

eliminating all possible permutations of rN L−  rows (and/or tM L−  columns) from the matrix. 

Capacity is then computed for each possible Ĥ  and the antenna set corresponding to Ĥ  that 

maximizes the capacity is selected. 

In Fig. 4, we consider antenna selection at the transmitter side. Capacity cdf results of both CSA 

and ISA for tL = 2 and 4, o60t∆ = and o120  with an SNR of 20 dB are provided in this figure. The 

number of receive antennas is fixed to be 6, and correlation is assumed to only exist at the transmitter 

side. It can be seen that CSA can always achieve nearly the same capacity as ISA even for large 

angular spreads. Recall that our proposed CSA is based on LT-CS provided by the correlation matrices. 
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With an increasing angular spread which implies a more and more uncorrelated channel, CSA will 

incur some performance degradation compared with ISA since capacity in this case is affected by 

IC-SI rather than by LT-CS. Nevertheless, from Fig. 4 it can be observed that this degradation is rather 

slight. Even for an angular spread of o120 , 90% outage capacity of CSA is only 0.4 bit/s/Hz less than 

that of ISA with tL =4. As a result, we conclude that in correlated channels, antenna selection can be 

based on LT-CS instead of IC-SI with very slight capacity loss and significant complexity reduction. 

Similar results are also obtained for the receiver side, but we do not present them here due to limited 

space. 

D. Performance Comparison with the Conventional System 

We compare the capacity achieved with CSA and the conventional system without selection (i.e. 

tL M=  and rL N= ) to highlight the importance of antenna selection in correlated channels. Fig. 5 

shows the capacity cdf curves of CSA and the conventional system. It can be observed that using less 

receive antennas will lead to a decrease of capacity. The capacity cdf curve of CSA with tL =2, rL =6 

is always on the right side of those of CSA with tL =2, rL =3 or 5. However, using less transmit 

antennas may actually increase the capacity in some high correlated scenario. As Fig. 5 shows, when 

t∆ = o60  and r∆ = o30 , the capacity of CSA with tL =2, rL =6 (or 5) is larger than that of the 

conventional system ( tL =6, rL =6)! While with increasing t∆  and r∆ , the conventional system can 

achieve more capacity than CSA. For instance, with a t∆ = o120  and r∆ = o60 , the conventional 

system gains about 4 bit/s/Hz more than CSA with tL =2, rL =6. 

To show the effect of transmit selection and receive selection more clearly, Fig. 6 and Fig. 7 

present the capacity of receive selection and transmit selection, respectively. In Fig. 6, we assume that 

no correlation exists at the transmitter and the number of transmit antennas is fixed to be 6. Clearly, 

the conventional system always outperforms CSA with receive antenna selection. Moreover, the 

capacity loss increases with a decreasing rL . This is explained by the fact that when less receive 

antennas are selected, the overall diversity order decreases and so does the system capacity. Such a 

loss is also observed to decrease with a decreasing r∆ . In fact, a closer observation of Fig. 6 indicates 
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that when r∆ =30o and rL =2, CSA presents around a 4 bits/s/Hz loss compared with the conventional 

system at 90% outage capacity. With the same selected number of receive antennas, only a loss of the 

order of 1 bit/s/Hz is observed when r∆ =10o. This is explained by the fact that when r∆  decreases, 

the channel links becomes severely correlated. The capacity of the conventional system does not 

hence present much improvement compared to CSA. As a result, we conclude that CSA with receive 

antenna selection presents capacity degradation compared with the conventional system. In other 

words, receive selection always introduces performance degradation. Such degradation will increase 

with a decrease in the number of selected receive antennas and an increase of angular spread.  

On the other hand, using less transmit antennas may boost the capacity. In order to show the effect 

of tL ’s and angular spreads on capacity more clearly, we plot the curves of 90% outage capacity 

versus t∆  with different tL ’s. Similarly, here no correlation is assumed to be at the receiver and the 

number of receive antennas is fixed to be 6. As Fig. 7 shows, under a highly correlated channel, i.e. 

o60t∆ ≤ , CSA with tL =2 provides the highest capacity. As the angular spread increases, the capacity 

with tL =2 will converge to a constant quickly, while the capacity with more selected transmit 

antennas still go on climbing. Finally, when t∆  increases to o180 , the conventional system 

( tL =M=6) achieves the best capacity performance. This phenomenon is coincident with what 

observed in [19]. Actually, if the number of transmit antennas exceeds the rank of the channel matrix, 

capacity will decrease with an increase of tL . The highest capacity is always achieved when the 

number of transmit antennas is equal to the rank of the channel matrix. From Fig. 7, it is clear that 

only for high values of t∆  (i.e., o160t∆ ≥ , which implies a nearly uncorrelated channel), the 

conventional system outperforms CSA. As a result, we conclude that in correlated channels, the 

conventional system does not always provide the best capacity performance. In particular, optimal 

transmit antenna selection can bring capacity gain. 

So far, we have shown that the optimal receive antenna selection presents some capacity 

degradation compared with the conventional system. The optimal transmit antenna selection, on the 

other hand, may enhance the capacity. Therefore, in correlated channels CSA with a proper tL  and 
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rL  can actually achieve more capacity than the conventional system. Proper antenna selection can not 

only be used to decrease the number of RF chains, but also as an effective means to improve the 

performance. 

E. Performance Comparison of CSA with L-CSA 

In Section IV, it has been shown that with L-CSA the complexity can be reduced dramatically. We 

further present the performance comparison of L-CSA and CSA in the case of receive selection. Their 

90% outage capacity versus r∆  curves for different values of rL  are plotted in Fig. 8. It can be seen 

that L-CSA provides nearly the same capacity as CSA. In particular, it was found that the selection 

results using L-CSA are usually the same as those using CSA. As a result, we conclude that L-CSA 

can perform closely to CSA but with much lower complexity. 

VI. Conclusions 

In this paper, we derived the capacity maximization criterion for transmit and receive antenna 

selection according to LT-CS. We showed that in correlated channels, our algorithm, which we refer to 

as the CSA scheme, can achieve nearly the same capacity as the ISA scheme while dramatically 

decreasing the complexity since only the correlation matrix is needed for selection instead of the 

instantaneous channel state information. It was also shown that with optimal transmit antenna 

selection, CSA can even achieve performance gain over the conventional system. Finally, we proposed 

a low-complexity selection algorithm L-CSA which can achieve very close performance to CSA but 

with much lower complexity. 

Appendix I.  Proof of Lemma 1 

Assume that X and Y are both n n×  non-negative definite Hermition matrices. Then, from [18] we 

know that  

( ) (1) ( )i iλ λ λ≤ 2XYX Y X
, 1,...,i n= .         (I.1) 

Applying (I.1) with 1/2X = B  and *Y = A A , we have 

( ) (1) ( )i iλ λ λ≤1/2 * 1/2 * BB A AB A A
, 1,...,i n= .        (I.2) 
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Furthermore, using the fact that ( ) ( ) ,i iλ λ=* *AA A A
 1,...,i m= , we know that 

( ) ( )i iλ λ=* 1/2 * 1/2ABA B A AB
, 1,...,i m= .        (I.3) 

As a result, we get 

  ( ) (1) ( )i iλ λ λ∗ ≤ * BABA A A
, 1,...,i m= .        #  

REFERENCES 

[1] R. D. Murch and K. B. Letaief, “Antenna systems for broadband wireless access,” IEEE Communications 
Magazine, Vol. 40, No. 4, pp. 76-83, April 2002. 

[2] K. K. Wong, R. D. Murch, and K. B. Letaief, “Performance enhancement of multiuser MIMO wireless 
communications systems,” IEEE Transactions on Communications, Vol. 50, No. 12, pp. 1960-1970, Dec. 2002. 

[3] P. W. Wolniansky, G. J. Foschini, G. D. Golden and R. A. Valenzuela, “V-BLAST: an architecture for 
realizing very high data rates over the rich-scattering wireless channel,” in Proc. ISSSE’98, pp. 295-300, 1998. 

[4] E. Telatar, “Capacity of multi-antenna Gaussian channels,” AT&T Bell Labs Internal Tech. Memo., June 
1995. 

[5] M. Z. Win and J. H. Winters, “Analysis of hybrid selection/maximal-ratio combining in Rayleigh fading,” 
IEEE Trans. Commun., Vol. 47, No. 12, p. 1773-1776, Dec. 1999. 

[6] M. Z. Win and J. H. Winters, “Virtual branch analysis of symbol error probability for hybrid 
selection/maximal-ratio combining in Rayleigh fading,” IEEE Trans. Commun., Vol. 49, pp. 1926-1034, Nov. 
2001. 

[7] R. W. Heath Jr. and A. Paulraj, “Antenna selection for spatial multiplexing systems based on minimum error 
rate,” in Proc. ICC’01, pp. 2276-2280, June, 2001. 

[8] S. Sandhu, R. U. Nabar, D. A. Gore, and A. Paulraj, “Near-optimal selection of transmit antennas for a 
MIMO channel based on Shannon capacity,” in Proc. 34th Asilomar Conference on Signals, Systems and 
Computers, pp. 567-571, Oct. 2000. 

[9] A. Molisch, M. Win and J. Winters, “Capacity of MIMO systems with antenna selection,” in Proc. ICC’01, 
Helsinki, Finland, pp. 570-574, 2001. 

[10] A. Gorokhov, D. Gore, and A. Paulraj, “Performance bounds for antenna selection in MIMO systems,” in 
Proc. ICC’03, pp. 3021-3025, May 2003. 

[11] D. S. Shiu, G. J. Foschini, M. J. Gans, and J. M. Kahn, “Fading correlation and its effect on the capacity of 
multi-element antenna systems,” IEEE Trans. Commun., Vol. 48, No. 3, pp. 502-513, 2000. 

[12] D. Gesbert, H. Bolcskei, D. A. Gore, and A. J. Paulraj, “MIMO wireless channels: capacity and 
performance prediction,” in Proc. Globecom’00, pp. 1083-1088, 2000. 

[13] D. A. Gore, R. W. Heath, and A. J. Paulraj, “Transmit selection in spatial multiplexing systems,” IEEE 
Commun. Letters, Vol. 6, No. 11, pp. 491-493, Nov. 2002. 

[14] D. Gore, R. Heath and A. Paulraj, “Statistical antenna selection for spatial multiplexing systems,” in Proc. 



Optimal Antenna Selection Based on Capacity Maximization… L. Dai, S. Sfar and K. B. Letaief   20 

ICC’02, New York, pp. 450-454, May 2002. 

[15] D. A. Gore, and A. J. Paulraj, “MIMO antenna subset selection with space-time coding,” IEEE Trans. 
Signal Processing, Vol. 50, No. 10, pp. 2580-2588, Oct. 2002. 

[16] J. W. Silverstein, “Eigenvalues and eigenvectors of large dimensional sample covariance matrices,” 
Contemporary Mathematics, Vol. 50, pp. 153-159, 1986. 

[17] C.-N Chuah, D. N. C. Tse, J. M. Kahn, and R. A. Valenzuela, “Capacity scaling in MIMO wireless systems 
under correlated fading,” IEEE Trans. Inf. Theory, Vol. 48, No. 3, pp. 637-650, Mar. 2002. 

[18] S. Wang, and Z. Jia, Inequalities in Matrix Theory, Anhui: Educational Publishing Company, 1994. 

[19] D. A. Gore, and R. U. Nabar, and A. Paulraj, “Selecting an optimal set of transmit antennas for a low rank 
matrix channel,” in Proc. ICASSP’00, pp. 2785-2788, 2000. 

 



Optimal Antenna Selection Based on Capacity Maximization… L. Dai, S. Sfar and K. B. Letaief   21 

 
 
 

TABLE I 
COMPLEXITY COMPARISON BETWEEN CSA AND L-CSA 

M =6, N =6 M =10, N =15 M =20, N =30 Algorithm Complexity 

tL =3, rL =3 tL =2, rL =4 tL =5, rL =8 tL =3, rL =6 tL =8, rL =12 

CSA 
t rL L

M NC C+  40 1410 6687 594910 86619000 

L-CSA 

1 1t r

M N

i L j L

i j
= + = +

+∑ ∑
30 162 124 648 561 

 
 
 
 
 
 
 

TABLE II 
RECEIVE SELECTION RESULTS USING THE PROPOSED SELECTION SCHEME AND MONTE CARLO SIMULATION 

WHEN N = 6 AND M = 2 

Angular Spread 

r∆  

Number of Selected 

Antennas rL  

CSA selection Monte Carlo Exhaustive 
Simulation 

(SNR=20dB) 
2 {1, 6} {1, 6} 
3 {1, 2, 6} or {1, 5, 6} {1, 2, 6} or {1, 5, 6} 

 
o10  

4 {1, 2, 5, 6} {1, 2, 5, 6} 
2 {1, 6} {1, 6} 
3 {1, 3, 6} or {1, 4, 6} {1, 3, 6} or {1, 4, 6} 

 
o50  

4 {1, 3, 5, 6} or {1, 2, 4, 6} {1, 3, 5, 6} or {1, 2, 4, 6} 
2 {2, 6} {2, 6} 
3 {1, 2, 6} or {1, 5, 6} {1, 2, 6} or {1, 5, 6} 

 
o70  

4 {1, 2, 5, 6} {1, 2, 5, 6} 
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Fig. 1:  Different stages of selection with L-CSA at the transmitter 
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Fig.3: Capacity gain due to optimal receive selection vs. r∆  for different values of rL .  
N = 6, M = 2, and SNR = 20dB. No correlation exists at the transmitter. 
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Fig. 4:  Capacity cdf curves of CSA and ISA with different values of tL  and t∆  when N = M = 6,  

and SNR = 20dB. No correlation exists at the receiver. 
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Fig. 5:  Capacity cdf curves of CSA and the conventional system (with tL =M=6, rL =N=6) for different values of 

t∆ , r∆ , tL , and rL . SNR = 20dB. The capacity cdf curves of the conventional system are drawn in dash-dot lines. 
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Fig. 6:  Capacity cdf curves of CSA for receive selection and the conventional system. N = M = 6, and SNR=20dB. 
No correlation exists at the transmitter. The capacity curves of the conventional system are drawn in dash-dot lines. 
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Fig. 7:  90% outage capacity vs. t∆  curves of CSA for transmit selection and the conventional system, for N = M 
= 6, and SNR=20dB. No correlation exists at the receiver. The curve of the conventional system is marked with “+”. 
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Fig. 8:  90% outage capacity vs. r∆  curves of CSA and L-CSA for receive selection with different values of rL ,  

for N = 6, M = 2, SNR=20dB. No correlation exists at the transmitter. 
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